Dear guest, welcome to this publication database. As an anonymous user, you will probably not have edit rights. Also, the collapse status of the topic tree will not be persistent. If you like to have these and other options enabled, you might ask Pascal Held for a login account.
This site is powered by Aigaion - A PHP/Web based management system for shared and annotated bibliographies. For more information visit www.aigaion.nl. SourceForge.hetLogo
 [BibTeX] [RIS]
Analysis of a major-accident dataset by Association Rule Mining to minimise unsafe interfaces
Type of publication: Inproceedings
Citation:
Booktitle: Proc. of the 13th International Probabilistic Workshop (IPW 2015)
Year: 2015
Pages: 218-230
Publisher: Research Publishing
Location: Liverpool
Organization: IPW 2015 Organisers
ISBN: 978-981-09-7963-8
URL: https://www.researchgate.net/p...
DOI: 10.3850/978-981-09-7963-8 092
Abstract: Major accidents may cause severe damage to humans and the environment, and can potentially lead to significant losses in a business and societal level. Thus, the understanding of these complex multi-attribute events through the analysis of past accidents might assist the search for strategies to improve engineering system’s safety and design robustness. Therefore, we aim to explore potential relationships among contributing factors by means of assessing approximately 200 major industrial accidents from the Multi-attribute Technological Accidents Dataset (MATA-D) created by Moura et al. Understanding this complex and high dimensional data on incidents, is the main purpose of this work. We apply association rule mining techniques and perform point-failure analysis in order to produce further insight into the dataset. Subsequently, key similarities among accidents’ contributing factors will be analysed, in order to disclose relevant associations and identify to which extent a limited number of driving forces might be generating undesirable events. Results will be regarded as additional indicators to reduce risky interfaces among ontributing factors, and to indicate further managerial actions to minimise accidents. Conclusions to enable additional means to visualise and communicate risks to specific stakeholders are then discussed.
Keywords:
Authors Doell, Christoph
Held, Pascal
Moura, Raphael
Kruse, Rudolf
Beer, Michael
Editors Patelli, Edoardo
Kougioumtzoglou, Ioannis
Added by: []
Total mark: 0
Attachments
    Notes
      Topics