Dear guest, welcome to this publication database. As an anonymous user, you will probably not have edit rights. Also, the collapse status of the topic tree will not be persistent. If you like to have these and other options enabled, you might ask Pascal Held for a login account.
This site is powered by Aigaion - A PHP/Web based management system for shared and annotated bibliographies. For more information visit www.aigaion.nl. SourceForge.hetLogo
 [BibTeX] [RIS]
Active Learning-Based Identification of Neuronal Assemblies in Parallel Spike Trains
Type of publication: Inproceedings
Citation:
Booktitle: Proceedings. 24. Workshop Computational Intelligence, Dortmund, 27.-28. November 2014
Year: 2014
Month: November
Pages: 155-172
Publisher: KIT Scientific Publishing
Abstract: For understanding how information is processed within the brain several different models have been proposed. They are either based on a common increase in neuronal firing activity or synchronous firing of several individual neurons. We present a novel method for detecting the so-called assemblies of the latter model. Using parallel spike trains – recordings of neuronal activity – one use this information to answer quite well if an individual neuron belongs to (at least) one assembly or not. But detecting the underlying assembly structure remains a difficult task since normally neither the number of assemblies is known nor their respective size. Using surrogate-based statistics as an oracle we use active learning to identify the underlying assembly structure. This approach not only uses the statistical information we calculate from the surrogates but the structural information we can obtain by defining a metric on the spike trains themselves. We show that for even a small number of coincidences relatively small assemblies can be detected without querying the oracle for every spike train.
Keywords:
Authors Braune, Christian
Kruse, Rudolf
Editors Hoffmann, Frank
Hüllermeier, Eyke
Added by: []
Total mark: 0
Attachments
    Notes
      Topics