Dear guest, welcome to this publication database. As an anonymous user, you will probably not have edit rights. Also, the collapse status of the topic tree will not be persistent. If you like to have these and other options enabled, you might ask Pascal Held for a login account.
This site is powered by Aigaion - A PHP/Web based management system for shared and annotated bibliographies. For more information visit www.aigaion.nl. SourceForge.hetLogo
 [BibTeX] [RIS]
Assembly Detection in Continuous Neural Spike Train Data
Type of publication: Incollection
Citation:
Booktitle: Advances in Intelligent Data Analysis XI
Series: Lecture Notes in Computer Science
Volume: 7619
Year: 2012
Pages: 78-89
Publisher: Springer Berlin / Heidelberg
Note: 10.1007/978-3-642-34156-4_9
ISBN: 978-3-642-34155-7
URL: http://dx.doi.org/10.1007/978-...
DOI: 10.1007/978-3-642-34156-4_9
Abstract: Since Hebb’s work on the organization of the brain [16] finding cell assemblies in neural spike trains has become a vivid field of research. As modern multi-electrode techniques allow to record the electrical potentials of many neurons in parallel, there is an increasing need for efficient and reliable algorithms to identify assemblies as expressed by synchronous spiking activity. We present a method that is able to cope with two core challenges of this complex task: temporal imprecision (spikes are not perfectly aligned across the spike trains) and selective participation (neurons in an ensemble do not all contribute a spike to all synchronous spiking events). Our approach is based on modeling spikes by influence regions of a user-specified width around the exact spike times and a clustering-like grouping of similar spike trains.
Keywords: continuous data, ensemble detection, Hebbian learning, multidimensional scaling , spike train
Authors Braune, Christian
Borgelt, Christian
Grün, Sonja
Editors Hollmén, Jaakko
Klawonn, Frank
Tucker, Allan
Added by: []
Total mark: 0
Attachments
    Notes
      Topics