
Simple Pattern Spectrum Estimation
for Fast Pattern Filtering with CoCoNAD

Christian Borgelt and David Picado-Muiño

European Centre for Soft Computing
Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain

{christian.borgelt|david.picado}@softcomputing.es

Abstract. CoCoNAD (for Continuous-time Closed Neuron Assembly
Detection) is an algorithm for finding frequent parallel episodes in event
sequences, which was developed particularly for neural spike train analy-
sis. It has been enhanced by so-called Pattern Spectrum Filtering (PSF),
which generates and analyzes surrogate data sets to identify statistically
significant patterns, and Pattern Set Reduction (PSR), which eliminates
spurious induced patterns. A certain drawback of the former is that a
sizable number of surrogates (usually several thousand) have to be gen-
erated and analyzed in order to achieve reliable results, which can render
the analysis process slow (depending on the analysis parameters). How-
ever, since the structure of a pattern spectrum is actually fairly simple,
we propose a simple estimation method, with which (an approximation
of) a pattern spectrum can be derived from the original data, bypassing
the time-consuming generation and analysis of surrogate data sets.

1 Introduction

About a year ago we presented CoCoNAD (for Continuous-time Closed Neuron
Assembly Detection) [4], an algorithm for finding frequent parallel episodes in
event sequences, which are defined over a continuous (time) domain. The name
of this algorithm already indicates that the application domain motivating our
investigation is the analysis of parallel spike trains in neurobiology: sequences of
points in time, one per neuron, that represent the times at which an electrical
impulse (action potential or spike) is emitted. Our objective is to identify neu-
ronal assemblies, intuitively understood as groups of neurons that tend to exhibit
synchronous spiking. Such cell assemblies were proposed as a model for encoding
and processing information in biological neural networks [8]. As a (possibly) first
step in the identification of neuronal assemblies, we look for (significant) frequent
neuronal patterns, that is, groups of neurons that exhibit frequent synchronous
spiking that cannot be explained as a chance occurrence [13, 16]. In this paper
we draw on this application domain for the parameters of the (artificially gener-
ated) data sets with which we tested the proposed pattern spectrum estimation,
but remark that our method is much more widely applicable.

The CoCoNAD algorithm differs from other approaches to find frequent par-
allel episodes in event sequences, like those, for example, in [12, 6, 10] or [15]

2

(some of which are designed for discrete item sequences, although a transfer to
a continuous (time) domain is fairly straightforward), by the support definition
it employs. While the mentioned approaches define the support of a parallel
episode as the (maximal) number of non-overlapping minimal windows cover-
ing instances of the episode, CoCoNAD relies on a maximum independent set
(MIS) approach. This allows to count different instances of a parallel episode
even though the windows covering them overlap, thus leading to a potentially
higher support count. Nevertheless the resulting support measure remains anti-
monotone, because no spike is contained in more than one counted instance [4].

Furthermore, in order to single out significant frequent patterns from the
output, while avoiding the severe multiple testing problem that results from the
usually very large number of frequent patterns, we proposed pattern spectrum
filtering (PSF) in [13].1 This method relies on generating and analyzing surrogate
data sets as an implicit representation of the null hypothesis of items occurring
independently. It eliminates all patterns found in the original data, for which a
analogous pattern was found in a surrogate data set (since then the pattern can
be explained as a chance event, cf. Section 3). This method was further detailed
in [16], where it was also extended with pattern set reduction (PSR), which strives
to eliminate spurious patterns that are merely induced by an actual pattern (that
is, subset, superset and overlapping patterns) with a preference relation.2

These methods (PSF and PSR) proved to be very effective in singling out pat-
terns from artificially generated data. However, the need to generate and analyze
a sizable number of surrogate data sets (usually several thousand) can render
the mining process slow, especially if the data exhibits high event frequencies
and the analysis window width (maximum time allowed to cover an occurrence
of a parallel episode) is chosen to be large. To overcome this drawback, we strive
in this paper to exploit the fact that a pattern spectrum actually has a fairly
simple structure and thus allows for an (at least approximate) estimation from
the original data, bypassing surrogate data generation. The core idea is to count,
based on the user-specified analysis window width, the possible “slots” for pat-
terns of different sizes and to estimate from these counts the (expected) pattern
support distribution with a Poisson approximation.

The remainder of this paper is structured as follows: Section 2 briefly re-
views how (frequent) parallel episodes are mined with the CoCoNAD algorithm
and Section 3 how the output is reduced with pattern spectrum filtering (PSF)
and pattern set reduction (PSR) to significant, non-induced patterns. Section 4
describes the simple, yet effective method with which we estimate a pattern
spectrum from the original data. In Section 5 we report experiments on artifi-
cially generated data sets and thus demonstrate the quality of pattern spectrum
estimation. Finally, in Section 6 we draw conclusions from our discussion.

1 Even though pattern spectrum filtering was presented for time-binned data in [13]
(which reduces the problem to classical frequent item set mining: each time bin gives
rise to one transaction), it can easily be transferred to the continuous domain.

2 Although time-binned data was considered in [16], the idea of pattern set reduction
can easily be transferred to continuous time, requiring only a small adaptation.

3

2 Mining Parallel Episodes with CoCoNAD

We (partially) adopt notation and terminology from [12]. Our data are (finite)
sequences of events of the form S = {〈i1, t1〉, . . . , 〈im, tm〉}, m ∈ N, where ik
in the event 〈ik, tk〉 is the event type or item (taken from an item base B) and
tk ∈ R is the time of occurrence of ik, k ∈ {1, . . . ,m}. Note that the fact that S
is a set implies that there cannot be two events with the same item occurring at
the same time: events with the same item must differ in their occurrence time
and events occurring at the same time must have different types/items. Note
also that in our motivating application (i.e., spike train analysis), the items are
the neurons and the events capture the times at which spikes are emitted.

Episodes (in S) are sets of items I ⊆ B that are endowed with a partial order
and usually required to occur in S within a certain time span. Parallel episodes,
on which we focus in this paper, have no constraints on the relative order of
their elements. An instance (or occurrence) of a parallel episode I ⊆ B, I 6= ∅,
(or a (set of) synchronous event(s) for I) in an event sequence S with respect
to a (user-specified) time span w ∈ R+ can be defined as a subsequence R ⊆ S,
which contains exactly one event per item i ∈ I and which can be covered by a
(time) window of width at most w. Hence the set of all instances of a parallel
episode I ⊆ B, I 6= ∅, in S is

ES(I, w) =
{
R ⊆ S | {i | 〈i, t〉 ∈ R} = I ∧ |R| = |I| ∧ σ(R, w) = 1

}
,

where the operator σ captures the (approximate) synchrony of the events in R:

σ(R, w) =

{
1 if max{t | 〈i, t〉 ∈ R} −min{t | 〈i, t〉 ∈ R} ≤ w,
0 otherwise.

That is, σ(R, w) = 1 iff all events in R can be covered by a (time) window of
width at most w. We then define the support of a parallel episode I ⊆ B in S as

sS(I, w) = max
{
|U| | U ⊆ ES(I, w) ∧ ∀R1,R2 ∈ U ;R1 6= R2 : R1 ∩R2 = ∅

}
,

that is, as the size of a maximum independent set of the instances of I. Although
in the general case the maximum independent set problem is NP-complete [9]
and even hard to approximate [7], the problem instances we are facing here
are constrained by the underlying one-dimensional time domain, which makes
it possible to devise an efficient greedy algorithm that solves it exactly [14].
Pseudo-code of the support counting procedure can be found in [4].

Frequent parallel episodes are then mined, based on this support definition,
with a standard recursive divide-and-conquer scheme that enumerates candidate
item sets, which may also be seen as a depth-first search. The search is pruned,
as in all such algorithms, with the so-called apriori property: no superset of
an infrequent parallel episode can be frequent, since the support measure defined
above can be shown to be anti-monotone (see, for example, [17, 5]). Pseudo-code
of the mining procedure including efficient event filtering can be found in [4].

4

3 Pattern Spectrum Filtering and Pattern Set Reduction

Trying to single out significant patterns proves to be less simple than it may
appear at first sight, since one has to cope with the following two problems: in
the first place, one has to find a proper statistic that captures how (un)likely
it is to observe a certain pattern under the null hypothesis that items occur
independently. Secondly, the huge number of potential patterns causes a severe
multiple testing problem, which is not easy to overcome with standard methods.
In [13] we provided a fairly extensive discussion and concluded that a different
approach than evaluating individual patterns with statistics is needed.

As a solution, pattern spectrum filtering (PSF) was proposed in [13] based on
the following insight: even if it is highly unlikely that a specific group of z items
co-occurs c times, it may still be likely that some group of z items co-occurs
c times, even if items occur independently. The reason is simply that there are
so many possible groups of z items (unless the item base B as well as z are tiny)
that even though each group has only a tiny probability of co-occurring c times,
it may be almost certain that one of them co-occurs c times.3 As a consequence,
since there is no a-priori reason to prefer certain sets of z items over others
(even though a refined analysis, on which we are working, may take individual
item frequencies into account), we should not declare a pattern significant if the
occurrence of a counterpart (same size z and same or higher support c) can be
explained as a chance event under the null hypothesis of independent items.

As a consequence, we pool patterns with the same pattern signature 〈z, c〉,
and collect for each signature the (average) number of patterns that we observe
in surrogate data. This yields what we call a pattern spectrum (see Figures 2
and 3). Pattern spectrum filtering consists in keeping only such patterns found
in the original data for which no counterpart with the same signature (or a
signature with the same z, but larger c) was observed in surrogate data, as such
a counterpart would show that the pattern can be explained as a chance event.

The essential part of this procedure is, of course, the generation of surrogate
data, for which we rely on a simple permutation procedure: the occurrence times
of the events are kept and the items (the event types) are randomly permuted.
This destroys any co-occurrence of items that may be present in the data and
thus produces data that implicitly represent the null hypothesis of independently
occurring items. A discussion of other surrogate data generation approaches that
are common in the area of neural spike train analysis can be found in [11].

Note that pattern spectrum filtering still suffers from a certain amount of
multiple testing : every pair 〈z, c〉 that is found in the original data gives rise to
one test. However, the pairs 〈z, c〉 are much fewer than the number of specific
item sets. As a consequence, simple approaches like Bonferroni correction [2, 1]
become feasible, with which the number of needed surrogate data sets can be
computed [13]: given a desired overall significance level α and the number k of

3 This is actually the case for, say, z = 5 and c = 4 in our data, for which patterns
are essentially certain to occur, see Figures 2 and 3, although the probability of
observing a specific set of 5 items co-occurring 4 times is extremely small (< 10−8).

5

pattern signatures to test, at least k/α surrogate data sets have to be analyzed.
With the common choice α = 1% and usually several dozen pattern signatures
being observed, this rule recommends to generate several thousand data sets.
In our experiments we always chose 10,000, regardless of the actual number of
pattern signatures, in order to ensure a uniform procedure for all data sets.

As a further filtering step, pattern set reduction was proposed in [16], which
is intended to take care of the fact that an actual pattern induces other, spuri-
ous patterns that are subsets or supersets or overlap the actual patterns. These
spurious patterns are reduced with the help of a preference relation between
patterns and the principle that only patterns are kept to which no other pat-
tern is preferred. A simple heuristic, but very effective preference relation is the
following: let X,Y ⊆ B be two patterns with Y ⊆ X and let zX = |X| and
zY = |Y | be their sizes and cX and cy their support values. The pattern X is
preferred to Y if zX · cX ≥ zY · cY . Otherwise Y is preferred to X. The core
idea underlying this method is that under certain simplifying assumptions the
occurrence probability of a pattern is inversely proportional to the number of in-
dividual events underlying it, that is, to the product z · c. Intuitively, the above
preference relation therefore prefers the less probable pattern. Alternatives to
this preference relation and a more detailed discussion can be found in [16].

4 Pattern Spectrum Estimation

As already mentioned in the introduction, pattern spectrum filtering suffers from
the problem that a sizeable number of surrogate data sets (usually several thou-
sand) need to be generated and analyzed, which can render the analysis process
slow, especially if due to high event frequencies and a large window width w an
individual run already takes some time. Even though pattern spectrum gener-
ation lends itself very well to parallelization (since each surrogate data set can
be generated and analyzed on a different processor core), it is desirable to find
a faster way of obtaining (at least an approximation of) a pattern spectrum.

As a solution, we propose pattern spectrum estimation in this paper. This
method draws on the idea that by counting the “slots” for patterns of different
sizes, we can estimate the support distribution of the patterns via a standard
Poisson approximation of the actual binomial distribution. By a “slot” for a
pattern size z we mean any collection of z events in the event sequence S to
analyze that can be covered by the chosen analysis window width w. Each such
slot can hold an instance of a specific parallel episode I ⊆ B, |I| = z. With the
probability of a pattern instance occurring in such a slot, that is, the probabil-
ity that the z items constituting the parallel episode are chosen in a random
selection (since we want to mimic independent items, as this is the implicitly
represented null hypothesis), we obtain a probability distribution over the dif-
ferent numbers of occurrences of the parallel episode in the counted number of
slots. This distribution is actually binomial, but it can be approximated well by
a Poisson distribution, because the number of slots is usually very large while
the occurrence probability of a specific parallel episode is very small.

6

By scaling the resulting probability distribution over the possible support
values to the total number of patterns that can occur, we obtain expected counts
for the different pattern signatures with size z. Executing the process for all sizes
z ∈ {1, . . . , |B|} then yields the desired pattern spectrum.

Formally, the number of slots for each pattern size z is defined as

∀z ∈ {1, . . . , |B|} : NS(z, w) =
∣∣{R ⊆ S | |R| = z ∧ σ(R, w) = 1

}∣∣.
However, this formula does not lend itself well to implementation. Therefore,
to count the slots for each pattern size, we first pass a sliding window over the
event sequence S, stopping at each event 〈i, t〉 ∈ S, and collecting the events in
the (time) window [t, t+ w]. That is, we consider the set of event sequences

WS(w) =
{
Re | e = 〈i, t〉 ∈ S ∧ Re = {〈i′, t′〉 ∈ S | t′ ∈ [t, t+ w]}

}
.

Using the mentioned sliding window method, this set is easy to enumerate.
From this set we then obtain the slot counts per pattern size z as

∀z ∈ {1, . . . , |B|} : NS(z, w) =
∑
R∈WS ,|R|≥z

(|R|−1
z−1

)
.

This formula can be understood as follows: only subsequences inWS that contain
at least z events can contain slots for a pattern of size z and therefore the
sum considers only R with |R| ≥ z. In principle, all subsets of z events in a
given R have to be considered. However, the event sequences in WS overlap,
and thus summing

(|R|
z

)
could count the same slot multiple times. We avoid this

by counting for each R only those subsets of size z that contain the first event
in R (that is, the event at which the window defining R is anchored). Of the
remaining |R| − 1 events in R we then choose z − 1 to obtain a slot of size z.

For the support distribution estimation let us first assume that all items (and
thus all parallel episodes) are equally likely (we abandon this assumption later,
but it simplifies the explanation here) and occur independently (as required by
the null hypothesis). Then the probability that a specific parallel episode I ⊆ B,
|I| = z, occurs in a slot of size z is PS(I) = 1/

(|B|
z

)
. The probability distribution

over the support values c can thus be approximated by a Poisson distribution as

PS(〈z, c〉) =
λc

c!
e−λ with λ = NS(z, w) /

(|B|
z

)
,

because NS(z, w) is (very) large and 1/
(|B|
z

)
is (very) small and thus the standard

conditions for a Poisson approximation are met. Multiplying this probability
distribution by the number of parallel episodes of size z yields the expected
number of patterns with signature 〈z, c〉, namely

E(〈z, c〉) =
(|B|
z

)λc
c!
e−λ,

and thus the desired pattern spectrum. To account for the finite number M of
surrogate data sets that would have been generated otherwise, one may threshold
it with 1/M and thus obtain an equivalent to a surrogate data pattern spectrum.

7

It should be noted, though, that this derivation is only an approximation in
several respects. Apart from the Poisson approximation (which, however, is the
least harmful, since the conditions for its application are met), it suffers from
neglecting the following: in the first place, the support distributions for parallel
episodes of the same size are negatively correlated, since more occurrences of
one pattern must be compensated by fewer occurrences of other patterns. Hence
simply multiplying the individual distributions by the number of possible parallel
episodes is not quite correct. Secondly, the “slots” for a given size z overlap, that
is, the same event can contribute to multiple slots for a given size. However, in
the above derivation the slots are treated as if they are independent. Both of
these issues can be expected to lead to an overestimate of the average number
of patterns for a signature 〈z, c〉. The overestimate can be expected to be small,
though, because the correlation is small due to the large number of parallel
episodes and the amount of overlap is small relative to the total number of slots.
Finally, the overlap actually increases the occurrence probability of a pattern,
since a slot overlapping one that contains an instance of a pattern has a higher
probability of containing the same pattern than an independent slot. This is less
relevant, though, because CoCoNAD does not count both of two overlapping
instances (see the support definition in Section 2).

However, the most serious drawback of the method as we described it up
to now is the assumption that all items (and thus all parallel episodes) are
equally likely. This assumption is rarely satisfied in practice, as the firing rates
of recorded neurons tend to differ (considerably). Therefore we remove this as-
sumption as follows: since for any practically relevant size of the item base B
it is impossible to enumerate all parallel episodes of size z, we draw a sample
of K subsets of the item base B having size z (we chose K = 1, 000 to cover
sufficiently many configurations), using equal probabilities for all items. For each
drawn parallel episode I ⊆ B, |I| = z, we compute the Poisson distribution over
the support values c as described above and sum these distributions over the
elements of the sample. The result, a sum of Poisson distributions with different
parameters λ (which take take of the different occurrence probabilities of the
items), is then scaled to the total number of possible parallel episodes of size z.
That is, the distribution is multiplied with

(|B|
z

)
/K (and thresholded with 1/M

where M is the number of surrogate data sets that would have been generated
otherwise) to obtain the pattern spectrum.

In this computation one has to take care that the probability of a parallel
episode I ⊆ B, |I| = z, cannot simply be computed as PS(I) =

∏
i∈I pi, where

∀i ∈ B : pi = |{t | 〈i, t〉 ∈ S}| / |S|

is the probability that a randomly chosen event has item i. The reason is that a
chosen item cannot be chosen again and therefore the probability should rather
be computed, using an order i1, . . . , iz of the items in I, like

PS(I) =

z∏
k=1

pik

1−
∑k−1
j=1 pij

.

8

However, there is no reason to prefer any specific order of the items over any
other. To handle this problem, we draw a small sample of orders (permutations)
for each chosen parallel episode and average over these orders as well as their
reversed forms (unless z ≤ 4, for which we simply enumerate all orders, since
their number is manageable). We consider both a generated item order as well
as its reverse, because the computed probabilities are certain to lie on opposite
sides of the mean probability. In this way the average over the considered item
orders can be expected to yield a better estimate of the mean probability.

In our experiments we found that if the item probabilities actually differed,
this approach produced a better pattern spectrum estimate than assuming equal
item probabilities. However, it tended to overestimate the occurrence frequencies
of the pattern signatures. On the other hand, using equal item probabilities
for the estimation (even though the probabilities actually differed) tended to
produce underestimates. As a straightforward heuristic to correct these effects,
we introduced a factor that contracts the probability dispersion of the items, thus
reducing the overestimate. That is, before the support distribution estimation
we transform the item probabilities computed above according to

p′i = p̄+ %(pi − p̄) where p̄ = 1/|B| and % ∈ [0, 1].

By evaluating the quality of an estimated pattern spectrum relative to one de-
rived from surrogate data, focusing on the expected signature counts close to
the decision border for rejecting a found pattern (technically: expected counts
E(〈z, c〉) ∈ [0.0001, 0.1]) and using a logarithmic error measure (that is, com-
puting differences of logarithms of pattern counts rather than differences of the
counts directly), we found that % ∈ [0.4, 0.5] is a good choice for basically all
parameter combinations that we tested. We only observed a slight dependence
on the window width w: for larger values of w, smaller values of % appear to
produce better results. For the experiments reported in the next section we used
the fixed value % = 0.5, but results for other values did not differ much.

5 Experiments

We implemented our pattern spectrum estimation in both Python and C (see
below for the source code) and applied it to a variety of data sets that were
generated to resemble the data sets we meet in neural spike train analysis (our
motivating application area). In total we generated 108 data sets, each of which
represented 3 seconds of recording time. We varied the number of neurons (or
items, n ∈ {40, 60, 80, 100}, which are typical numbers that can be recorded with
state of the art equipment), the averaging firing rate (r ∈ {10, 20, 30}Hz), the
firing rate variation over the neurons (either the same for all neurons or linearly
increasing from the lowest to the highest, which was chosen to be 2 or 3 times
the lowest rate) and the firing rate variation over time (using either a flat rate
profile or a burst profile that mimics presenting and removing a stimulus three
times, where the highest rate was chosen to be 2 or 3 times the lowest rate).
As an illustration, dot displays of some of these data sets are shown in Figure 1.

9

a)

ne
ur

on
s

time

c)

ne
ur

on
s

time

b)

ne
ur

on
s

time

d)

ne
ur

on
s

time

Fig. 1. Some examples of test data sets: a) stationary Poisson processes, same firing
rate for all neurons; b) stationary Poisson processes, different firing rates (3:1 highest
to lowest); c) burst profile (3:1 highest to lowest rate), same for all neurons; d) burst
profile (3:1 highest to lowest rate), different average firing rates (3:1 highest to lowest).

Each data set was then analyzed with four different window widths (w ∈
{2, 3, 4, 5}ms), yielding a total of 432 configurations. In each configuration a
pattern spectrum was obtained by generating and analyzing 10,000 surrogate
data sets and by estimating it with the described method. With this number
of surrogate data sets we can be sure to meet an overall significance level of
α = 1% or even lower, since the number of pattern signatures was always clearly
less than 100. (See the estimation of the number of needed surrogate data sets
via Bonferroni correction in Section 3.) We observed that the estimated pattern
spectra match the ones derived from surrogate data sets very well. However,
they can be obtained in a small fraction of the time: while estimating a pattern
spectrum takes only a fraction of a second, generating and analyzing 10,000
surrogate data sets can take hours and even days (as we experienced for some
of the data sets we experimented with). Examples of obtained pattern spectra
are shown in Figure 2 (w = 3ms) and Figure 3 (w = 5ms).4

6 Conclusions

Although in several respects a (coarse) approximation, the pattern spectrum
estimation we presented in this paper proved to produce very usable pattern
spectra for the (artificially generated) data sets on which we tested it. The speed-
up that can be achieved by estimation is substantial (often orders of magnitude).
This speed-up can be exploited, for example, to automatically determine a proper
window width w by trying different values and evaluating the result. Doing the
same with surrogate data sets can turn out to be tedious and time-consuming,
since each window width requires a new set of surrogates to be generated and

4 Diagrams of the full set of pattern spectra can be found here:
http://www.borgelt.net/docs/spectra.pdf

10

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v3t1w3
surrogates

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v1t3w3
surrogates

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v3t3w3
surrogates

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v3t1w3
estimated

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v1t3w3
estimated

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v3t3w3
estimated

Fig. 2. Pattern spectra for window width 3ms, generated from surrogate data sets (top)
or estimated with the described method (bottom). The top word in a diagram title
encodes the data set parameters: n—number of neurons, r—firing rate, v—firing rate
variation over neurons as x : 1 (highest to lowest), t—firing rate variation over time as
x : 1 (highest to lowest), w—analysis window width. Grey bars extend beyond the top
of the diagram, white squares represent zero occurrences. Note the logarithmic scale.

analyzed. We are currently in the process of applying our pattern mining method
(CoCoNAD + PSF + PSR, with pattern spectrum estimation as well as deriving
a pattern spectrum by generating and analyzing surrogate data sets) to real-
world data sets. Preliminary results look very promising.

Software and Source Code

Python and C implementations of the described estimation procedure as well as
a Java based graphical user interface can be found at these URLs:

www.borgelt.net/pycoco.html www.borgelt.net/cocogui.html

Acknowledgments. The work presented in this paper was partially supported
by the Spanish Ministry for Economy and Competitiveness (MINECO Grant
TIN2012-31372).

References

1. H. Abdi. Bonferroni and S̆idák Corrections for Multiple Comparisons. In:
N.J. Salkind, ed. Encyclopedia of Measurement and Statistics, 103–107. Sage
Publications, Thousand Oaks, CA, USA 2007

2. C.E. Bonferroni. Il calcolo delle assicurazioni su gruppi di teste. Studi in Onore
del Professore Salvatore Ortu Carboni, 13–60. Bardi, Rome, Italy 1935

11

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v3t1w5
surrogates

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v1t3w5
surrogates

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v3t3w5
surrogates

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v3t1w5
estimated

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v1t3w5
estimated

pat
tern

siz
e z

2
4

6
8

10
12

14
16

18
20

coincidences c

2
4

6
8 10 12 14 16 18 20

lo
g(

#p
at

te
rn

s)

–4
–3
–2
–1
0
1
2
3

n100r20v3t3w5
estimated

Fig. 3. Pattern spectra for window width 5ms, generated from surrogate data sets
(top) or estimated with the described method (bottom). The top word in a diagram
title encodes the data set parameters (cf. caption of Figure 2 for details).

3. C. Borgelt. Frequent Item Set Mining. Wiley Interdisciplinary Reviews (WIREs):
Data Mining and Knowledge Discovery 2:437–456 (doi:10.1002/widm.1074). J. Wi-
ley & Sons, Chichester, United Kingdom 2012

4. C. Borgelt and D. Picado-Muiño. Finding Frequent Synchronous Events in Parallel
Point Processes. Proc. 12th Int. Symposium on Intelligent Data Analysis (IDA
2013, London, UK), 116–126. Springer-Verlag, Berlin/Heidelberg, Germany 2013

5. M. Fiedler and C. Borgelt. Subgraph Support in a Single Graph. Proc. IEEE Int.
Workshop on Mining Graphs and Complex Data, 399–404. IEEE Press, Piscataway,
NJ, USA 2007

6. R. Gwadera, M. Atallah, and W. Szpankowski. Markov Models for Identification
of Significant Episodes. Proc. 2005 SIAM Int. Conf. on Data Mining, 404–414.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA 2005

7. J. Høastad. Clique is Hard to Approximate within n1e. Acta Mathematica 182:105–
142. Mittag–Leffler Institute, Stockholm, Sweden 1999

8. D. Hebb. The Organization of Behavior. J. Wiley & Sons, New York, NY, USA
1949

9. R.M. Karp. Reducibility among Combinatorial Problems. In: R.E. Miller and
J.W. Thatcher (eds.) Complexity of Computer Computations, 85–103. Plenum
Press, New York, NY, USA 1972

10. S. Laxman, P.S. Sastry, and K. Unnikrishnan. Discovering Frequent Episodes
and Learning Hidden Markov Models: A Formal Connection. IEEE Trans. on
Knowledge and Data Engineering 17(11):1505–1517. IEEE Press, Piscataway, NJ,
USA 2005

11. S. Louis, C. Borgelt, and S. Grün. Generation and Selection of Surrogate Methods
for Correlation Analysis. In: S. Grün and S. Rotter (eds.) Analysis of Parallel
Spike Trains, 359–382. Springer-Verlag, Berlin, Germany 2010

12

12. H. Mannila, H. Toivonen, and A. Verkamo. Discovery of Frequent Episodes in
Event Sequences. Data Mining and Knowledge Discovery 1(3):259–289. Springer,
New York, NY, USA 1997

13. D. Picado-Muiño, C. Borgelt, D. Berger, G.L. Gerstein, and S. Grün. Finding
Neural Assemblies with Frequent Item Set Mining. Frontiers in Neuroinformatics
7:article 9 (doi:10.3389/fninf.2013.00009). Frontiers Media, Lausanne, Switzerland
2013

14. D. Picado-Muiño and C. Borgelt. Frequent Itemset Mining for Sequential Data:
Synchrony in Neuronal Spike Trains. Intelligent Data Analysis, to appear. IOS
Press, Amsterdam, Netherlands 2014

15. N. Tatti. Significance of Episodes Based on Minimal Windows. Proc. 9th IEEE
Int. Conf. on Data Mining (ICDM’09, Miami, FL, USA), 513–522. IEEE Press,
Piscataway, NJ, USA 2009

16. E. Torre, D. Picado-Muiño, M. Denker, C. Borgelt, and S. Grün. Statistical Evalu-
ation of Synchronous Spike Patterns Extracted by Frequent Item Set Mining. Fron-
tiers in Computational Neuroscience, 7:article 132 (doi:10.3389/fninf.2013.00132).
Frontiers Media, Lausanne, Switzerland 2013

17. N. Vanetik, E. Gudes, and S.E. Shimony. Computing Frequent Graph Patterns
from Semistructured Data. Proc. IEEE Int. Conf. on Data Mining, 458–465. IEEE
Press, Piscataway, NJ, USA 2002

