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DaimlerChrysler Group Research
Ulm, Germany

{jochen.hipp, steffen.kempe,
carsten.lanquillon,

ruediger.wirth}@dcx.com

ABSTRACT
After nearly two decades of data mining research there are
many commercial mining tools available, and a wide range
of algorithms can be found in the literature. One might
think there is a solution to most of the problems practi-
tioners face. In our application of descriptive induction
on warranty data, however, we found a considerable gap
between many standard solutions and our practical needs.
Confronted with challenging data and requirements such as
understandability and support of existing work flows, we
tried many things that did not work, ending up in simple
solutions that do. We feel that the problems we faced are
not so uncommon, and would like to advocate that it’s bet-
ter to focus on simplicity—allowing domain experts to bring
in their knowledge—rather than on complex algorithms. In-
teractivity and simplicity turned out to be key features to
success.

1. INTRODUCTION
An air bellow bursts: This happens on one truck, on another
it does not. Is this random coincidence, or the result of some
systematic weakness?

Questions like these have ever been keeping experts busy
at DaimlerChrysler’s After Sales Services. Recently, they
have attracted even more attention, when Chrysler’s CEO
LaSorda introduced the so-called tag process: a rigorous
quality enhancement initiative that once more mirrors the
enormous business relevance of fast problem resolution [3].

This primary goal of quality enhancement entails several
tasks to be solved:

• detecting upcoming quality issues as early as possible
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• explaining why some kind of quality issue occurs and
feeding this information back into engineering

• isolating groups of vehicles that might suffer a certain
defect in the future, so as to make service actions more
targeted and effective.

Our research group picks up common data mining methods
and adapts them to the practical needs of our engineers and
domain experts. This contribution reports on the lessons
learned. In particular, we elaborate on our experience that
the right answer to domain complexity need not be algo-
rithmic complexity—but rather simplicity. Simplicity opens
ways to create an interactive setup which involves experts
without overwhelming them. And if truly involved, an ex-
pert will understand the results and turn them into action.

We will outline the problem setting in Section 2. The sub-
sequent sections respectively discuss the theoretical aspects,
tool selection and model building methods, each answering
the questions of what we tried and what finally worked.

2. DOMAIN AND REQUIREMENTS
2.1 The Data
Most of the data at hand is warranty data, providing infor-
mation about diagnostics and repairs at the garage. Further
data is about vehicle production, configuration and usage.
All these sources are heterogeneous, and the data was not
collected for the purpose of causal analyses. This raises ques-
tions about reliability, appropriateness of scale, and level of
detail. Apart from these concerns, our data has some prop-
erties that make it hard to analyze, including

Imbalanced classes: The class of interest, made up of all
instances for which a certain problem was reported, is
very small compared to its contrast set. Often, the
proportion is way below 1 %.

Multiple causes: Sometimes, a single kind of problem re-
port can be traced back to different causes that pro-
duced the same phenomenon. Therefore, on the entire
data set, even truly explanatory rules show only mod-
est qualities in terms of statistical measures.



Semi-labeledness: The counterpart of the positives is not
truly negative. If there is a warranty entry for some
vehicle, it is (almost) sure that it indeed suffered the
problem reported on. For any non-positive example,
however, it is unclear whether it carries problematic
properties and may fall defective in near future.

High-dimensional space of influence variables (1000s)

Influence variables interact strongly: Some quality is-
sues do not occur until several influences coincide. And,
if an influence exists in the data, many other non-
causal variables follow, showing positive statistical de-
pendence with the class as well.

True causes not in data: By chance, they are conclud-
able from other, influenced variables.

2.2 The Domain Experts and Their Tasks
Our users are experts in the field of vehicle engineering, spe-
cialized on various subdomains such as engine or electrical
equipment. They keep track of what goes on in the field,
mainly by analyzing warranty data, and try to discover up-
coming quality issues as early as possible. If they recognize a
problem, they strive for finding out the root causes in order
to address it most accurately.

They have been doing these investigations successfully over
years. Now, data mining can help them to better meet the
demands of fast reaction, well-founded insight and targeted
service. But any analysis support must fit into the users’
mindset, their language, and their work flow.

The structure of the problems to be analyzed varies sub-
stantially. This task requires inspection, exploration and
understanding for every case anew. Ideally, the engineers
should be enabled to apply various exploration and anal-
ysis methods from a rich repository. And it is important
that they do it themselves, because no one else could decide
quickly enough whether a certain clue is relevant and should
be pursued, and ask the proper questions. Finding out rea-
sons of strange phenomena requires both comprehensive and
detailed background knowledge.

Yet, the engineers are not data mining experts. They could
make use of data mining tools out of the box, but common
data mining suites already require deeper understanding of
the methods. Further, the users are reluctant to accept any
system-generated hypothesis if the system cannot give exact
details that justify this hypothesis. The bottom line is that
penetrability and, again, interactivity are almost indispens-
able features of any mining system in our field.

3. UNDERSTANDING THE TASK
Let us first have a theoretical look at the problem. It is
noteworthy that we will meet the following arguments again
when we investigate individual methods.

3.1 What we tried
A great portion of the task can be seen as a classification
problem. We would like to separate the good from the bad.
It may be possible to tell for any vehicle whether it might en-
counter problems in the future. And if we choose a symbolic
method, we can use the model to explain the problem.

As stated above, however, data is semi-labeled, and the
problem behind the positive class may have multiple causes.
These properties act as if there were a strong inherent noise
that changes the class variable in either direction. Classifier
induction tries to separate the classes in the best possible
way but can return unpredictable, arbitrary results when
noise increases. For our application, it suffices to grab the
most explainable part of the positives and leave the rest for
later investigation or, finally, ascribe it to randomness. In
other words, we experienced that anything beyond partial
description is not adequate here (confer Hand’s categoriza-
tion into mining the complete relation versus local patterns
[5]).

So we came up with subgroup discovery (e.g., [8]). It means
to identify subsets of the entire object set which show some
unusual distribution with respect to a property of interest—
in our case, the binary class variable.

Results from subgroup discovery approaches need not be
restricted to knowledge acquisition, but can be re-used for
picking out objects of interest. This is the partial classifica-
tion we want, where a statement about the contrast set is
not adequate or required.

Still, data properties make subgroup discovery results unus-
able most of the time. There are many candidate influences,
and they interact strongly. Therefore, even if the cause could
be described by a sole variable, it would be hard to find it
among the set of variables influenced by it. All these vari-
ables, including the causal one, would refer to roughly the
same subset of vehicles with an increased proportion of pos-
itives.

3.2 What works
Opposing it to mere discovery, we’d rather like to talk about
subgroup description. It is to identify the very same sub-
groups, but in a way as comprehensive and informative as
possible. The rationale is, even if subgroup discovery results
are presented in a human-readable form, the users are left
alone to map these results to synonyms that can be more
meaningful in the context of the application. In a domain
with thousands of influence variables, however, the users
cannot be expected to bear all the (possibly even multi-
variate) interactions in their minds. Vehicle configuration,
for instance, contains hundreds of strongly interrelated vari-
ables, dependent as well on type, production date and des-
tination region. Subgroup description is thus required to
provide any reasonable explanation as long as there is no
evidence that the finding is void or unjustified.

4. A TOOL THAT SUITS THE EXPERTS
4.1 What we tried
We had a look at several commercially available data mining
suites and tools. Unfortunately, any of these fell short of the
requirements outlined in Section 2.2.

As an overall observation, they were rather inaccessible and
often did not allow for interaction at the model building
level. Even if they did, they could not present informa-
tion (like measures) in the non-statistician users’ language.
Tools of this kind offer their methods in a very generic fash-
ion so that the typical domain expert does not know where
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Figure 1: Coarse usage model of our tool. There is a
fixed process skeleton corresponding to the original
workflow. The user can just go through, or gain
more flexibility (and complexity) upon request.

to start. In short, we believe that the goal conflict between
flexibility and guidance can hardly be solved by any general-
purpose application, where the greatest simplification poten-
tial, namely domain adaption, remains unexploited.

4.2 What works
We ended up in programming a tool of our own. Figure 1
shows a simplified view of our tool’s process model. It
emerged as the union of our experts’ workflows und thus
offers guidance even for users not overly literate in data min-
ing. At the same time, it does not constrain the user to a
single process but allows going deeper and gain flexibility
wherever the user is able and willing to.

For example, the users start with extracting data for fur-
ther analysis. We tried to keep this step simple and hide
the complexities as much as possible. The user just selects
the vehicle subset and the influence variables he likes to work
with. A meta data based system cares about joins, aggre-
gations, discretizations or other data transformation steps.
This kind of preprocessing is domain specific, but still flex-
ible enough to adapt to changes and extensions.

In the course of their analyses, the experts often want to
derive variables of their own. That way, they can mate-
rialize concepts otherwise spread over several other condi-
tions. This is an important point where they introduce case-
specific background knowledge. The system allows them to
do so, up to the full expressiveness of mathematical formu-
las.

A similar fashion of multi-level complexity is offered for the
“Explore” box in Figure 1: The system offers both standard
reports, suiting the experts’ needs in most of the cases, up to
individually configurable diagrams. For the sake of model
induction, our tool offers currently two branches that in-
teract and complement each other: decision trees and rule
sets.

5. INTERACTIVE DECISION TREES
Subgroup discovery (and description) can be mapped to par-
titioning the instance set into multiple decision tree leaves.
Paths to leaves with a high share of the positive class provide
a description of an interesting subgroup. In fact, decision
tree induction roughly corresponds to what our experts had

been doing even before getting in touch with data mining.
Hence, decision trees were the first method we chose.

5.1 What we tried
To quickly provide the users with explanation models, it was
proximate to build decision trees automatically as is typi-
cally done when inducing tree-based classifiers ([2, 6, 11]).
However, the experts deemed the results unusable most of
the time, because the split attributes that had been selected
by any of the common top-down tree induction algorithm
were often uninformative or meaningless to them: The top-
ranked variable was rarely the most relevant one.

For some time, we experimented with different measures.
Literature suggests measures such as information gain, in-
formation gain ratio, χ2 p-value, or gini index, to mention
the most important ones.

However, in an exemplary analysis case, there was a vari-
able that gave the actual hint for the expert to discover the
quality issue’s cause. This variable was ranked 27th by in-
formation gain, 41st by gain ratio, 36th by p-value and 33rd
by gini index. We conclude that an automatic induction
process hardly could have found a helpful tree.

5.2 What works
This is where interactivity comes into action. This is close
what Ankerst proposed [1], except for the mining goal. Build-
ing trees interactively relieves the measure of choice from the
burden of selecting the single “best” split attribute. The
idea is almost trivial: Present the attributes in an ordered
list and let the expert make tentative choices until he finds
one he considers plausible.

What remains is the problem of how to rank the attributes in
a reasonable way. But even for ranking, the aforementioned
statistical measures proved little helpful. We explain this
by the fact that they are measures designed for classificator
induction, trying to separate the classes in the best possible
way. But as illustrated in Section 3, this is not the primary
goal in our application.

Most of the time, we deal with two-class problems anyway:
the positive class versus the contrasting rest. Hence, we can
use the measure lift (the factor by which the positive class
rate in a given node is higher than the positive class rate in
the root node). To complement the lift value of a tree node,
we use the recall (the fraction covered) of the positive class.
Both lift and recall are readily understandable for the users
as they have immediate analogies in their domain. Now, fo-
cusing on high-lift paths, the users can successively split tree
nodes to reach a lift as high as possible while maintaining
nodes with substantial recall.

In order to condense this into a suitable attribute ranking,
we group attribute values (or, the current node’s children).
We require the resulting split to create at most k children,
where typically k = 2 so as to force binary splits. This
ensures both that the split is “handy” and easily understood
by the user, and that the subsequent attribute ranking can
be based consistently on the child node with the highest lift.

To group the children in a reasonable way, we simply sort
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Figure 2: Quality space for the assessment of split
attributes. Each dot represents an attribute, plot-
ted over recall (x axis) and lift (y axis) of the best
(possibly clustered) child that would result. Dots
are plotted bold if there is no other dot that is bet-
ter in both dimensions. The curves are isometrics
according to the recall-weighted lift.

them by lift. Then, keeping their linear order, we cluster
them using several heuristics: merge smallest nodes first,
merge adjacent nodes with lowest lift difference. Lift and
recall of the resulting highest-lift node are finally combined
to a one-dimensional measure (weighted lift, or “explana-
tional power”) in order to create the ranking.

Grouping is automatically performed during attribute as-
sessment. Still, the users can interactively undo and redo
the grouping or even arrange the attribute values into any
form that they desire. This is important to further incor-
porate background knowledge, e.g. with respect to ordered
domains, geographical regions, or, in particular, components
that are used in certain subsets of vehicles and should, thus,
be considered together.

As an alternative to a ranked list, the user can still get
the more natural two-dimensional presentation of the split
attributes (Figure 2). Similar to within a ROC space, every
such attribute is plotted as a point. We use recall and lift
as the two dimensions.

6. INTERACTIVE RULE SETS
As an important data property we mentioned that influences
interact in a way that some quality issues do not occur until
several influences coincide. While decision tree building is
intuitive, its search is greedy and thus may miss interesting
combinations. So the experts asked for an automatic, more
comprehensive search. This led us to rule sets.

6.1 What we tried
Among others (e.g., [7, 13, 12]), a well-known subgroup dis-
covery algorithm is CN2-SD [9]. It induces rules by sequen-
tial covering: By heuristic search, find a rule that is best
according to some statistical measure. Reduce the weights
of the covered examples, and re-iterate until no reasonable
rule can be found any more.

The first handicap of this procedure is the same as with
decision trees: There is no measure that could guarantee to
select the best influence, here: rule.

But even the hope that a good rule will be among the sub-
sequently mined ones need not hold: Imagine there are two
rules describing exactly the same example set. CN2-SD
will never find both, because by modifying the examples’
weights, the two rules’ ranks will change simultaneously.
This, however, runs counter the idea of subgroup descrip-
tion, in other words, comprehensiveness at the textual level
rather than mere subset identification.

6.2 What works
We thus came up with an exhaustive search (within con-
straints). It is realized by an association rule miner with
fixed consequence. This is not new, and like us, many re-
search groups think about how to handle redundancy within
the results (e.g., [4, 10, 14])

What we like to point out here is that once again, the idea of
interactivity produced a simple but effective solution. The
expert is enabled to control a CN2-SD like sequential cov-
ering. He picks a rule he recognizes as “interesting” or “al-
ready known”. This is comparable to selecting a decision
tree split attribute. Several measures, fitting into his mind-
set, support him with his choice. The instance set is then
modified so as to remove the marked influence, and the ex-
pert can re-iterate to find the next interesting rule.

7. MODULE INTERACTION
The key property that makes a tool more than the sum of its
components, however, is the facility of interaction between
its exploration and modelling components. This is still only
partly implemented, but our users strongly request for it.
Indeed module interaction is the feature that allows them
to flexibly apply the methods offered and to take out the
respective best of them.

Such sometimes trivial but practically important features
include:

• Extracting instance subsets as covered by a rule or
tree path and exchanging them within the modules for
deeper analyses or visualization.

• Building a tree with a path as described by a rule in
order to take a closer look at the respective contrast
sets.

• Deriving new variables from tree paths or rules.

8. CONCLUSION
We reported on our experiences of applying data mining
methods in a domain where data is difficult, analysis tasks
change structurally case by case, and thus a great amount of
background knowledge is indispensable. Many approaches
suggested in the literature turned out either too constrained
or too complex to be offered without major adaption. In
such a setting, we consider it best to stick to simple methods,
provide these in a both flexible and understandable way, and
settle on interactivity.

Still, there is a wide field to explore. At many points of
the process, there is much room for methods that support
the experts and reduce their routine work load as much as
possible.
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