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Chapter 11:
Recurrent Neuro Fuzzy Systems
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Neuro-fuzzy models are usually used if

Vague knowledge can be included into the solution
(i.e. we know something about our data or a possible solution)

The solution should be interpretable in form of rules
(i.e. we want to learn something about our data/problem)

From an applicational point of view the solution should be easy 
to implement, to use and to understand.

Interpretation is more important than performance

Motivation
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Conventional (feedforward) neuro-fuzzy models less appropriate 
for control / analysis of higher order dynamic systems or time 
series data:

obtained systems usually very complex (i.e. number of inputs 
and rules very high) 
obtained systems are usually hard to interpret
performance decreases
initialization by use of linguistic rules usually impossible

Motivation
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Recurrent Neural Networks

Backward connections are used to model time delayed feedback
(‚information of the past‘)

Mathematical complexity increases: RCNN‘s are universal 
approximators and can be used to model systems of higher 
order ordinary differential equations [Funashi/Nakamura, 1993]

Different architectures have been proposed, e.g.:

Hopfield networks [Hopfield, 1982]

Partially recurrent networks (e.g. recurrent multilayer perceptron
[Puskorius/Feldkamp, 1994]) 

Fully recurrent networks
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Recurrent Neural Networks (Examples)
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Recurrent Neural Networks

Basic learning methods:

Backpropagation through time [Rumelhart et al., 1986]

Real time recurrent learning [Williams and Zipser, 1989]
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Fuzzy System (hierarchical)
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Input variables: x, y 
Output variables: z 
Inner variables: u 
 
R1: If x is large  
   then u is small 
R2: If x is small and y is large  
   then u is zero 
R3: If y is small  
   then u is large 
 
R4: If u is large  
   then z is small 
R5: If u is small and y is large  
   then z is zero 
R6: If y is small  
   then z is large 
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Fuzzy System (hierarchical and recurrent)
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Input variables: x, y 
Output variables: z 
Inner variables: u 
 
R1: If x(t) is large and z(t-1) is large 
   then u(t) is small 
R2: If x(t) is small and y(t) is large  
   then u(t) is zero 
R3: If y(t) is small  
   then u(t) is large 
 
R4: If z(t-1) is large  
   then z(t) is small 
R5: If u(t) is small and y(t) is large  
   then z(t) is zero 
R6: If y(t) is small  
   then z(t) is large 
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Fuzzy System (recurrent)

A recurrent fuzzy system of the form
Rr : If y (t-1) is μr then y (t) is νr

can be used to approximate an initial value problem of the form
),(yfy =& cty =)( 0

)()()(1 iiiiii ySyghyyftyy =⋅+=⋅Δ+=+

),(yf
t
y
=

Δ
Δ cty =)( 0

(difference quotient)

),(1 iii yftyy ⋅Δ+=+ cy =0 (iterative solution)

)()( iii yghyyS ⋅+= (S defined by fuzzy system)
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Recurrent Fuzzy Systems (First order)

A first order recurrent fuzzy system consist of rules of 
the form:

If x(t-1) is A and y (t-1) is B’ then y (t) is B

RCFS
rule
base

x(t-1)
y(t)

z-1

y(t-1)

System state diagram 

If y(t-1) is negative and x(t-1) is negative then y(t) is negative
If y(t-1) is negative and x(t-1) is zero then y(t) is negative
If y(t-1) is negative and x(t-1) is positive then y(t) is zero
If y(t-1) is zero and x(t-1) is negative then y(t) is negative
If y(t-1) is zero and x(t-1) is zero then y(t) is zero
If y(t-1) is zero and x(t-1) is positive then y(t) is positive
If y(t-1) is positive and x(t-1) is negative then y(t) is zero
If y(t-1) is positive and x(t-1) is zero then y(t) is positive
If y(t-1) is positive and x(t-1) is positive then y(t) is positive

Rule base of a simple limited integrator 
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Recurrent Fuzzy Systems (Higher order example)

Using rules of the form
If x(t-1) is Ai and s(t-1) is Ci then s(t) is Ci’
If y(t-1) is Bi and s(t-1) is Ci then y(t) is Bi’

we obtain the following system: 
x(t-1)

s(t)
z-1

s(t-1)

y(t)

z-1

y(t-1)

s(t-1)

So, we are able to define the following functions:
)),(),(()( 11 −−= ii txtsfts ))(),(()( 11 −−= ii tstyfty

These functions may be used to compute a system of two first 
order differential equations.
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A Hierarchical Hybrid Model
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A Hierarchical Hybrid Model (optimization)
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A Hierarchical Hybrid Model (optimization)

Finally we obtain:
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A Hierarchical Hybrid Model (optimization)

Updating parameter:

Time complexity: O( (#variables)4 · (#fuzzy sets)3 · (#rules) )
Memory complexity: O( (#variables)2 · (#fuzzy sets) )

Online learning: )1()()1()()1( −Δ⋅+Δ⋅−+=+ tptptptp ββ , with
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Rule Base Learning

Learning a hierarchically structured rule base of local
subsystems

Here: Domains are partitioned

Use of rule templates to define subsystems, e.g.:

Two learning methods:

Heuristics: Iterative creation of rules

Genetic Algorithm

IF (x[t-1] LIKE ‘*S1') AND (v[t-1] LIKE '*S1') THEN (x[t] LIKE '*S0') 
IF (y[t] LIKE '*') AND (v[t-1] LIKE '*S2') THEN (v[t] LIKE '*S0').
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Rule Base Learning

Heuristics:
Two learning parts:

Rule base learning (iterative creation of rules)
Re-assigning consequents  

Genetic Algorithm: IF (x[t-1] IS neg2 AND v[t-1] IS neg1) THEN x IS neg0
IF (x[t-1] IS neg2  AND v[t-1] IS zero1)  THEN x IS neg0
IF (x[t-1] IS neg2  AND v[t-1] IS pos1)  THEN x IS zero0
IF (x[t-1] IS zero2  AND v[t-1] IS neg1)  THEN x IS neg0
IF (x[t-1] IS zero2  AND v[t-1] IS zero1)  THEN x IS zero0
IF (x[t-1] IS zero2  AND v[t-1] IS pos1)  THEN x IS pos0
IF (x[t-1] IS pos2  AND v[t-1] IS neg1)  THEN x IS zero0
IF (x[t-1] IS pos2  AND v[t-1] IS zero1)  THEN x IS pos0
IF (x[t-1] IS pos2  AND v[t-1] IS pos1)  THEN x IS pos0

IF (x[t-1] IS neg1  AND v[t-1] IS neg2)  THEN v IS zero0
IF (x[t-1] IS neg1  AND v[t-1] IS zero2)  THEN v IS pos0
IF (x[t-1] IS neg1  AND v[t-1] IS pos2)  THEN v IS pos0
IF (x[t-1] IS zero1  AND v[t-1] IS neg2)  THEN v IS neg0
IF (x[t-1] IS zero1  AND v[t-1] IS zero2)  THEN v IS zero0
IF (x[t-1] IS zero1  AND v[t-1] IS pos2)  THEN v IS pos0
IF (x[t-1] IS pos1  AND v[t-1] IS neg2)  THEN v IS neg0
IF (x[t-1] IS pos1  AND v[t-1] IS zero2)  THEN v IS neg0
IF (x[t-1] IS pos1  AND v[t-1] IS pos2)  THEN v IS zero0

Sub 
system

1 

Ordered Rule Base 

Sub 
system

2 

1
1
2
1
2
3
1
3
3
2
3
3
1
2
3
1
1
2

Chromosome 

Assume full rule base
Each Chromosome 
encodes complete rule 
base (Pittsburgh 
approach)  
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Software Implementation
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A Simple Physical System: Mass On a Spring

With the physical laws

xmamF &&⋅=⋅= (Newton’s second law)

xclcF ⋅−=Δ⋅−= (Hooke’s law)

we can describe the system by a 
second order differential equation

x
m
cx −=&& 0)0()0(,)0( 0 === xvxx &, with

or by a system of two first order differential equations

vx =& .x
m
cv −=&and
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Application Example (Spring-mass model)

Initial partitioning: 

(FS’s: neg0, neg1, neg2, 
zero0, zero1, zero2,
pos0, pos1, pos2)

Initial rules (not covered by simulation):
Rule 1: IF (x@t-1 IS zero2 AND v@t-1 IS zero1) THEN x IS zero0
Rule 2: IF (x@t-1 IS zero1 AND v@t-1 IS zero2) THEN v IS zero0

Training data: Simulation of the modell for a period of 20 sec.

Templates used for rule base learning:
IF (x[t-1] LIKE '*2') AND (v[t-1] LIKE '*1')  THEN (x[t-0] LIKE '*0') 
IF (x[t-1] LIKE '*1') AND (v[t-1] LIKE '*2')  THEN (v[t-0] LIKE '*0')
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Application Example (Spring-mass model)
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Application Example (Spring-mass model)

Rule 9: IF (x[t-1] IS neg2 AND v[t-1] IS neg1) THEN x IS neg0
Rule 11: IF (x[t-1] IS neg2 AND v[t-1] IS zero1) THEN x IS neg0
Rule 13: IF (x[t-1] IS neg2 AND v[t-1] IS pos1) THEN x IS zero0
Rule 7: IF (x[t-1] IS zero2 AND v[t-1] IS neg1) THEN x IS neg0
Rule 1: IF (x[t-1] IS zero2 AND v[t-1] IS zero1) THEN x IS zero0
Rule 15: IF (x[t-1] IS zero2 AND v[t-1] IS pos1) THEN x IS pos0
Rule 5: IF (x[t-1] IS pos2 AND v[t-1] IS neg1) THEN x IS zero0
Rule 3: IF (x[t-1] IS pos2 AND v[t-1] IS zero1) THEN x IS pos0
Rule 17: IF (x[t-1] IS pos2 AND v[t-1] IS pos1) THEN x IS pos0

Rule 10: IF (x[t-1] IS neg1 AND v[t-1] IS neg2) THEN v IS zero0
Rule 12: IF (x[t-1] IS neg1 AND v[t-1] IS zero2) THEN v IS pos0
Rule 14: IF (x[t-1] IS neg1 AND v[t-1] IS pos2) THEN v IS pos0
Rule 8: IF (x[t-1] IS zero1 AND v[t-1] IS neg2) THEN v IS neg0
Rule 2: IF (x[t-1] IS zero1 AND v[t-1] IS zero2) THEN v IS zero0
Rule 16: IF (x[t-1] IS zero1 AND v[t-1] IS pos2) THEN v IS pos0
Rule 6: IF (x[t-1] IS pos1 AND v[t-1] IS neg2) THEN v IS neg0
Rule 4: IF (x[t-1] IS pos1 AND v[t-1] IS zero2) THEN v IS neg0
Rule 18: IF (x[t-1] IS pos1 AND v[t-1] IS pos2) THEN v IS zero0

)()()( 11 −− ⋅Δ+= iii tvttxtx )()()( 11 −− ⋅Δ−= iii txt
m
ctvtv
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Recurrent Neuro-Fuzzy Systems (Cooperative approach)

Motivation/Problem: Modeling, identification and simulation of 
viscoelastic models in virtual reality applications

Existing approaches: Model creation usually expensive, cannot 
be optimized by measured data

Idea: Support developer with a generic framework for model 
creation and definition / optimization of its parameters:

Enable use of standard 3D models (triangular meshes)

Fuzzy system for interactive definition of model parameters
and initialization of the learning process

Recurrent neural network architecture for simulation and 
model optimization if measured data is available

Cooperative neuro-fuzzy architecture
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RCNN describing viscoelastic models
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Parameter determination (Learning considerations)

Requirements:
Learning by use of time series data (node positions)
Changing external forces 
Missing data for (inner) nodes
Missing data for „intermediate“ time steps

Problems:
Large number of time steps between attractors
Great time delay between weight modification and effect on 
positions
Missing data

Combination of BPTT and RTRL with teacher forcing
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Parameter determination (Initialization)

Initialization by „real“ physical parameters

Initialization by use of a fuzzy system:
Fuzzy system describes the relations between vague knowledge of 
the object and the network parameters

Some fuzzy rules for the description of tissue

if hardness is soft and elasticity is big
then spring constant is low

if shiftability is high 
then spring constant is very low and

viscosity is high
if consistency is chapped

then fraction force is low and
spring constant is very high

if consistency is slightly hard
then spring constant is slightly high and

viscosity is low
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Parameter determination (Initialization)

Screenshot of the tool 'Elastodynamic Shape Modeler'
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SUSILAP-G(SUrgical SImulator for LAParoscopy in Gynaecology)
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Conclusions

Recurrent fuzzy systems can be used to approximate 
dynamic systems

Proposed recurrent neuro-fuzzy system can be used to:

optimize recurrent and/or hierarchical fuzzy systems

learn rule base by use of rule templates

Constraints must be used more carefully than in feed-
forward systems
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