Chapter 8: Neuro-Fuzzy Systems

Neuro-Fuzzy Systems

- Building a fuzzy system requires
 - prior knowledge (fuzzy rules, fuzzy sets)
 - manual tuning: *time consuming and error-prone*
 - Therefore: Support this process by learning
 - learning fuzzy rules (structure learning)
 - learning fuzzy set (parameter learning)

Approaches from Neural Networks can be used

Database: time series from 1986 - 1997

DAX	Composite DAX
German 3 month interest rates	Return Germany
Morgan Stanley index Germany	Dow Jones industrial index
DM / US-\$	US treasury bonds
Gold price	Nikkei index Japan
Morgan Stanley index Europe	Price earning ratio

Fuzzy Rules in Finance

- Trend Rule
 - **IF DAX** = decreasing AND US-\$ = decreasing
 - **THEN DAX prediction = decrease**
 - WITH high certainty
- Turning Point Rule
 - IF **DAX** = decreasing AND US-\$ = increasing
 - **THEN DAX prediction = increase**
 - WITH low certainty
- Delay Rule
 - **IF DAX** = stable AND **US-\$** = decreasing
 - **THEN DAX prediction = decrease**
 - WITH very high certainty
- In general
 - IF x_1 is μ_1 AND x_2 is μ_2 THEN $y = \eta$ WITHweight k

Neuro-Fuzzy Architecture

From Rules to Neural Networks

1. Evaluation of membership degrees

2. Evaluation of rules (rule activity) $\mu_l: \mathbb{R}^n \to [0,1]^r, \quad \underline{x} \Rightarrow \prod_{i=1}^{D_l} \mu_{c,s}^{(j)}(x_i)$

3. Accumulation of rule inputs and normalization NF: $\mathbb{IR}^n \to \mathbb{IR}, \ \underline{x} \Rightarrow \sum_{l=1}^r w_l \frac{k_l \mu_l(\underline{x})}{\sum_{j=1}^r k_j \mu_j(\underline{x})}$

Reduction of the dimension of the weight space

 Membership functions of different inputs share their parameters, e.g.

$$\mu_{dax}^{stable} \equiv \mu_{cdax}^{stable}$$

 Membership functions of the same input variable are not allowed to pass each other, they must keep their original order, e.g.

Benefits: • the optimized rule base can still be interpreted• the number of free parameters is reduced

Return-on-Investment Curves of the Different Models

Validation data from March 01, 1994 until April 1997

Neuro-Fuzzy System:

- System of linguistic rules (fuzzy rules).
- Not rules in a logical sense, but function approximation.
- Fuzzy rule = vague prototype / sample.

Neuro-Fuzzy-System:

- Adding a learning algorithm inspired by neural networks.
- Feature: local adaptation of parameters.

A Neuro-Fuzzy System

- is a fuzzy system trained by heuristic learning techniques derived from neural networks
- can be viewed as a 3-layer neural network with fuzzy weights and special activation functions
- is always interpretable as a fuzzy system
- uses constraint learning procedures
- is a function approximator (classifier, controller)

Learning Fuzzy Rules

- Cluster-oriented approaches
 => find clusters in data, each cluster is a rule
- Hyperbox-oriented approaches=> find clusters in the form of hyperboxes
- Structure-oriented approaches
 => used predefined fuzzy sets to structure the data space, pick rules from grid cells

Hyperbox-Oriented Rule Learning

Search for hyperboxes in the data space

Create fuzzy rules by projecting the hyperboxes

Fuzzy rules and fuzzy sets are created at the same time

Usually very fast

Hyperbox-Oriented Rule Learning

Detect hyperboxes in the data, example: XOR function

- Advantage over fuzzy cluster anlysis:
 - No loss of information when hyperboxes are represented as fuzzy rules
 - Not all variables need to be used, don't care variables can be discovered
- Disadvantage: each fuzzy rules uses individual fuzzy sets, i.e. the rule base is complex.

Structure-Oriented Rule Learning

Provide initial fuzzy sets for all variables.

The data space is partitioned by a fuzzy grid

Detect all grid cells that contain data (approach by Wang/Mendel 1992)

Compute best consequents and select best rules

x (extension by Nauck/Kruse 1995, NEFCLASS model)

Structure-Oriented Rule Learning

- Simple: Rule base available after two cycles through the training data
 - 1. Cycle: discover all antecedents
 - 2. Cycle: determine best consequents
- Missing values can be handled
- Numeric and symbolic attributes can be processed at the same time (mixed fuzzy rules)
- Advantage: All rules share the same fuzzy setsDisadvantage: Fuzzy sets must be given

Learning Fuzzy Sets

- Gradient descent procedures only applicable, if differentiation is possible, e.g. for Sugenotype fuzzy systems.
- Special heuristic procedures that do not use gradient information.
- The learning algorithms are based on the idea of backpropagation.

Learning Fuzzy Sets: Constraints

Mandatory constraints:

- Fuzzy sets must stay normal and convex
- Fuzzy sets must not exchange their relative positions (they must not ,,pass" each other)
- Fuzzy sets must always overlap
- Optional constraints
 - Fuzzy sets must stay symmetric
 - Degrees of membership must add up to 1.0
- The learning algorithm must enforce these constraints.

Example: Medical Diagnosis

- Results from patients tested for breast cancer (Wisconsin Breast Cancer Data).
- Decision support: Do the data indicate a malignant or a benign case?
- A surgeon must be able to check the classification for plausibility.

We are looking for a simple and interpretable classifier: ⇒knowledge discovery.

Example: WBC Data Set

699 cases (16 cases have missing values).

- 2 classes: benign (458), malignant (241).
- 9 attributes with values from {1, ..., 10}
 (ordinal scale, but usually interpreted as a numerical scale).
- Experiment: x_3 and x_6 are interpreted as nominal attributes.
- x_3 and x_6 are usually seen as ,,important" attributes.

Applying NEFCLASS-J

20

NEFCLASS: Neuro-Fuzzy Classifier

Output variables (class labels)

Unweighted connections

Fuzzy rules

Fuzzy sets (antecedents)

Input variables (attributes)

NEFCLASS: Features

- Automatic induction of a fuzzy rule base from data
- Training of several forms of fuzzy sets
- Processing of numeric and symbolic attributes
- Treatment of missing values (no imputation)
- Automatic pruning strategies
- Fusion of expert knowledge and knowledge obtained from data

Representation of Fuzzy Rules

Example: 2 Rules

 R_1 : if x is *large* and y is small, then class is c_1 .

 R_2 : if x is *large* and y is *large*, then class is c_2 .

The connections $x \to R_1$ and $x \to R_2$ are linked.

The fuzzy set *large* is a shared weight.

That means the term *large* has always the same meaning in both rules.

1. Training Step: Initialisation

Specify initial fuzzy partitions for all input variables

2. Training Step: Rule Base

Algorithm:

for (all patterns p) do find antecedent A, such that A(p) is maximal; if $(A \notin L)$ then add A to L; end;

for (all antecedents $A \in L$) do find best consequent *C* for *A*; create rule base candidate R = (A,C); Determine the performance of *R*; Add *R* to *B*;

end;

Select a rule base from *B*;

Variations:

Fuzzy rule bases can also be created by using prior knowledge, fuzzy cluster analysis, fuzzy decision trees, genetic algorithms, ...

Selection of a Rule Base

Performance of a Rule :

$$P_r = \frac{1}{N} \sum_{p=1}^{N} (-1)^c R_r(\mathbf{x}_p)$$
, with

$$c = \begin{cases} 0 & \text{if } class(\mathbf{x}_p) = con(R_r), \\ 1 & \text{otherwise.} \end{cases}$$

- Order rules by performance.
- Either select the best *r* rules or the best *r/m* rules per class.
- *r* is either given or is determined automatically such that all patterns are covered.

Rule Base Induction

NEFCLASS uses a modified Wang-Mendel procedure

Computing the Error Signal

Fuzzy Error (*j*th output): $E_j = \operatorname{sgn}(d) \cdot (1 - \gamma(d)), \text{ with } d = t_j - o_j$ and $\gamma : \mathfrak{R} \to [0, 1], \gamma(d) = e^{-\left(\frac{a \cdot d}{d_{\max}}\right)^2}$ (*t* : correct output, *o* : actual output)

Rule Error:

 $\mathsf{E}_r = (\tau_r (1 - \tau_r) + \varepsilon) E_{\operatorname{con}(R_r)}, \text{ with } 0 < \varepsilon << 1$

3. Training Step: Fuzzy Sets

Example: triangular membership function.

$$\mu_{a,b,c}: \mathfrak{R} \to [0,1], \ \mu_{a,b,c}(x) = \begin{cases} \frac{x-a}{b-a} & \text{if } x \in [a,b) \\ \frac{c-x}{c-b} & \text{if } x \in [b,c] \\ 0 & \text{otherwise} \end{cases}$$

Parameter updates for an antecedent fuzzy set.

$$f = \begin{cases} \sigma \ \mu(x) & \text{if } \mathsf{E} < 0 \\ \sigma \ (1 - \mu(x)) & \text{otherwise} \end{cases}$$
$$\Delta b = f \cdot \mathsf{E} \cdot (c - a) \cdot \operatorname{sgn}(x - b)$$
$$\Delta a = -f \cdot \mathsf{E} \cdot (b - a) + \Delta b$$
$$\Delta c = f \cdot \mathsf{E} \cdot (c - b) + \Delta b$$

Training of Fuzzy Sets

Heuristics: a fuzzy set is moved away from *x* (towards *x*) and its support is reduced (enlarged), in order to reduce (enlarge) the degree of membership of x.

Training of Fuzzy Sets

Algorithm:

repeat

for (all patterns) **do** accumulate parameter updates; accumulate error;

end;

modify parameters; **until** (no change in error);

Variations:

- Adaptive learning rate
- Online-/Batch Learning
- optimistic learning (n step look ahead)

Observing the error on a validation set

Constraints for Training Fuzzy Sets

- Valid parameter values
- Non-empty intersection of adjacent fuzzy sets
- Keep relative positions
- Maintain symmetry
- Complete coverage (degrees of membership add up to 1 for each element)

Correcting a partition after modifying the parameters

4. Training Step: Pruning

Goal: remove variables, rules and fuzzy sets, in order to improve interpretability and generalisation.

Pruning

Algorithm:

repeat

select pruning method;

repeat

execute pruning step; train fuzzy sets;

if (no improvement)
then undo step;

until (no improvement);

until (no further method);

Pruning Methods:

- 1. Remove variables (use correlations, information gain etc.)
- 2. Remove rules (use rule performance)
- Remove terms (use degree of fulfilment)
- 4. Remove fuzzy sets (use fuzziness)

WBC Learning Result: Fuzzy Rules

 R_1 : if uniformity of cell size is *small* and bare nuclei is fuzzy0 then *benign*

R₂: if uniformity of cell size is *large* then *malignant*

📸 Edit Rules				X
Variables Fuzzy Sets clump thickness small uniformity of cell siz large uniformity of cell siz large uniformity of cell siz clump thickness uniformity of cell siz large uniformity of cell siz clump thickness uniformity of cell siz large clump thickness single epithelial cel single epithelial cel Set				
Antecedent of Rule R0			Consequent (Class)	
IF uniformity of cell size is s bare nuclei is fuzzy0 and	mall and	Then	malign benign	
	Remove Term Rem	ove All	Modify Rule Add Rule	
R0: if uniformity of cell size is R1: if uniformity of cell size is	small and bare nuclei is fuz large then malign, performa	zy0 then benign, pe nce = 0.21	rformance = 0.51	
Remove Rule Remove Al		OK	Cancel Help	

	Predicted Class									
	n	nalign	b	enign	not classified		sum			
malign	228	(32.62%)	13	(1.86%)	0	(0%)	241	(34.99%)		
benign	15	(2.15%)	443	(63.38%)	0	(0%)	458	(65.01%)		
sum	243	(34.76%)	456	(65.24%)	0	(0%)	699	(100.00%)		

Estimated Performance on Unseen Data (Cross Validation)

NEFCLASS-J: 95.42%
 Discriminant Analysis: 96.05%
 Multilayer Perceptron: 94.82%
 C 4.5: 95.10%
 C 4.5 Rules: 95.40%

WBC Learning Result: Fuzzy Sets

NEFCLASS-J

Resources

Detlef Nauck, Frank Klawonn & Rudolf Kruse:

Foundations of Neuro-Fuzzy Systems

Wiley, Chichester, 1997, ISBN: 0-471-97151-0

Neuro-Fuzzy Software (NEFCLASS, NEFCON, NEFPROX): http://www.neuro-fuzzy.de

Beta-Version of NEFCLASS-J:

http://www.neuro-fuzzy.de/nefclass/nefclassj

Download NEFCLASS-J

Download the free version of NEFCLASS-J at http://fuzzy.cs.uni-magdeburg.de

NEFCLASSY

- Extraction of edge segments (Burns' operator)
- Production net:

edges \rightarrow lines \rightarrow long lines \rightarrow parallel lines \rightarrow runways

Problems

- extremely many lines due to distorted images
- long execution times of production net

- Only few lines used for runway assembly
- Approach:
 - Extract textural features of lines
 - Identify and discard superfluous lines

- Several classifiers:
 - minimum distance, k-nearest neighbor, decision trees, NEFCLASS
- Problems: classes are overlapping and extremely unbalanced
- Result above with modified NEFCLASS:
 - all lines for runway construction found
 - reduction to 8.7% of edge segments

Example: Surface Quality Control

Today's Approach

The current surface quality control is done <u>manually</u> \longrightarrow an experienced worker treats the exterior surfaces with a <u>grindstone</u>. The experts classify surface form deviations by means of linguistic descriptions.

<u>Cumbersome</u> – <u>Subjective</u> - <u>Error Prone</u> <u>Time</u> <u>Consuming</u>

The Proposed Approach

Our Approach is based on the <u>digitization</u> of the exterior body panel surface with an <u>optical measuring system</u>.

We characterize the form deviation by <u>mathematical properties</u> that are close to the subjective properties that the experts used in their linguistic description.

Topometric 3-D measuring system

0

0

N

coding

breuckmann 🔟 🔟

Triangulation and Gratings Projection

- High Point Density
 - Fast Data Collection
 - Measurement Accuracy
 - Contact less and Non-destructive

Data Processing

Color Coded Visualization

Result of Grinding

3D Visualization of Local Surface Defects

Uneven Surface (several sink marks in series or adjoined)

Sink Mark (slight flat based depression inward)

Press Mark (local smoothing of (micro-)surface)

Waviness (several heavier wrinklings in series)

Data Characteristics

- We analysed <u>9 master pieces</u> with a total number of <u>99 defects</u>
- For each defect we calculated <u>42</u> features
- The types are rather <u>unbalanced</u>
- We discarded the <u>rare</u> <u>classes</u>
- We discarded some of the <u>extremely correlated features</u> (31 features left)
- We <u>ranked</u> the 31 features <u>by</u> <u>importance</u>
- We use <u>stratified</u> <u>4-fold</u> <u>cross</u> validation for the experiment.

Application and Results

The Rule Base for NEFCLASS

📑 Rule base

Rule 1: IF (max_distance_to_cog IS fun 2 AND min_extrema IS fun 1 AND max_extrema IS fun 1) THEN type IS press_mark
 Rule 2: IF (max_distance_to_cog IS fun 2 AND all_extrema IS fun 1 AND max_extrema IS fun 2) THEN type IS sink_mark
 Rule 3: IF (max_distance_to_cog IS fun 3 AND min_extrema IS fun 2 AND max_extrema IS fun 2) THEN type IS uneven_surface
 Rule 4: IF (max_distance_to_cog IS fun 2 AND min_extrema IS fun 2 AND max_extrema IS fun 2) THEN type IS uneven_surface
 Rule 4: IF (max_distance_to_cog IS fun 2 AND min_extrema IS fun 2 AND max_extrema IS fun 2) THEN type IS uneven_surface
 Rule 5: IF (max_distance_to_cog IS fun 2 AND all_extrema IS fun 1 AND min_extrema IS fun 2) THEN type IS press_mark
 Rule 5: IF (max_distance_to_cog IS fun 3 AND all_extrema IS fun 1 AND min_extrema IS fun 3) THEN type IS press_mark
 Rule 6: IF (max_distance_to_cog IS fun 3 AND all_extrema IS fun 2 AND max_extrema IS fun 3) THEN type IS uneven_surface

Classification Accuracy

	NBC	DTree	NN	NEFCLASS	DC
Train Set	89.0%	94.7%	90%	81.6%	46.8%
Test Set	75.6%	75.6%	85.5%	79.9%	46.8%

Conclusions

- Neuro-Fuzzy-Systems can be useful for knowledge discovery.
- Interpretability enables plausibility checks and improves acceptance.
- (Neuro-)Fuzzy systems exploit tolerance for sub-optimal solutions.
- Neuro-fuzzy learning algorithms must observe constraints in order not to jeopardise the semantics of the model.
- Not an automatic model creator, the user must **work** with the tool.
- Simple learning techniques support explorative data analysis.

