Chapter 7: Fuzzy Systems

Fuzzy Set Theory

The classical set theory is based on the term "is element of" (∈). Alternatively one can describe the membership to a set with an *indicator function*: Let X be a set. Then

$$I_M: X \to \{0, 1\}, \qquad I_M(x) = \begin{cases} 1, & \text{if } x \in X, \\ 0, & \text{otherwise,} \end{cases}$$

is called **indicator function** of the set M w.r.t. the basic set X.

 In fuzzy set theory the indicator function is replaced by a *membership function*: Let X be a (classical/crisp) set. Then

 $\mu_M: X \to [0, 1], \qquad \mu_M(x) \cong \text{membership degree of } x \text{ to } M,$

membership function of the **fuzzy set** M

w.r.t. the basic set X.

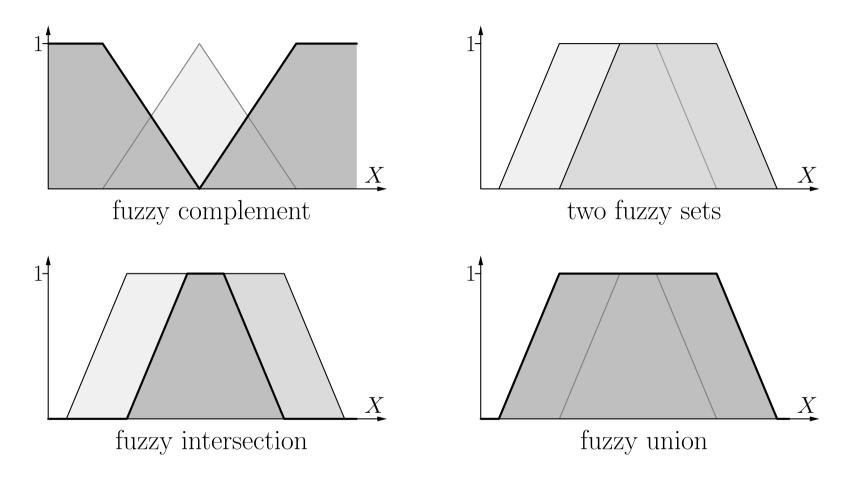
Most of the time the fuzzy set is identified by its membership function.

Fuzzy Set Theory: Operations

- As with the transition from the classical logic to fuzzy logic an extension of the operators is necessary for the transition from classical set theory to fuzzy set theory.
- Basic principles of this extension:
 Refer to the logical definitions of the operators.
 ⇒ elementwise application of the logical operators
- Let A and B be (fuzzy) set over the basic set X.

Complement	classical fuzzy	$ \overline{A} = \{ x \in X \mid x \notin A \} \\ \forall x \in X \colon \mu_{\overline{A}}(x) = \sim \mu_A(x) $
Intersection	classical fuzzy	$\begin{array}{l} A \cap B = \{ x \in X \mid x \in A \land x \in B \} \\ \forall x \in X \colon \mu_{A \cap B}(x) = \top(\mu_A(x), \mu_B(x)) \end{array}$
Union	classical fuzzy	$\begin{array}{l} A \cup B = \{ x \in X \mid x \in A \lor x \in B \} \\ \forall x \in X \colon \mu_{A \cup B}(x) = \bot(\mu_A(x), \mu_B(x)) \end{array}$

Fuzzy Set Operators: Examples



• The fuzzy intersection shown on the left and the fuzzy union on the right are independent of the underlying *t*-norm and *t*-conorm, respectively.

Fuzzy Partitions and Linguistic Variables

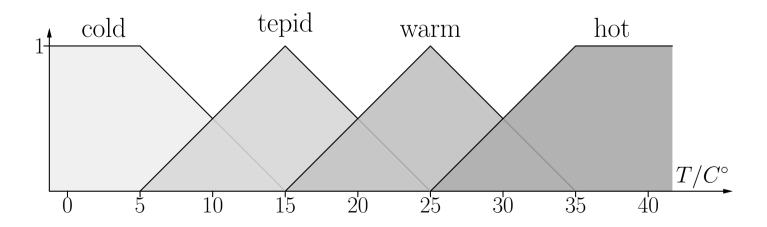
• To describe a domain with linguistic terms it is fuzzy-partitioned with a collection of fuzzy sets.

Every fuzzy set of the partition gets assigned a linguistic term.

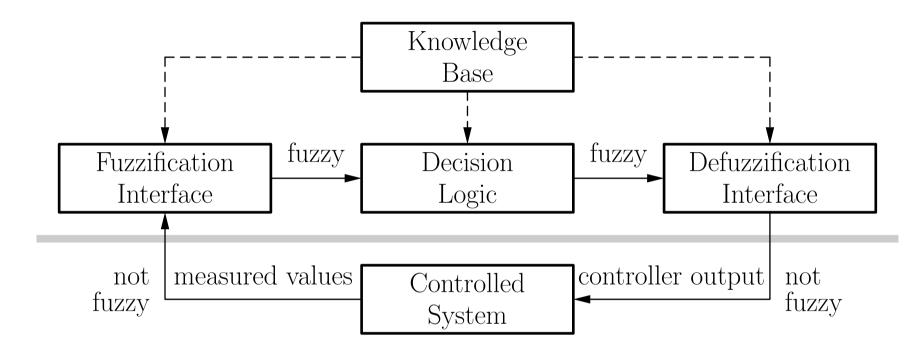
• Usual condition: at every point of the domain the membership degrees must sum up to 1 (partition of unity).

Example: Fuzzy partition for temperatures

We define a linguistic variable with values *cold*, *tepid*, *warm* und *hot*.

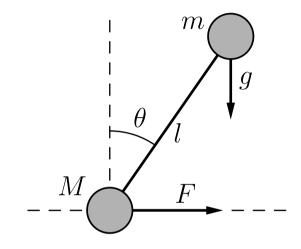


Architecture of a Fuzzy Controller



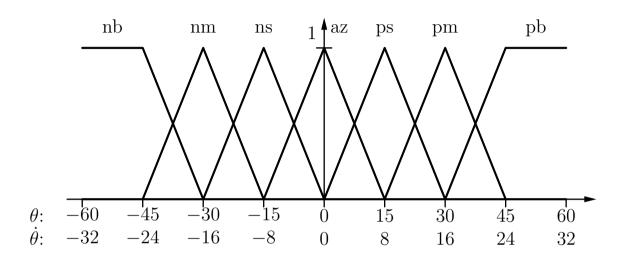
- The knowledge base contains the fuzzy rules for the controller and the fuzzy partitions of the variables' domains.
- A fuzzy rule reads: if X_1 is $A_{i_1}^{(1)}$ and ... and X_n is $A_{i_n}^{(n)}$ then Y is B. X_1, \ldots, X_n are measured values and Y is the control variable. $A_{i_k}^{(k)}$ and B are linguistic terms with assigned fuzzy sets.

Example: Fuzzy Controller for Inverted Pendulum Problem



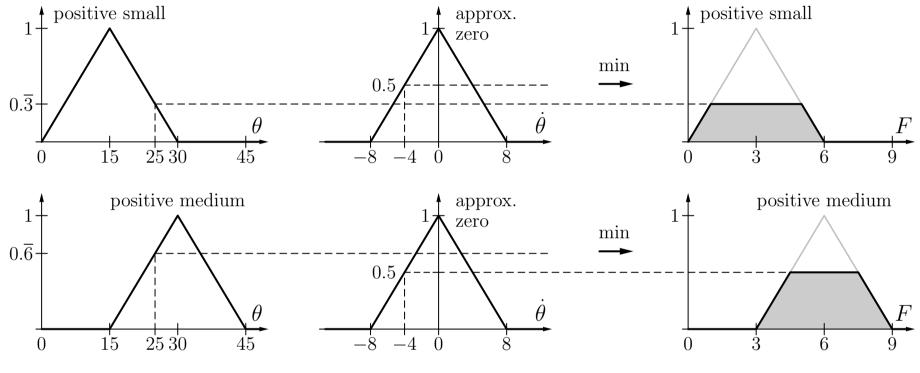
Abbreviations

- pb positive big
- pm positive medium
- ps positive small
- az approximately zero
- ns negative small
- nm $\,-\,$ negative medium
- nb negative big

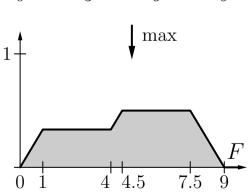


$\dot{\theta} ackslash heta$	nb	nm	ns	az	ps	pm	pb
pb			\mathbf{ps}	pb			
pm				pm			
ps	nm		az	\mathbf{ps}			
az	nb	nm	ns	az	\mathbf{ps}	pm	\mathbf{pb}
ns				ns	az		pm
nm				nm			
nb				nb	ns		

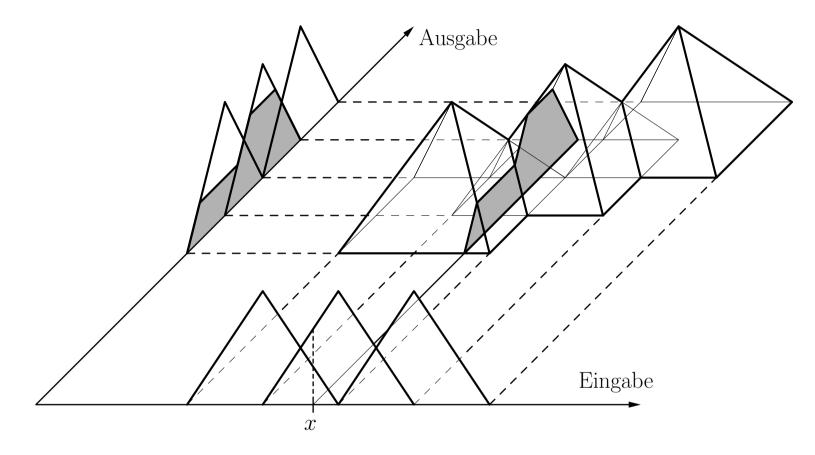
Fuzzy Controller by Mamdani–Assilian



Rule evaluation of a Mamdani–Assilian controller. The input tuple (25, -4) leads to the fuzzy output shown on the right. The output value is determined from this fuzzy set by defuzzification, e.g. through the Mean-of-Maxima method (MOM) or the Center-of-Gravity method (COG).



Fuzzy Controller by Mamdani–Assilian



A fuzzy rule system with one input and one output variable and three fuzzy rules. Every pyramid is defined by a fuzzy rule.

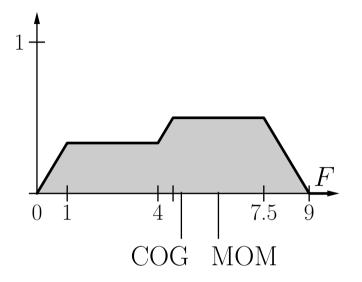
The input value x leads to the fuzzy output shaded in gray.

Defuzzification

The evaluation of the fuzzy rules results in an **output fuzzy set**.

This output fuzzy set has to be transformed into a **crisp control value**.

This task is called **defuzzification**.



The most important defuzzification methods are:

• Center of Gravity (COG)

The center of gravity of the area under the output fuzzy set.

• Center of Area (COA)

The point that divides the area under the output fuzzy set into equally sized parts.

• Mean of Maxima (MOM)

The arithmetic mean of the locations with maximal membership degree.