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Chapter 5:
Radial Basis Function Networks
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Radial Basis Function Networks
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Distance Functions
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Radial Activation Functions
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Radial Basis Function Networks: Examples
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Radial Basis Function Networks: Function Approximation 
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Radial Basis Function Networks: Initialization
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RBFN Initialization: Example
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RBFN Initialization: Example
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Radial Basis Function Networks: Initialization
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Radial Basis Function Networks: Training
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Radial Basis Function Networks: Training
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Radial Basis Function Networks: Generalization
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Interpretation of a Covariance Matrix
A univariate normal distribution has the density function

A multivariate normal distribution has the density function
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Variance and Standard Deviation

Univariate Normal/Gaussian Distribution
The variance/standard deviation provides information about the
height of the mode and the width of the curve.
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Interpretation of a Covariance Matrix

The variance/standard deviation relates the spread of the distribution to 
the spread of a standard normal distribution
The covariance matrix relates the spread of the distribution to the spread
of a multivariate standard normal distribution
Example: bivariate normal distribution

Question: Is there a multivariate analog of standard deviation?
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Eigenvalue Decomposition

Yields an analog of standard deviation.
Let S be a symmetric, positive definite matrix (e.g. a covariance
matrix).
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Eigenvalue Decomposition

Special Case: Two Dimensions
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Eigenvalue Decomposition
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Eigenvalue Decomposition

Special Case: Two Dimensions
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Cluster-Specific Distance Functions

The similarity of a data point to a prototype depends on their distance.
If the cluster prototype is a simple cluster center, a general distance 
measure can be defined on the data space.
In this case the Euclidean distance is most often used due to its rotation 
invariance. It leads to (hyper-)spherical clusters.

However, more flexible clustering approaches (with size and shape
parameters) use cluster-specific distance functions.
The most common approach is to use a Mahalanobis distance with a 
cluster-specific covariance matrix.

The covariance matrix comprises shape and size parameters.
The Euclidean distance is a special case that results for
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Chapter 6:
Self-Organizing Maps
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Self-Organizing Maps
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Self-Organizing Maps: Neighborhood
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Vector Quantization
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Learning Vector Quantization
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Learning Vector Quantization
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Learning Vector Quantization
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Learning Vector Quantization: Example
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Learning Vector Quantization: Learning Rate Decay



SNF
EURO

UZZYProf. Dr. Rudolf Kruse 46

Topology Preserving Mapping
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Self-Organizing Maps: Neighborhood
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Self-Organizing Maps: Examples
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Self-Organizing Maps: Examples
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Phonemkarte
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websom
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Organising texts

Limitations of available text retrieval methods.

Ideas:
• Grouping documents based on a similarity measure

Supports the user to navigate through similar 
documents. 

• Navigation supported by conventional keyword search
Important for the “first appropriate document”

Realisation:
Interactive software tool based on self-organising maps:

Interactive associative search
Visualization for better overall view
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Self Organising Map (SOM)

. . .
input layer

map

Artificial neural network model to project high-dimensional 
data vectors to lower dimensional data space (usually two 

dimensions) under preservation of neighbourhood relations.
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SOM (Competitive learning)

Learning method 
(competitive learning):

• Weights (prototypes) wi are 
randomly initialised. 

• Adaptation of the model vectors 
carried out by a sequential 
regression process. 

• For each input vector x(t), first the 
winner index c (best match) is 
identified by the condition: 

• The assigned vector wc is adjusted such that for the next presentation of the 
same input vector a higher degree of similarity will be obtained:

)(w)(w: ic txtxi −≤−∀

))(w(ww: iii txi −⋅+=∀ δ
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SOM (Learning: Considering neighbourhood relations)

All vectors i in a neighbourhood of 
the winner neuron c are adjusted:

v(i, c) : neighbourhood function
δ : learning rate. 

V(i,c)=0.5

c

V(i,c)=0.2

V(i,c)=0

V(c,c)=1

))(w(),(ww: iii txicvi −⋅⋅+=∀ δ

SOM Learning:

Competitive learning, additionally
neighbourhood relations defined
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Self Organizing Map (SOM)

Properties:
• Topology preserving mapping
• Clustering of input data (unsupervised learning)
• Density of clusters is adjusted to density of input data
• Dimensionality reduction
• Good visualisation capabilities

Problems:
• Manual determination of structure and size

Map to small: Grouping of different objects
Map to large: Similar objects distributed in large area. 
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Document preprocessing and coding

Reduce number of words to be considered

• Filtering (stop word filtering):
Removing words that carry no or only little (content) 
information, e.g. articles, conjunctions, prepositions.

• Stemming:
Build the basic forms of words, e.g. strip plurals ‚s‘ from
nouns and ‚ing‘ from verbs.

• Coding:
Documents are indexed by remaining words. 
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Computation of ‚Fingerprints‘

seism mountain
rock

wave effect

(   ..., 2, 4, 1, 2, ...    )

preprocessing (stemming, filtering)

seism electr effect study mountain rock measure seism electr effect mountain rock
laboratory guide wave collect special prepare sample ...

indexing = counting words/buckets

vector = “document fingerprint”

Seismic-electric effect study of mountain rocks
Measurements of seismic-electric effect (SEE) of mountain rocks in laboratory on guided
waves were continued with very wide collection of specially prepared samples ...
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Defining the bins (Selection of index words based on entropy)

• Calculate entropy for each word as a measure for its
importance:
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• Choose words that have a high entropy relative to their 
overall frequency

• Use these words as bins for fingerprint counting

ni(w): frequency of word w in document i
m: number of documents
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Defining the bins (Selection of index words based on entropy)

Entropy vs. Frequency
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Defining the bins (Creating a word category map)

Encode words as high-dimensional random vectors
(Ritter and Kohonen, 1989)

Encoding does not imply any word ordering: the 
vectors are “quasi-orthogonal"
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Defining the bins (Creating a word category map)

Grouping similar words according to 3-word-contexts

For each word calculate the expectation value vectors e1
and e2 over all random vectors of enclosing words (in all 
documents) and create a context vector v based on these 
vectors and the random vector w of the considered word 
(Honkela et al., 1996): 

v = {e1 w e2}

Words that occur in similar contexts have similar 
expectation values and therefore similar vectors v
Searching for lexical affinities
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Defining the bins (Creating a word category map)

• Map vectors vi to two dimensional space using a self 
organising map: Words frequently used in similar 
contexts are mapped to the same (or nearby) neuron.

• Each neuron of the resulting map is used as a bin for 
fingerprint counting.
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The wordmap
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Computation of ‚Fingerprints‘

seism mountain
rock

wave effect

(   ..., 2, 4, 1, 2, ...    )

preprocessing (stemming, filtering)

seism electr effect study mountain rock measure seism electr effect mountain rock
laboratory guide wave collect special prepare sample ...

indexing = counting words/buckets

vector = “document fingerprint”

Seismic-electric effect study of mountain rocks
Measurements of seismic-electric effect (SEE) of mountain rocks in laboratory on guided
waves were continued with very wide collection of specially prepared samples ...
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Arranging the documents (The document map)

• The fingerprints of the documents are used as input 
vectors for a two-dimensional self organising map.
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Dynamical Aspects

Changes in document database:

• Small changes: preprocess documents, compute
buckets, and map documents on existing maps

• Extensive changes:
Different approaches possible:

• Retrain document map (incremental), keep buckets
• Relearn document map from scratch, keep buckets

(affects users which are already working with the
map)

• Retrain complete system (analysis of buckets and 
wordmap might yield hints on new topics)
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SOMAccess V1.0

Available on CD-ROM: G. Hartmann, A. Nölle, M. Richards, and R. Leitinger
(eds.), Data Utilization Software Tools 2 (DUST-2 CD-ROM), Copernicus 
Gesellschaft e.V., Katlenburg-Lindau, 2000 (ISBN 3-9804862-3-0)
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Music Miner
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