

Intelligente Systeme

Prof. Dr. R. Kruse C. Braune

Arten von Spielen

	deterministisch	Glücksspiel	
vollständige	Schach, Dame, Backgammon,		
Informationen	Go, Othello	thello Monopoly	
unvollständige	Schiffe versenken, Bridge, Poker, Scrabb		
Informationen	blindes Tic-Tac-Toe	Nuklearer Krieg	

Blindes Tic-Tac-Toe:

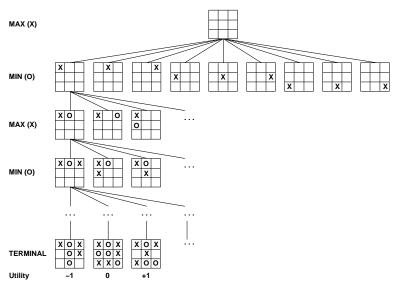
Unvollständige Variante des Standardspiels

Jeder Spieler kann X und O setzen

Gegner erfährt nur welches Feld, aber nicht ob X oder O

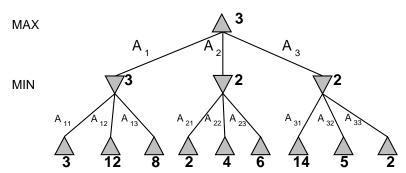
Spieler mit erster Linie mit 3 gleichen Zeichen gewinnt

Spielbaum bei Tic-Tac-Toe



Minimax

Minimax-Algorithmus ist ein Algorithmus zur Ermittlung der optimalen Spielstrategie für endliche Zwei-Personen-Nullsummenspiele mit perfekter Information.



Minimax-Algorithmus

MINIMAX-DECISION

Eingabe: state, momentaner Zustand im Spiel

Ausgabe: eine Aktion action

1: return die Aktion a in ACTIONS(state), die MIN-VALUE(RESULT(a, state)) maximiert

Max-Value

```
1: if Terminal-Test(state) {
2: return Utility(state)
3: }
4: v ← -∞
5: for each a, s in Successors(state) {
6: v ← Max(v, Min-Value(s))
7: }
8: return v
```

MIN-VALUE

```
1: if TERMINAL-TEST(state) {
2: return UTILITY(state)
3: }
4: v ← ∞
5: for each a, s in SUCCESSORS(state) {
6: v ← MIN(v, MAX-VALUE(s))
7: }
8: return v
```

Eigenschaften des MiniMax-Algorithmus

Zeit- und Speicherkomplexität gemessen anhand von

b: maximalem Verzweigungsfaktor des Suchbaums m: maximaler Tiefe des Zustandsraums (eventuell ∞)

Vollständig: ja, falls Baum endlich

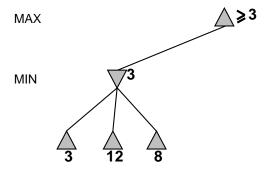
Optimal: ja, gegen optimalen Gegner

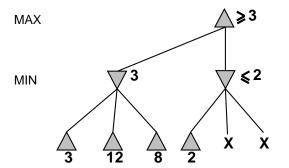
Zeit: $O(b^m)$

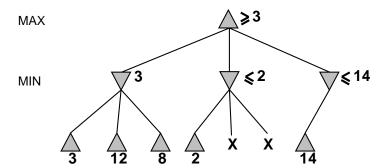
Speicher: $O(b \cdot m)$ (Tiefensuche)

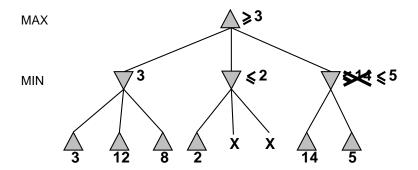
Für Schach: $b\approx 35, m\approx 100$ bei "realistischen" Spielen. Somit ist die exakte Lösung absolut nicht berechenbar.

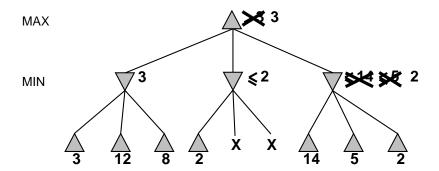
Aber: muss jeder Pfad exploriert werden?











Der α **-** β **-Algorithmus**

Alpha-Beta-Decision

1: return die Aktion a in Actions(state), die Min-Value(Result(a, state)) maximiert

Max-Value

12: return v

```
Eingabe: state. momentaner Zustand im
    Spiel
    \alpha. bester MAX-Wert auf Pfad zu state
    B. bester MIN-Wert auf Pfad zu state
 1: if TERMINAL-TEST(state) {
        return UTILITY(state)
 3: }
    v \leftarrow -\infty
    for each a, s in Successors(state) {
 6:
        v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta))
 7:
        if v > \beta {
 8:
            return v
 9:
10:
        \alpha \leftarrow \text{Max}(\alpha, \nu)
11: }
```

MIN-VALUE

1: genau wie MIN-VALUE aber mit vertauschten Rollen von α , β

α – β -Algorithmus: Eigenschaften

Stutzen hat keine Auswirkung auf Endergebnis

Gute Zugordnung verbessert Effektivität des Stutzens.

Mit "perfekter" Ordnung, Zeitkomplexität = $O(b^{m/2})$

Somit doppelte Suchtiefe

Für Schach: immer noch 35⁵⁰ möglich

α – β -Algorithmus: Grenzen

Standard-Ansatz:

Für gewöhnlich: Lösung zu tief im Suchbaum

UTILITY mit Werten +1, 0 oder -1 nicht berechenbar

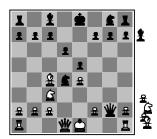
Nutze CUTOFF-TEST anstelle von TERMINAL-TEST z.B. Tiefenbegrenzung (u.U. mit "Ruhesuche" – verfolgt aktive Pfade (z.B. nachdem Figur im Schach geschlagen wurde) tiefer als inaktive)

Nutze EVAL (Güteschätzung des Zustands) anstatt $\mathrm{UTILITY}$: Bewertungsfunktion schätzt Güte einer Stellung

Bewertungsfunktionen

Black to move

White slightly better



White to move

Black winning

Für Schach: typischerweise linear gewichtete Summe von n

$$\mathsf{Eval}(s) = \sum_{i=1}^n w_i \cdot f_i(s)$$

Deterministische Spiele

Dame:

1994 beendete Chinook die 40-jährige Herrschaft des Weltmeisters Marion Tinsley Endspieldatenbank mit perfekten Spielen aller Stellungen mit \leq 8 Steinen (\geq 443 \cdot 10⁹ Stellungen)

Schach:

Deep Blue besiegte 1997 Weltmeister Garri Kasparow in 6 Spielen $200 \cdot 10^6$ Stellungen/Sekunde, sehr komplizierte Bewertung Bis zu 40 Halbzüge tief (nicht veröffentlichte Methoden)

Go:

Wettbewerb bis 2016 nur unter menschlichen Meistern b>300, daher Datenbanken mit Mustern für plausible Züge Beste Spieler weltweit werden inzwischen von AlphaGo geschlagen

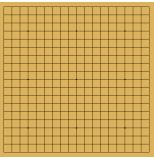
AlphaGo: Problemstellung Go

2 Spieler (Schwarz, Weiß) Legen abwechselnd Steine auf einem 19×19 Gitter

Ziel: Die Größte Fläche einkreisen eingekreiste Steine werden weggenommen

Anzahl der Möglichkeiten: 250¹⁵⁰

Vergleich zu Schach: 3580

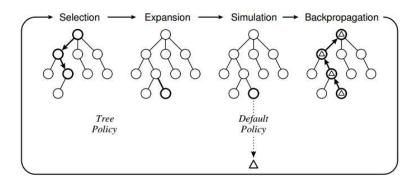


AlphaGo: Ansatz Monte Carlo Suche

Ansatz: Suche im Spielbaum

Lerne Netz 1 für menschenähnliche nächste Züge

Lerne Netz 2 zum Bewerten von Stellungen



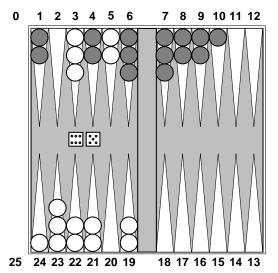
AlphaGo: Ergebnisse

Sieg gegen Europameister, Fan Hui: 5 zu 0

Sieg gegen Top10 der Weltrangliste, Lee Sedol: 4 zu 1

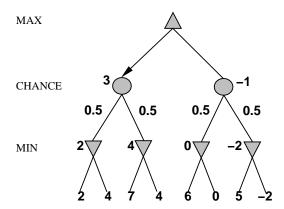
AlphaGo	Search threads	CPUs	GPUs	Elo
Asynchronous	1	48	8	2203
Asynchronous	2	48	8	2393
Asynchronous	4	48	8	2564
Asynchronous	8	48	8	2665
Asynchronous	16	48	8	2778
Asynchronous	32	48	8	2867
Asynchronous	40	48	8	2890
Asynchronous	40	48	1	2181
Asynchronous	40	48	2	2738
Asynchronous	40	48	4	2850
Distributed	12	428	64	2937
Distributed	24	764	112	3079
Distributed	40	1202	176	3140
Distributed	64	1920	280	3168

Glücksspiele: Backgammon



Glücksspiele allgemein

Zufall aufgrund von Würfeln, Mischen von Karten, etc. Vereinfachtes Beispiel mit Münzwurf:



Algorithmus für nichtdeterministische Spiele

```
if state is a MAX node {
    return highest ExpectiMinimax-Value of Successors(state)
}
if state is a Min node {
    return lowest ExpectiMinimax-Value of Successors(state)
}
if state is a chance node {
    return average of ExpectiMinimax-Value of Successors(state)
}...
```

Spiele mit unvollständigen Informationen

Die meisten Kartenspiele (wie Bridge, Doppelkopf, Hearts, Mau-Mau, Poker, Siebzehn und vier, Skat) sind Nullsummenspiele mit unvollständigen Informationen.

Auch einige Brettspiele (Schiffe versenken, Kriegspiel-Schach).

