

Intelligente Systeme Heuristische Suchalgorithmen

Prof. Dr. R. Kruse C. Braune

{rudolf.kruse,christian.braune}@ovgu.de

Institut für Intelligente Kooperierende Systeme Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg

Warum heuristische Suchalgorithmen?

Suchprobleme werden häufig durch eine Baumsuche gelöst.

Eine uninformierte Suche muss im schlechtesten Fall alle Knoten des Baumes expandieren.

Unter Ausnutzung von Problemwissen (Mutmaßungen/Heuristiken) kann der Rechenaufwand meistens reduziert werden.

Übersicht

1. Bestensuche Greedy-Suche

2. A*-Algorithmus

Bestensuche

Idee: nutze Bewertungsfunktion für jeden Knoten

Schätzung, wie "wünschenswert/begehrt" Knoten ist

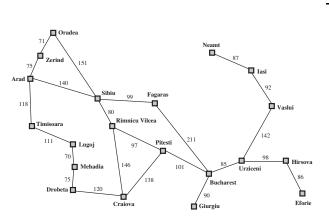
Somit: Expansion des am wünschenswertesten (noch nicht expandierten) Knotens

Implementierung:

fringe = Queue absteigend sortiert nach "Begehrtheit"

Spezialfälle: Greedy-Suche, A*-Algorithmus

Beispiel: Routenplanung mit Schrittkosten in km



Luftlinie nach Bi	ukarest
Arad	366
Bukarest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
lasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199

Zerind

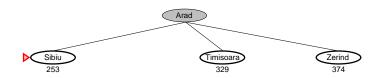
374

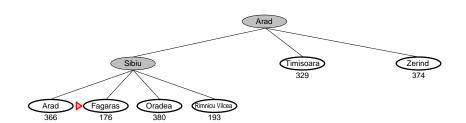
Greedy-Suche

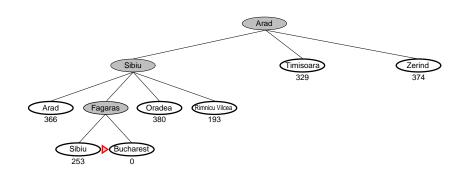
Bewertungsfunktion h(n) (Heuristik): Schätzung der Kosten von n zum nächsten Ziel

Z.B. $h_{LL}(n) = Luftlinienabstand von n nach Bukarest$

Greedy-Suche expandiert Knoten der am nächsten am Ziel scheint







Greedy-Suche: Eigenschaften

Vollständig:

- Nein, kann in Schleifen hängenbleiben, z.B.
 lasi → Neamt → Iasi → Neamt → . . .
- Ja, für endliche Räume bei Vermeidung sich wiederholender Zustände im Pfad

Zeit: $O(b^m)$, mit guter Heuristik drastische Verbesserung

Speicher: $O(b^m)$ (behält jeden Knoten im Speicher)

Optimal: nein

Übersicht

1. Bestensuche

2. A*-Algorithmus

Ablauf Anpassung des Tiefenfaktors Eigenschaften Heuristiken

A*-Algorithmus

Idee: Vermeide Expansion bereits teuer expandierter Pfade Bewertungsfunktion f(n) = g(n) + h(n)

- g(n) bereits aufgenommene Kosten um n zu erreichen
- h(n) geschätzte Kosten von n zum Ziel
- f(n) geschätzte Gesamtkosten des Pfades durch n zum Ziel

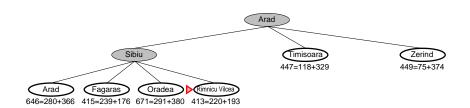
A*-Algorithmus benutzt zulässige Heuristik

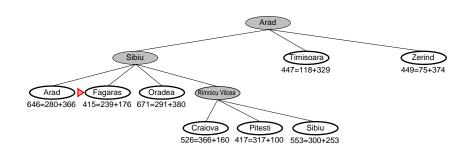
Also, $h(n) \le h^*(n)$ wobei $h^*(n)$ wahren Kosten von n

Auch verlangt: $h(n) \ge 0$, also h(G) = 0 für beliebiges Ziel G

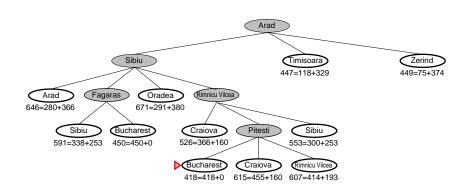
Z.B. $h_{LL}(n)$ überschätzt wirkliche Wegstrecke nie!

Satz: A*-Algorithmus ist optimal.









A*-Algorithmus: Gegeben

Startzustand z₀

Menge $O = \{o_1, \dots, o_n\}$ von Operationen: liefern zu gegebenem Zustand Nachfolgezustand

- i.A. nicht alle Operationen auf alle Zustände anwendbar
- Operation liefert speziellen Wert \perp (undefiniert) statt neuem Zustand, falls nicht anwendbar

Reellwertige Funktion costs:

liefert für jede $o_i \in O$ zugehörigen Kosten

 u.U. hängen Kosten vom Zustand ab (costs kann auch zweistellig sein)

Reellwertige Heuristikfunktion h

Funktion goal stellt fest, ob Zustand = Ziel

A*-Algorithmus: Ablauf I

- 1. Erzeuge (gericht.) Graphen $G = \{V, E\}$ mit $V := \{z_0\}$, $E := \emptyset$ (G stellt den besuchten Teil des Suchraums und die besten bekannten Wege zum Erreichen eines Zustandes dar)
- 2. Erzeuge Menge open mit open := $\{z_0\}$ (open enthält die erreichten Zustände mit noch nicht erzeugten Nachfolgern)
- Erzeuge leere Menge closed (closed enthält die erreichten Zustände mit bereits erzeugten Nachfolgern)
- 4. Erzeuge Abbildung $g:V\to {\rm I\!R}$ mit $z_0\mapsto 0$ und sonst undefiniert (sog. Tiefenfaktor g: gibt Kosten der besten gefundenen Operationenfolgen zum Erreichen eines Zustandes von z_0 an)

A*-Algorithmus: Ablauf II

- 5. Erzeuge Abbildung $e:V\to O$ für alle Zustände undefiniert (e baut Lösung des Problems auf: e gibt an, durch welche Operationen ein Zustand von seinem Vorgänger aus erreicht wird)
- 6. Wähle $z \in \text{open mit } z \in \{x \mid f(x) = \min_{y \in \text{open }} f(y)\}$ wobei f = g + h (wähle "erfolgversprechendsten" Zustand gemäß h)
- 7. Falls goal(z), dann Lösung gefunden und somit lese Pfad aus G ab
- 8. Entferne z aus open, d.h. open := open $\setminus \{z\}$ (Nachfolger von z im folgenden Schritt erzeugt)

A*-Algorithmus: Ablauf III

- 9. für alle $o \in O$:
 - $x := o(z) \text{ und } c := g(z) + \cos(s)$
 - falls $x \neq \bot$, dann
 - · falls $x \notin \mathtt{open} \cup \mathtt{closed}$, dann

$$\triangleright$$
 open := open $\cup \{x\}$, $e(x) := o$, $g(x) = c$

$$\triangleright$$
 erweitere G durch $V := V \cup \{x\}$ und

$$E := E \cup \{(z,x)\}$$

· falls $x \in \text{open} \cup \text{closed}$ und c < g(x), dann

$$\triangleright e(x) := o g(x) = c$$

$$E := (E \setminus \{(a,b) \mid b = x\}) \cup \{(z,x)\}$$

 \triangleright falls $x \in closed$, dann prüfe rekursiv alle

Zustände, die sich von x erreichen lassen und ersetze Vorgänger ggf. durch günstigere Vorgänger

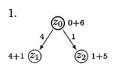
A*-Algorithmus: Ablauf IV

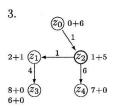
10. Nimm Zustand z in closed auf, also closed := closed $\cup \{z\}$ (Nachfolger von z im vorhergehenden Schritt erzeugt)

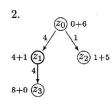
11. Falls open leer, dann Problem unlösbar und somit bricht A* ab, andernfalls gehe zu Schritt 6

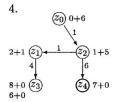
A*-Algorithmus: Anpassung des Tiefenfaktors

Notwendigkeit der Anpassung von Nachfolgezuständen (9.):





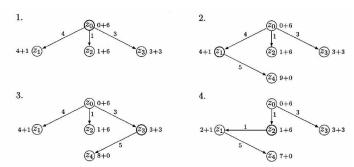




Im Schritt 3 wird durch die Erweiterung des Zustandes z_2 eine günstigere Operationenfolge zum Erreichen des Zustandes z_1 gefunden, wodurch sich der Tiefenfaktor für den Zustand z_1 von 4 auf 2 ändert

A*-Algorithmus: Anpassung des Tiefenfaktors

Notwendigkeit der (rekursiven) Anpassung aller Zustände (9.):



Im Schritt 3 wird durch die Erweiterung des Zustandes z_3 ein günstigerer Knoten z_4 gefunden. Daher wird die Kante (z_1, z_4) entfernt und stattdessen die Kante (z_3, z_4) eingefügt. Die Erweiterung von z_2 in Schritt 4 liefert aber einen kürzeren Weg nach z_4 (und z_4) und erfordert neue Zuordnung der Kante (kein Nachfolger!

A*-Algorithmus: Eigenschaften

Vollständig: ja, solange wie es unendlich mehr Knoten mit $f \leq f(G)$ gibt

Zeit: exponentiell in [relativer Fehler in $h \times L$ änge der Lösung]

Speicher: behält jeden Knoten im Speicher

Optimal: ja, A* kann nicht f_{i+1} expandieren bis f_i beendet

A* expandiert alle Knoten mit $f(n) < C^*$

A* expandiert einige Knoten mit $f(n) = C^*$

A* expandiert keine Knoten mit $f(n) > C^*$

Zulässige Heuristiken

z.B. für 8-Puzzle:

 $h_1(n) = \text{Anzahl der Plättchen an falscher Position}$

 $h_2(n) =$ Summe der Manhattan-/City-Block-Abstände zw. falscher und gewünschter Position jedes Plättchens

7	2	4
5		6
8	3	1

Start State

Goal State

$$h_1(S)=6$$
, h_1 für Startzustand (6 Plättchen an falscher Position) $h_2(S)=4+0+3+3+1+0+2+1=14$, h_2 für Startzustand

Dominanz

Wenn h_1, h_2 zulässig und $h_2(n) \ge h_1(n)$ für alle n, dann $h_2 > h_1$ (h_2 dominiert h_1)

Somit ist h_2 besser als h_1

Typische Suchkosten:

Sei d Tiefe der Lösung mit geringsten Kosten

Für d = 14: iterative Tiefensuche ca. $3.5 \cdot 10^6$ Knoten

 $A^*(h_1) = 539$ Knoten, $A^*(h_2) = 113$ Knoten

Für d=24: iterative Tiefensuche ca. $54 \cdot 10^9$ Knoten

 $A^*(h_1) = 39135$ Knoten, $A^*(h_2) = 1641$ Knoten

Satz: Gegeben 2 zulässige Heuristiken h_a , h_b .

$$h(n) = \max\{h_a(n), h_b(n)\}\$$

ist auch zulässig und dominiert h_a , h_b .

Relaxierte Probleme

Wie erzeugt man zulässige Heuristiken?

Idee: Konstruktion **exakter** Lösungen einer relaxierten Version des Problems (Relaxierung: Weglassen oder Lockern von Bedingungen in Optimierungsproblemen), somit Ausnutzung der Kosten dieser Lösung als Heuristik

Falls Regeln des 8-Puzzles relaxiert, sodass Plättchen **überall** hin können, dann kürzeste Lösung mit $h_1(n)$.

Falls Regeln des 8-Puzzles relaxiert, sodass Plättchen **zu jedem benachbarten Feld** können, dann kürzeste Lösung mit $h_2(n)$.

Kosten der optimalen Lösung eines relaxierten Problems ≯ Kosten der optimalen Lösung des realen Problems

Zusammenfassung

Heuristikfunktionen schätzen Kosten des kürzesten Pfads

Gute Heuristiken können Suchkosten dramatisch reduzieren

Greedy-Suche expandiert Knoten mit kleinstem h

Unvollständig und nicht immer optimal

A*-Algorithmus expandiert Knoten mit kleinstem g + h

- Vollständig und optimal
- Auch optimal effizient (bis auf Unentschieden, für Vorwärtssuche)

Erzeugung zulässiger Heuristiken durch exakte Lösungen relaxierter Probleme