Summer 2017

Intelligent Data Analysis C. Braune, T. Sabsch

Exercise Sheet 9

Exercise 32 *c*-Means Clustering

Consider the following two-dimensional data set:

x												
y	5	2	1	5	4	6	1	8	3	6	3	7

Process this data set with c-means clustering with c = 3 (i.e., try to find 3 clusters)! Use the first three data tuples als initial positions for the cluster centers and observe the migration of the centers.

Exercise 33 *c*-Means Clustering

In exercises 21 and 22 on sheet 6 we considered a simple two-dimensional data set. Reconsider this data set, but assume that no class information is available for the data points. That is, consider the following data set:

x																				
y	1	2	2	3	3	4	4	6	5	7	3	4	5	6	6	7	8	8	8	9

- a) Which problem of c-means clustering becomes obvious when this data set is processed with c = 2 (i.e., if one tries to find two clusters)? Hint: What is the desired result? What is produced by c-means clustering? (You need not compute the exact result of the algorithm, a qualitative description suffices. Compare the result to a naive Bayes classifier.)
- b) How could one try to cope with this problem?Hint: Recall what distinguishes a full and a naive Bayes classifier.

Exercise 34 Fuzzy Clustering

Consider the one-dimensional data set

1, 3, 4, 5, 8, 10, 11, 12.

We want to process this data set with fuzzy c-means clustering with c = 2 (two clusters) and a fuzzifier of w = 2. Assume that the cluster centers are initialized to 1 and 5. Execute one step of alternating optimization as it is used for fuzzy clustering, i.e.:

- a) Compute the membership degrees of the data points for the initial cluster centers!
- b) Compute new cluster centers from the membership degrees computed in this way!

Exercise 35 Fuzzy Clustering

Consider the objective function of fuzzy clustering with a fuzzifier w = 1, that is,

$$J(\mathbf{X}, \mathbf{B}, \mathbf{U}) = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij} d^{2}(\beta_{i}, \vec{x}_{j}),$$

which is to be minimized under the constraint

$$\forall j \in \{1, \dots, n\}: \quad \sum_{i=1}^{c} u_{ij} = 1.$$

Show that one obtains a hard/crisp assignment of the data points even if the membership degrees u_{ij} may come from the interval [0, 1]. That is, show that for the minimum of the objective function J it is $\forall i \in \{1, \ldots, c\} : \forall j \in \{1, \ldots, n\} : u_{ij} \in \{0, 1\}.$

(Hint: You may find it easier to consider the special case c = 2 (two clusters) and to examine the term for a single data point \vec{x}_j . Then generalize the result.)

Additional Exercise Fuzzy Clustering

Consider the objective function

$$J(\mathbf{X}, \mathbf{B}, \mathbf{U}) = \sum_{i=1}^{c} \sum_{j=1}^{n} u_{ij} d^2(\beta_i, \vec{x}_j),$$

which is to be minimized under the constraint

$$\forall j \in \{1, \dots, n\}: \sum_{i=1}^{c} \sqrt{u_{ij}} = 1.$$

Derive the update formulae for the membership degrees and the cluster centers using the Euclidean distance. How does the result differ from standard fuzzy clustering with a fuzzifier w = 2? (In particular, consider the cluster centers.)