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Probabilistic Classi cation

A classi er is an algorithm that assigns a class from a pnedeset to a case or
object, based on the values of descriptive attributes.

An optimal classi er maximizes the probability of a corass assignment.

which occur with probabilitigg, 1 1 nc.

Let g be the probability with which a classi er assigns ctass
(g 2 f O; 1g for a deterministic classi er)

The probability of a correct assignment is

Rc
P (correct assignment) = PG
i=1

Therefore the best choice for tas

1 if pj = maxrk]gl Pk

9= O; otherwise.
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Probabilistic Classi cation

Consequence: An optimal classi er should assigmts probable class .

This argument does not change if we take descriptive akdshnto account.

(The table size grows exponentially with the number oflattes.)

Therefore:Simplifying assumptions are necessatry.

Rudolf Kruse Intelligent Data Analysis



Bayes' Rule and Bayes' Classi ers

Bayes' rule is a formula that can be used to \invert" conddigrobabilities:
Let A andB be eventsP(A) > 0. Then

P(AjB) P(B).

PB A= =5
Bayes' rule follows directly from the de nition of conaiitbprobability:
. .._ P(A\ B) .._P(A\ B)
P(BjA)= P(A) and P(AjB)= P(B)

Bayes' classi ers: Compute the class probabilities as

Looks unreasonable at rst sight: Even more probabilibestare.
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Naive Bayes Classi ers

Naive Assumption:
The descriptive attributes are conditionally independgven the class.

Bayes' Rule:
P(Ai=ag::;;Am=amjC=¢q) P(C=q)

P(C=qG]A)= P(A1=ag:::;Am = am) o

Chain Rule of Probability:
P(C=¢) Y

Po k=1

P(C=qJA)=

Conditional Independence Assumption:
P(C=¢) Y

Po k=1

P(C=¢jA)= P(Ak=a ] C=g)

Rudolf Kruse Intelligent Data Analysis



Reminder: Chain Rule of Probability

Based on th@roduct rule of probability:
PA"B)=P(AjB) P(B)

(Multiply de nition of conditional probability witiP (B).)

Multiple application  of the product rule yields:

P(Ay;::5;Am) = P(Am JAL 5 Am 1) P(AL i Am 1)
P(Am JAL: AR 2D

:W |
= P(Ak] Az A )
k=1
The scheme works also if there is already a condition in ignearexpression:
| i .
P(Ag,:::;Am ] C) = PAc) A1 A 1,C)
i=1
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Conditional Independence

Reminder:stochastic independence (unconditional)

P(A~B)=P(A) P(B)
(Joint probability is the product of the individual probkimes.)
Comparison to th@roduct rule
PAA~B)=P(AjB) P(B)
shows that this is equivalent to
P(A]B)=P(A)

The same formulae hold conditionally, i.e.

PA"BjC) = P(AjC) P(BjC) and

P(AjB;C) = P(AjC):

Conditional independence allows us to cancel some conditio

Rudolf Kruse Intelligent Data Analysis
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Conditional Independence: An Example

6 Y
. s ey s, Group 1
o o’ @ .Oo o0 ¢
a:g‘o"..o"". ¢ °
° o®e o . .
SRR N L I
° ¢ * e, ,0.'.‘.00: ...:.. °
o.:.o '... o:.: o...: .
° ° o “t .'f.) ... ® o
% :.. o8 .: oo ..O.Q f.. o
e % o ¢ ° .?0. o. s'::.... o & ‘ b
¢ ° o. :.....0.0 o° o °
) .. .. o .. ¢ o ... *
.. .: ::. L ] ‘. .: ...
. ;...', L Group 2
. X

(Weak) Dependence in the entire datasétandY dependent.

Rudolf Kruse Intelligent Data Analysis



Conditional Independence: An

2z
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Example

X

Group 1

No Dependence in Group X: andY conditionally independent given Group 1.

Rudolf Kruse
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Conditional Independence: An Example

2z

R Group 2

No Dependence in Group : andY conditionally independent given Group 2.
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Naive Bayes Classi ers

Consequence: Manageable amount of data to store.
Store distribution® (C = ¢)and81 k m:P(Ax=ak]C=g).

It IS not necessary to compuytgexplicitely, because it can be computed implicitly
by normalizing the computed values to sum 1.

Estimation of Probabilities:

Nominal/Symbolic Attributes

#AK=a;C=q)+

P(Ak=ak C =)= = ie iy
K

#( A = a; C = ¢) counts, how many data with this speci c attribute combioat
exist in the data set.

Is calledLaplace correction : Assume for every class some number of

hypothetical samples for every valueAgf to prevent the estimate to be O if
#(AK=a:;C=0¢)=0.

= 0: Maximum likelihood estimation. Common choices:1 or = %

Rudolf Kruse Intelligent Data Analysis 13



Naive Bayes Classi ers

Estimation of Probabilities:

Metric/Numeric Attributes: Assume a normal distribution.
|
. 1 a c))?2
P(AK= 8 i C= G) = po—— exp 2k K(G)
2 k(G) 2 1(G)
Estimate of mean value
@)=t
K #(C = q) j=1 :
Estimate of variance
#(G=Gi)
1 .
NG) = - (@G)  "k(@)?
j=1
=#( C=¢) . Maximum likelihood estimation

=#( C =¢) 1. Unbiased estimation

Rudolf Kruse Intelligent Data Analysis



Naive Bayes Classi ers:

Simple Example 1

Rudolf Kruse

No| Sex |Age|Blood pr.| Drug P (Drug) A | B

1| male |20 |normal | A 05 | 05
2| female 73 |normal || B P (Sexj Drug) A B

3|| female 37 | high A male 05 | 05
4| male |33 |low B female 05 | 05
5| female 48 | high A P (Age] Drug) A B

6| male |29 |normal | A _

7 || female 52 |normal | B 5 36_3’ 47_8
8| male 42 |low B 1619 3110
9 male |61 |[normal | B P(Blood Pr.j Drug)| A B

10|| female 30 |normal | A low 0 0.5
11|| female 26 | low B normal 05 05
12| male |54 | high A high 05 0

A simple database and estimated (conditional) probalaligtributions.

Intelligent Data Analysis
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Naive Bayes Classi ers: Simple Example 1

P(Drug Aj male, 61, normal)
= ¢1 P(Drug A) P(malej Drug A) P(61) Drug A) P(normalj Drug A)
cp 05 05 000478705 = c1 5984 10 4 = 0:219

P(Drug Bj male, 61, normal)
= c¢1 P(Drug B) P(malej Drug B) P(61j Drug B) P(normalj Drug B)
c; 05 05 001712005 = c¢; 2140 10 ° = 0:781

P (Drug Aj female, 30, normal)
= ¢ P(Drug A) P(femalg Drug A) P(30j Drug A) P(normalj Drug A)
c, 05 05 002770305 = ¢, 3471 10 3 = 0:671

P (Drug Bj female, 30, normal)
= ¢ P(Drug B) P(femalg Drug B) P(30j Drug B) P(normalj Drug B)
co 05 05 001356705 = ¢ 1696 10 3 = 0:329

Rudolf Kruse Intelligent Data Analysis 16



Naive Bayes Classi ers: Simple Example 2

100 data points, 2 classes
Small squares: mean values

Inner ellipses:
one standard deviation

Outer ellipses:
two standard deviations

Classes overlap:
classi cation is not perfect

Rudolf Kruse

Naive Bayes Classi er
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Naive Bayes Classi ers: Simple Example 3

20 data points, 2 classes
Small squares: mean values

Inner ellipses:
one standard deviation

Outer ellipses:
two standard deviations

Attributes are not conditionally

Independent given the class

Naive Bayes Classi er

Rudolf Kruse Intelligent Data Analysis
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Naive Bayes Classi ers: Iris Data

150 data points, 3 classes

Iris setosa (red)
Iris versicolor (green)
Iris virginica  (blue)

Shown: 2 out of 4 attributes

sepal length
sepal width
petal length (horizontal)
petal width (vertical) °

(]
N &
6 misclassi cations o

on the training data
(with all 4 attributes) Naive Bayes Classi er

Rudolf Kruse Intelligent Data Analysis



Full Bayes Classi ers

Restricted to metric/numeric attributes (only the clasaasninal/symbolic).

Simplifying Assumption:
Each class can be described by a multivariate normal distrb

~i: mean value vector for clags
i covariance matrix for class

Intuitively: Each class has a bell-shaped probabilityidens

Naive Bayes classi ers: Covariance matrices are diaganates.
(Detalls about this relation are given below.)

Rudolf Kruse Intelligent Data Analysis



Full Bayes Classi ers

Estimation of Probabillities:
Estimate of mean value vector

R L Hg=a)

A= gesey L )

J=1

Estimate of covariance matrix

#g=0) ) .
b, = 1 o) & e) A

j=1

=#( C=g¢) . Maximum likelihood estimation
=#( C =¢) 1: Unbiased estimation

%> denotes the transpose of the veetor
%% is the so-calleduter product or matrix product of x with itself.

Rudolf Kruse Intelligent Data Analysis



Comparison of Naive and Full Bayes Classi ers

Naive Bayes classi ers for metric/numeric data are ecgnval
to full Bayes classi ers with diagonal covariance matrices

1 1
= g —— exp §(~a ~i)” i 1(~a ~i)
(2 )M i
_ 1 1 > - 2. ... 2
= g 7 )QO 5 exp §(~a ~i)” diag i1 i'm (& ~i)
k=1 ik 0 1
1 1X (g k)’
= oy Yo O 5 .
k=1 2 ik . k=1 ik
'd 1 (B k)2 -
— qz eXI@ > _2I, A b f(Ak: akJC: CI);
k=1 ik Ik k=1

wheref (A = ai ] C = ¢) are the density functions used by a naive Bayes classi el

Rudolf Kruse Intelligent Data Analysis 22



Comparison of Naive and Full Bayes Classi ers

Naive Bayes Classi er Full Bayes Classi er

Rudolf Kruse Intelligent Data Analysis
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Full Bayes Classi ers: Iris Data

150 data points, 3 classes

Iris setosa (red)
Iris versicolor (green)
Iris virginica  (blue)

Shown: 2 out of 4 attributes

sepal length
sepal width
petal length (horizontal)
petal width (vertical) %

. . . 7]
2 misclassi cations '@-

on the training data
(with all 4 attributes) Full Bayes Classi er

Rudolf Kruse Intelligent Data Analysis



Summary Bayes Classi ers

Probabilistic Classi cation . Assign the most probable class.
Bayes' Rule : \Invert" the conditional class probabilities.

Naive Bayes Classi ers

Simplifying Assumption:
Attributes are conditionally independent given the class.

Can handle nominal/symbolic as well as metric/numerialattes.

Full Bayes Classi ers

Simplifying Assumption:
Each class can be described by a multivariate normal distrb

Can handle only metric/numeric attributes.

Rudolf Kruse Intelligent Data Analysis
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Decision Trees

Classi cation with a Decision Tree

Top-down Induction of Decision Trees
A simple example
The general algorithm
Attribute selection measures
Treatment of numeric attributes and missing values

Pruning Decision Trees
General approaches
A simple example

Summary

Rudolf Kruse Intelligent Data Analysis
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A Very Simple Decision Tree

Assignment of a drug to a patient:

Blood pressurla

Drug B

normal

Y

Drug A Age
y \>40

Drug A Drug B

Rudolf Kruse Intelligent Data Analysis

28



Classi cation with a Decision Tree

Recursive Descent:
Start at the root node.

If the current node is aleaf node:
Return the class assigned to the node.

If the current node is amner node
Test the attribute associated with the node.
Follow the branch labeled with the outcome of the test.
Apply the algorithm recursively.

Intuitively: Follow the path corresponding to the case talassi ed.

Rudolf Kruse Intelligent Data Analysis
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Classi cation in the Example

Assignment of a drug to a patient:

Blood pressurla

high
normal

Drug A Age

40 >

Drug A

Rudolf Kruse Intelligent Data Analysis

low

Drug B

Drug B
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Classi cation in the Example

Assignment of a drug to a patient:

Blood pressurla

high low
normal

y
Drug A Age

40 > 40

Drug A Drug B

Rudolf Kruse Intelligent Data Analysis
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Classi cation in the Example

Assignment of a drug to a patient:

Blood pressurla

high low
normal

y
Drug A Age

40 > 40

Drug A Drug B

Rudolf Kruse Intelligent Data Analysis
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Induction of Decision Trees

Top-down approach

Build the decision tree from top to bottom
(from the root to the leaves).

Greedy Selection of a Test Attribute
Compute an evaluation measure for all attributes.
Select the attribute with the best evaluation.

Divide and Conquer / Recursive Descent
Divide the example cases according to the values of thetrdstita.
Apply the procedure recursively to the subsets.
Terminate the recursion if { all cases belong to the sam® clas
{ no more test attributes are available

Rudolf Kruse Intelligent Data Analysis
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Induction of a Decision Tree: Example

Patient database

12 example cases
3 descriptive attributes
1 class attribute

Assignment of drug
(without patient attributes)

always drug A or always drug B:

50% correct (in 6 of 12 cases)

Rudolf Kruse

No| Sex | Age|Blood pr.| Drug
1| male |20 |normal | A
2 || female 73 | normal B
3| female 37 | high A
4 male |33 |low B
5| female 48 | high A
6||male [29 |[normal | A
7| female 52 | normal B
8||male 42 |low B
9| male |61 |normal B
10| female 30 |normal | A
11| female 26 |low B
12| male |54 | high A

Intelligent Data Analysis
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Induction of a Decision Tree: Example

Sex of the patient No | Sex Drug
Division w.r.t. male/female. 1| male || A
6| male | A
12 || male | A
4| male | B
8| male | B
9| male | B
. 3 || female| A
Assignment of drug 5 || femalell A
male:  50% correct (in 3 of 6 cases) 10 || female| A
female: 50% correct  (in 3 of 6 cases) 2| female| B
7 || female B
total: 50% correct (in 6 of 12 cases) 11| female| B

Rudolf Kruse Intelligent Data Analysis



Induction of a Decision Tree

Age of the patient

Sort according to age.

Find best age spilit.
here: ca. 40 years

Assignment of drug

. Example

40: A 67% correct (in 4 of 6 cases)
> 40: B 67% correct (in 4 of 6 cases)

total: 67% correct (in 8 of 12 cases)

Rudolf Kruse
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Induction of a Decision Tree: Example

Blood pressure of the patient
Division w.r.t. high/normal/low.

Assignment of drug
high: A 100% correct (in 3 of 3 cases)

normal: 50% correct  (in 3 of 6 cases)
low: B 100% correct (in 3 of 3 cases)
total: 75% correct (in 9 of 12 cases)

Rudolf Kruse Intelligent Data Analysis
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Blood pr.
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high

normal
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normal
normal
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normal
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low
low
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Induction of a Decision Tree: Example

Current Decision Tree:

Blood pressurla

high
normal

Y

Drug A

Rudolf Kruse Intelligent Data Analysis

low

Drug B
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Induction of a Decision Tree: Example

Blood pressure and sex No|| Blood pr.| Sex | Drug
Only patients 31| high A
with normal blood pressure. 51| high A
Division w.r.t. male/female. 12| high A

1|normal |[male | A
6 normal |male | A
9/ normal |[male | B
_ 2| normal |female| B

Assignment of drug 7 | normal | female| B

male: A 67% correct (2 of 3) 10| normal | female A

female: B 67% correct (2 of 3) 4| low B

8| low B

total: 67% correct (4 of 6) 11| low B

Rudolf Kruse Intelligent Data Analysis



Induction of a Decision Tree:

Blood pressure and age

Only patients
with normal blood pressure.

Sort according to age.

Find best age split.
here: ca. 40 years

Assignment of drug

Example

40: A 100% correct (3 of 3)

> 40: B 100% correct (3 of

3)

total: 100% correct (6 of 6)

Rudolf Kruse
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No || Blood pr.| Age| Drug
3 || high A
5 || high A

12 || high A
1 || normal 20 | A
6 | normal 29 | A

10 || normal 30 | A
7 || normal 52 | B
9 || normal 61 | B
2 | normal 73 | B

11| low B
4| low B
8 | low B

40



Result of Decision Tree Induction

Assignment of a drug to a patient:

Blood pressurla

Drug B

normal

Y

Drug A Age
y \>40

Drug A Drug B

Rudolf Kruse Intelligent Data Analysis
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Decision Tree Induction: Notation

Pi:
Pj
Bi
Pijj

Rudolf Kruse

a set of case or object descriptions

the class attribute

other attributes (index dropped in the following)
=fcp; G0 nNc: number of classes

=fag; ;a0 na: humber of attribute values
total number of case or object descriptionsN.e= |§j
absolute frequency of the class

absolute frequency of the attribute valje

absolute ffequency of the corpblnatlon of the daand the attribute value .
Itis N; = 2, Nj andN; = < Nij .

relative frequency of the classp. = N

relative frequency of the attribute vala]e Pj = %

relative frequency of the combination of clasnd attribute valuey;, p; = ',1"—1
relative frequency of the clagdn cases having attribute valag, p;;; = I:T’, = E—JJ
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Decision Tree Induction: General Algorithm

function growtree (S : set of cases) : node;
begin
bestv := WORTHLESS;
for all untested attribute®\ do
compute frequenciégj, Nj:, N;j forl 1 ncandl1l | na;
compute valug of an evaluation measure usiNg, N;., N;j;
If v > bestv then bestv := v; bestA = A; end;
end
If bestv = WORTHLESS
then create leaf node;
assign majority class 6&fto x;
else create test nodg;
assign test on attributbestA to x;
for alla2 dompestA) do x.childp] := grow treeSjpest o=a); €nd;
end,;
return x;
end;

Rudolf Kruse Intelligent Data Analysis

43



Evaluation Measures

Evaluation measure used in the above example:
rate of correctly classi ed example cases

Advantage: simple to compute, easy to understand.
Disadvantage: works well only for two classes.

If there are more than two classes, the rate of misclassiaade casasglects
a lot of the available information

Only the majority class|that is, the class occurring mosteof in (a subset
of) the example casesi|is really considered.

The distribution of the other classes has no in uence. Hawawood choice
here can be important for deeper levels of the decision tree.

Therefore: Study also other evaluation measures. Here:
Information gain and its various normalizations.
2 measure (well-known in statistics).
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An Information-theoretic Evaluation Measure

Information Gain (Kullback and Leibler 1951, Quinlan 1986)
X
Based on Shannon Entropl = Pi log (Shannon 1948)
i=1
lgaidC;A) = H(C) H(CJA)
Z H { Z 5 H 1{
Rc QA Qc
= pi: 10gp pi: pj @ i logp i A
i=1 j=1 =1
H(C) Entropy of the class distributiorC( class attribute)
H(CjA) Expected entropyof the class distribution

If the value of the attributé\ becomes known
H(C) H(CjJA) Expected entropy reduction orformation gain

Rudolf Kruse Intelligent Data Analysis



Inducing the Decision Tree with Information Gain

Information gain for drug and sex:

1 1 1 1
H (Drug) = éIog}2§+élogzé =1
1 1 1 1
H (Drugj Sex) : — Io — Io + - = Io — Io =1
H(DrugJSex male) H(Drungex female)

| gai(Drug; Sex) =1 1=0

No gain at all since the initial the uniform distribution ofig is splitted into two
(still) uniform distributions.

Rudolf Kruse Intelligent Data Analysis
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Inducing the Decision Tree with Information Gain

Information gain for drug and age:

1 1 1 1
H (Drug) = éIogzé+ éIog}zé =1
1 1 1 2
H(Drugj Age) =- = I092 . Iogz + - = I092 . Iogz
23 39 23 39
H(DrugJAge 40) H(Drungge>40)

| gaidDrug; Age) =1 (0:9183 = 00817

Splitting w.r.t. age can reduce the overall entropy.

Rudolf Kruse Intelligent Data Analysis
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Inducing the Decision Tree with Information Gain

Information gain for drug and blood pressure:

H (Drug) = gzl %Iogzg =1
1 1 2 2 1 1 1
H (Drugj Bloodpr) = 21 é | §|ng§{2 élong}; + 1 0=05

H (DrugjBloodpr=normal)
| gaidDrug; Bloodpr) =1 05=05

Largest information gain, so we rst split w.r.t. blood gree (as in the example
with misclassi cation rate).
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Inducing the Decision Tree with Information Gain

Next level: Subtree blood pressure is normal.

Information gain for drug and sex:

1 1 1 1
H (Drug) = éIogzé+ éIogzé =1
1 2 1
H (Drugj Sex) : — Io — Io + —

H (Drungex male)

| gaiDrug; Sex) = Q0817

Entropy can be decreased.

Rudolf Kruse Intelligent Data Analysis
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Inducing the Decision Tree with Information Gain

Next level: Subtree blood pressure is normal.

Information gain for drug and age:

1 1 1
H (Drug) = gz éIogzé =1
H(DrugJAge)-} 0+ % 0=0

| gaidDrug; Age) = 1

Maximal information gain, that is we result in a perfectsilaation (again, as in
the case of using misclassi cation rate).

Rudolf Kruse Intelligent Data Analysis 50



Interpretation of Shannon Entropy

LetS = fsq;:::;S5hg be a nl'ge set of alternatives having positive probabditie
P(si),i =1;:::;n, satisfying L P(sj) = 1.

Shannon Entropy:

X
H(S) = P(si)log P(sj)
i=1
Intuitively: Expected number of yes/no questions that have to be
asked in order to determine the obtaining alternative.

Suppose there is an oracle, which knows the obtainingatitern
but responds only if the question can be answered with \yasibb

A better question scheme than asking for one alternatiee thi¢ other can
easily be found: Divide the set into two subsets of aboutl eea

Ask for containment in an arbitrarily chosen subset.
Apply this scheme recursively number of questions boundeddyg, ne.
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Question/Coding Schemes

P(s1) =0:10 P(sp)=0:15 P(s3)=0:16 P(sg) =0:19 P(sg)=0:40
Shannon entropy: i i P(sj)logp P(sj) = 2:15 bit/symbol

Linear Traversal Equal Size Subsets
S1, S2; S3, S4, S5 S1, S2; S3, S4, S5
| |
|
S5.S2:S4. S 10.25 0.75
2T S1; S S3; S4; S5
S3;54; S | |
3 |4 0 | 0.59_\
S4; S5 o8
0.10 | 0.15 | 0.16 | 0.19| 0.40 0.10 0.15 0.16/ 0.19 0.40
S1 So S3 S4 S5 S1 So S3 4 S5
1 2 3 4 4 2 2 2 3 3
Code length: 3.24 bit/symbol Code length: 2.59 bit/symbol
Code e ciency: 0.664 Code e ciency: 0.830
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Question/Coding Schemes

Splitting into subsets of about equal size can lead to a badgement of the
alternatives into subsets high expected number of questions.

Good question schemes take the probability of the alteasatnto account.

Shannon-Fano Coding (1948)
Build the question/coding scheme top-down.
Sort the alternatives w.r.t. their probabilities.

Split the set so that the subsets have about egraiability
(splits must respect the probability order of the altervest).

Hu man Coding (1952)
Build the question/coding scheme bottom-up.
Start with one element sets.
Always combine those two sets that have the smallest piiiegbi

Rudolf Kruse Intelligent Data Analysis
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Question/Coding Schemes

P(s1) =0:10 P(sp)=0:15 P(s3)=0:16 P(sg) =0:19 P(sg)=0:40

Shannon entropy:

” P(s))log, P (si) = 2:15 bit/symbol

Shannon{Fano Coding (1948) Hu man Coding (1952)
S1, S2, S3, S4, S5 S1, S2; S3, S4, S5
| |
| 0.41 0.59| 1 0.60
S1,S2,S3 S4, S5 S1, 52,83, S4
| | |
10.25 10.25 0.35
S1:S2 S1, S2 S3; S4
| |
10.10 0.19 0.16 0.19 0.40 10.10 0.15 | 0.16 0.1p 0.40
S1 So S3 $4 S5 S1 So S3 S4 Sp
3 3 2 2 2 3 3 3 3 1

Code length: 2.25 bit/symbol
Code e ciency: 0.955

Rudolf Kruse

Code length: 2.20 bit/symbol
Code e ciency: 0.977
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Question/Coding Schemes

It can be shown that Hu man coding is optimal if we have to meitee the
obtaining alternative in a single instance.
(No question/coding scheme has a smaller expected nundpersdions.)

Only if the obtaining alternative has to be determined incauusece of (indepen-
dent) situations, this scheme can be improved upon.

ldea: Process the seguence not instance by instance, bbineomo, three
or more consecutive instances and ask directly for thenolatombination of
alternatives.

Although this enlarges the question/coding scheme, theceegbnumber of ques-
tions per identi cation is reduced (because each interoogalenti es the ob-
taining alternative for several situations).

However, the expected number of questions per identicadonot be made ar-
bitrarily small. Shannon showed that there is a lower boniachely the Shannon
entropy.
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Interpretation of Shannon Entropy

)= b Pl f Pea= b Plsd= Pl
Shannon entropy: i P(sj)logp P (sj) = 1:875 bit/symbol

If the probability distribution allows for a Perfect Question Scheme
perfect Hu man code (code e ciency 1), S S S S S
the Shannon entropy can easily be inter- ~1'>2 ‘3’ 4 =5

preted as follows: Sy 53;' S4: S5
|
P(si)logp P (si) S3 S4: Sg
X 1 S4;'S
= P(si) log, (s-% ; 1 1 1 ‘ 4| 5 '
| | {z-} | — 7zl 2 i 8 16 16
occurrencepath length S1 S22 S3  $4 S5
probability  in tree 1 2 3 4 4

In other words, it is the expected number  Code length: 1.875 bit/symbol
of needed yes/no questions. Code e ciency: 1
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Other Information-theoretic Evaluation Measures

Normalized Information Gain

Information gain is biased towards many-valued attributes

Normalization removes / reduces this bias.
Information Gain Ratio (Quinlan 1986 / 1993)

| gair(C; A) _ n' gairlC; A)

lgr(C; A) = P
Ha jn:A1 P;j oo p;
Symmetric Information Gain Ratio (Lopez de Mantaras 1991)
(1), ~. Ay _ lgaidC;A) 2),~. rr _ 1 gaidC;A)
|Sgr(C,A) — HAC or |Sgr(C,A) - HA + HC
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Bias of Information Gain

Information gain is biased towards many-valued attributes ,
l.e., of two attributes having about the same informatioriena it tends to select

the one having more values.

The reasons are guantization e ects caused by the nite enmbexample cases
(due to which only a nite number of di erent probabilitiesncresult in estima-
tions) in connection with the following theorem:

Theorem: Let A, B, andC be three attributes with nite domains and let
their joint probability distribution be strictly positive.e.,8a 2 dom@) : 8b 2
dom@®B) :8c2 domC):P(A=a;B=Db;C=c)> 0. Then

| gair(C; AB) | gair(C; B);

with equality obtaining only if the attributeS and A are conditionally indepen-
dent givemB, i.e., IfP(C=cjA=aB=b=P(C=cjB = D).

(A detailed proof of this theorem can be found, for exampleni[Borgelt and Kruse 2002], p. 311 .)
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A Statistical Evaluation Measure

2 Measure

Compares the actual joint distribution
with a hypothetical independent distribution

Uses absolute comparison.

Can be interpreted as a di erence measure.

RC RA N__(pi:p:j bij )?

2(. —
(C1A) - ..

Side remark: Information gain can also be interpreted ag@igice measure.

AC KA Pij
| gair(C; A) = pij logp ——
|:]_J =1 pl: pj
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Treatment of Numeric Attributes

General Approach: Discretization

Preprocessing |
Form equally sized or equally populated intervals.

During the tree construction
Sort the example cases according to the attribute's values.

Construct a binary symbolic attribute for every possiblg sp
(values: \ threshold" and ¥ threshold").

Compute the evaluation measure for these binary attributes

Possible improvements: Add a penalty depending on the mwhbplits.

Preprocessing |l / Multisplits during tree construction
Build a decision tree using only the numeric attribute.
Flatten the tree to obtain a multi-interval discretization

Rudolf Kruse Intelligent Data Analysis

60



Treatment of Missing Values

Induction
Weight the evaluation measure with the fraction of caséskmbwn values.
Idea: The attribute provides information only if it is known

Try to nd a surrogate test attribute with similar propersie
(CART, Breimanet al. 1984)

Assign the case to all branches, weighted in each brancthesit@lative frequency
of the corresponding attribute value (C4.5, Quinlan 1993).

Classi cation

Use the surrogate test attribute found during induction.

Follow all branches of the test attribute, weighted withirtlrelative number
of cases, aggregate the class distributions of all lead®ede and assign the
majority class of the aggregated class distribution.
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Pruning Decision Trees

Pruning serves the purpose
to simplify the tree (improve interpretability),
to avoid over tting (improve generalization).

Basic ideas:
Replace \bad" branches (subtrees) by leaves.

Replace a subtree by its largest branch if it is better.

Common approaches:
Reduced error pruning
Pessimistic pruning
Con dence level pruning
Minimum description length pruning
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Reduced Error Pruning

Classify a set of new example cases with the decision tree.
(These cases must not have been used for the induction!)

Determine the number of errors for all leaves.
The number of errors of a subtree is the sum of the errorsadffitdlleaves.
Determine the number of errors for leaves that replaceesmsotr

If such a leaf leads to the same or fewer errors than the subtre
replace the subtree by the leaf.

If a subtree has been replaced,
recompute the number of errors of the subtrees it is part of.

Advantage: Very good pruning, e ective avoidance of over tting.
Disadvantage: Additional example cases needed.
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Pessimistic Pruning

Classify a set of example cases with the decision tree.
(These cases may or may not have been used for the induction.)

Determine the number of errors for all leaves and
Increase this number by a xed, user-speci ed amount

The number of errors of a subtree is the sum of the errorsalfitdlleaves.

Determine the number of errors for leaves that replaceesmsotr
(also increased hy).

If such a leaf leads to the same or fewer errors than the subtre
replace the subtree by the leaf and recompute subtree.errors

Advantage: No additional example cases needed.
Disadvantage: = Number of cases in a leaf has no in uence.
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Con dence Level Pruning

Like pessimistic pruning, but the number of errors is coatpas follows:
1. See classi cation in a leaf as a Bernoulli experimemtr (eno error).

2. Estimate an interval for the error probability based orsarspeci ed con -
dence level.
(use approximation of the binomial distribution by a noraiatribution)

3. Increase error number to the upper level of the con datewal
times the number of cases assigned to the leaf.

4. Formal problem: Classi cation is not a random experiment

Advantage: No additional example cases needed, good pruning.
Disadvantage:  Statistically dubious foundation.
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Pruning a Decision Tree: A Simple Example

Pessimistic Pruning with r =0:8and r =0:4:

leaf: 7.0 errors
Cc1: 13,co. 7 r = 0:8: 7.8 errors (prune subtree)
r =0:4: 7.4 errors (keep subtree)

al ap as
y
C1: 5,C2: 2 | | Cy1: 6,c2: 2 | | C1: 2,c2: 3 | total: 6.0 errors
2.8 errors 2.8 errors 2.8 errors r =0:8: 8.4 errors
2.4 errors 2.4 errors 2.4 errors r =0:4: 7.2 errors
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Decision Trees: An Example

A decision tree for the Iris data
(induced with information gain ratio, unpruned)

iris_type
-
petal length
=249 =245
]
petal_width

=1.75
‘/m Iris-virginica
r 5.35 l [~5.35
petal_length
!-::4.95 | =1.95
Iris-versicolor petal_width
=1.25 |
Iris-versicolor
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Decision Trees: An Example

A decision tree for the Iris data
(pruned with con dence level pruning,= 0:8, and pessimistic pruning= 2)

iris_type

|
petal_length

iris_type

[
petal_length

<245 =245 <2.45 >2.45
| |
petal_width petal_width

<1.75 =175
I

=1.75 =175

petal_length Iris-virginica

<5.35 [>5.35
Iris-versicolor

Left: 7 instead of 11 nodes, 4 instead of 2 misclassi cations

Iris-versicolor J|Iris-virginica

Right: 5 instead of 11 nodes, 6 instead of 2 misclassi sation
The right tree is \minimal" for the three classes.
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Summary Decision Trees

Decision Trees are Classi ers with Tree Structure
Inner node: Test of a descriptive attribute
Leaf node: Assignment of a class

Induction of Decision Trees from Data

(Top-Down Induction of Decision Trees, TDIDT)
Divide and conquerapproach /recursive descent
Greedy selection of the test attributes

Attributes are selected based onevaluation measure
e.g. information gain,? measure

RecommendedPruning of the decision tree
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Classi cation Evaluation: Cross Validation

General method to evaluate / predict the performance oficdes.

Serves the purpose to estimate the error rate on new exaasgle c

Procedure of cross validation:

1. Split the given data set into so-calledolds of equal size
(n-fold cross validation).

2. Combinen 1 folds into a training data set,
build a classi er, and test it on the-th fold.

3. Do this for alh possible selectionsmof 1 folds
and average the error rates.

Special case: Leave-1-out cross validation.
(use as many folds as there are example cases)

Final classi er is learned from the full data set.
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Support Vector Machines




Supervised Learning, Diagnosis System for Diseases

Training data: Expression pro les of patients with known diagnosis

The known diagnosis gives us a structure within the datahwire want to generalize
for future data.

Learning/Training: Derive a decision rule from the training data which separate
the two classes.

Ability for generalization: How useful is the decision rule when it comes tc
diagnosing patients in the future?

Aim: Find a decision rule with high ability for generalizati on!
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Learning from Examples

Given: X = fxj;yiglL,, training data of patients with known diagnosis

consists of:
Xi 2 RY (points, expression pro les)

yj 2f+1; 1g(classes, 2 kinds of cancer)

Decision function
fy :RYITf +1; 1g

diagnosis =f x (new patient)
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Under tting / Over tting

too simple

@ negative example
| positive example

new patient

Rudolf Kruse
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® ®
tradeoff
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Linear Separation of Training Data

Begin with linear separation and increase the complexity in a second
step with a kernel function.

A separating hyperplane is de ned by

a normal vectow and
an o seth

HyperplaneHd = f xjhw; xi + b= 0g

h; i is called the inner product
or scalar product.
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Predicting the class of a new point

Training: Choosev andbin such a way that the hyperplane
separates the training data.

Prediction: Which side of the hyperplane
IS the new point located on?

Points on the side that the normal vector
points at are diagnosed &S$

Points on the other side are diagnhosed
asNEGATIVE.
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Motivation

Origin in Statistical Learning Theory; class of optimassilars

Core problem of Statistical Learning Theory: Ability fongalization.
When does a low training error lead to a low real error?

Binary Class Problem:

Classi cation mapping functiorf (x;u) : x! y2f+1; I1g
X: sample from one of the two classes

u: parameter vector of the classi er

I the empirical risk(error rate) for a given training dataset:

1 X

Remp(t) = > ¥ f(iu)j 2 [01]
=1

A lot of classi ers do minimize the empirical risk, e.g. bBleNetworks.
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Motivation

Expected value of classi cation error (expected risk):
1 4 .
R(u) = ETReest(t)g = Efgy Tu)g = gy TOGu)ipxy) dxdy
p(x;y): Distribution density of all possible samptealong with their class a liation
y (Can't evaluate this expression directlypés; y) is not available.)

Optimal sample classi cation:
Search for deterministic mapping functid®; u) : x! y2f+1; 1gthat minimizes
the expected risk.

Core gquestion of sample classi cation:

How close do we get to tieal error after we sawtraining samples? How
well can we estimate the real riB{u) from the empirical rislRemp(u)?
(Structural Risk Minimization instead of Empirical Risknlvinization)

The answer is given by Learning Theory of Vapnik-ChervosmkenlSVMs
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SVMs for linear separable classes

Previous solution:
General hyperplanewx + b=0

Classi cation: sgmwx + b)

Training, e.g. by perceptron-algorithm
(iterative learning, correction after every misclasioce no unique solution)
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Reminder: Function Optimization

Often feasible approach:

A necessary condition for a (local) optimum (maximum ormum) is
that the partial derivatives w.r.t. the parameters vaniBe(re Fermat).

Therefore: (Try to) solve the equation system that resci® fsetting
all partial derivatives w.r.t. the parameters equal to zero

Example task: Minimize f(x;y)= x2+ y2+xy 4x 5y.
Solution procedure:

Take the partial derivatives of the objective function agsiotisem to zero:

@f Q@f
— =2X+ 4 =0; —=2y+x 5=0:
@x 4 @y

Solve the resulting (here: linear) equation system:x =1; y=2.
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Function Optimization with Constraints

Often a function has to be optimized subject to certainstraints .

Here: restriction tok equality constraints Ci(%) =0,1=1;:::;k.

Note: the equality constraints describe a subspace of the domikia function.
Problem of optimization with constraints:

The gradient of the objective functibnmay vanish outside the constrained sub-
space, leading to an unacceptable solution (violatingahstm@ints).

At an optimumin the constrained subspacéhe derivatives need not vanish.
One way to handle this problem ageneralized coordinates

Exploit the dependence between the parameters speci dteicanstraints to
express some parameters in terms of the others and thug théusetx to a set
x0of independent parametergefieralized coordinates

Problem: Can be clumsy and cumbersome, if possible atcdljdeethe form of

the constraints may not allow for expressing some paravadgaroper functions
of the others.
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Contour Lines of a Function

Contour Lines :

Example :

Rudolf Kruse

Given a functiorf : R2! R, the contour plot is obtained
by drawing the contour sets for equidistant levels, i.et, pl
the following sets of points:

Mic = f(x1;X2) 2 R?j f (x1;X0) = keg
fork 2 Nand xedc2 R g

f(X1;X0) = X5+ X3

Intelligent Data Analysis
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Gradient Field of a Function

The gradient of a functioh: R" ! R consists of the vector of its partial deriva-
tives w.r.t. the arguments:

. ef af”
X @x ' @x
The gradient evaluated at a poiit, written as
!
ot = OF ef 7
¥ ¥ @X X11 1@N y ’

points into the direction of largest increasé .of

Formally, the gradient of a function with domd®" hasn dimensions although
It is often depicted as am+ 1-dimensional vector.

Rudolf Kruse Intelligent Data Analysis 83



Gradient Field of a Function: Examples

Rudolf Kruse
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Function Optimization with Constraints

Problem: If the global optimum of lies outside the feasible region
the gradient does not vanish at the constrained optirgum

Which criteria do hold at the constrained optimum?

Assume we mowve throughout the feasible region to nd the optimum \manu-
ally". If we cross a contour line of , the crossing point cannot be an optimum:
because crossing a contour line means descending orragscends

However, if weouch a contour line we have found an optimum because steppir
backward or forward will increase (or decrease) the value.

At the \touching point"x the gradient of and the gradient of are parallel.
rf=rg

We only need both gradients to be parallel. Since they cadpgosite directions
and di erent lengths is used to rescaleg.
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Example

Task:

0.8

Minimizef (x1;Xp) = X§+ X

2 subjectto g:x+y=1.

Rudolf Kruse

Crossing a contour line : Point 1 cannot
be a constrained minimum becaudehas

a non-zero component in the constrained
space. Walking in opposite direction to this
component can further decredse

Touching a contour line : Point 2 is a
constrained minimum: both gradients are
parallel, hence there is no componemtfof

In the constrained space that might lead us
to a lower value df.
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Function Optimization with Constraints

Therefore, at the constrained optimumwe require:

rf(x)= rg(x) and g(x)=0

More compact representation:

L(x; )=1(% g(% and rL=0
Taking the partial derivatives reveals the initial corah8:

O x y=rfm rgx=0

@ %
rf()= r g
@

% )=dx=0

The negative sign in the Lagrange functionan be incorporated into, i.e. we
will from now on replace it by a positive sign.
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Lagrange Theory: Example 1

Example task: Minimize f(x;y) = x2+ y? subjectto x+vy=1.

Solution procedure:
Rewrite the constraint, so that one side gets zeroy 1 =0.
Construct the Lagrange function by incorporating the caist
Into the objective function with a Lagrange multiplier
L(x;y; )=x2+y%+ (x+y 1)

Take the partial derivatives of the Lagrange function ahdhsen to zero
(necessary conditions for a minimum):

oL @L @L
=~ =2x+ =0 —=2y+ =0; —— =X+ 1=0:
@x @y -7 @ Y

Solve the resulting (here: linear) equation system:

1.
-

= ]_; X=Y
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Summary: Function Optimization with Constraints

Let x be a (local) optimum df(x) in the constrained subspacelhen:

The gradientr ,f (% ), if it does not vanish, must bgerpendicular to the
constrained subspace. ((ILf (% ) had a component in the constrained subspace
% would not be a (local) optimum in this subspace.)

The gradients »gj(* ), 1 ] k, mustall beperpendicular to the
constrained subspace, because they are constant, nanmellgif ,subspace.
Together they span the subspace perpendicular to the amestrsubspace.

Therefore it must be possible to nd valugs1 | Kk, such that

X8
I f (% )+ irxgj(x)=0:
=1
If the constraints (and thus their gradients) are lineanlyejpendent, the values
j are uniquely determined. This equation can be usemiegpensate the
gradient off (x ) so that it vanishes ax .
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General Principle: Lagrange Theory

As a consequence of these insights we obtain the
Method of Lagrange Multipliers:

Given: a functionf (%), which is to be optimized,
k equality constraintgj (x) =0,1 | k.
Procedure:

Construct the so-callddagrange function by incorporating the equality con-

X
LOGC 1o =100+ igi(%):

i=1

Set the partial derivatives of the Lagrange function equakto:
@L @L @L @L
—=0; :::;, —=0; —=0; :::;; —=—=0:
@x% @¥% @ 1 @ g

(Try to) solve the resulting equation system.
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Lagrange Theory: Revisited Example 1

Example task: Minimize f(x;y) = x2+ y? subjectto x+vy=1.

minimum in the

constrained subspace
1.1

constrained
subspace
X+y=1

\_\ '

. usige

unconstrained \““““““"4,%,
minimum LU OO
=00 Ot X

The unconstrained minimum is not in the constrained sulesaanc
at the minimum in the constrained subspace the gradientrmesnish.
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Lagrange Theory: Revisited Example 1

Example task: Minimize f(x;y)= x2+y2 subjectto x+y=1.
LOGy; 1)=x%+y? (x+y 1)

minimum gy = (3; 3)

The gradient of the constraint is perpendicular to the camstd subspace.
The (unconstrained) minimum of the Lagrange funcliéxyy; )
Is the minimum of the objective functioiix; y) in the constrained subspace.
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Lagrange Theory: Example 2

Example task: Find the side lengths, y, z of a box with maximum volume
for a given are& of the surface.

Formally: Maximize f (X;y;z) = xyz
subjectto 2y +2xz +2yz = S.

Solution procedure:
The constraint IC(X;y;z) = 2Xxy +2xz +2yz S =0.

The Lagrange function is

L(X;y;z; )= Xxyz+ (2Xy+2xz+2yz S):.

Taking the partial derivatives yields (in addition to thensaint):

@L @L @L
—=vyz+2 (y+2)=0; —=xz+2 (Xx+2)=0; —=xy+2 (x+y)=0:
ax ) (y+2) ay (X+2) ay y+2 (X+y)
. . 1CI § 9 § . .
The solutionis: = 7 3, Xx=y=z= § (i.e,theboxisacube).
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Function Optimization: Lagrange Theory

Observations:

Due to the representation of the gradientf ¢¥) at a local optimumx in the
constrained subspace (see above) the gradiéntvof.t. X vanishes a .

I The standard approach works again!

If the constraints are satis ed, the additional terms havemuence.
I The original task is not modi ed (same objective function).

Taking the partial derivative w.r.t. a Lagrange multiplier
reproduces the corresponding equality constraint:

8;1 | k: Q_L(x; 10 k) = G (%),

I Constraints enter the equation system to solve in a natugl w

Remark:
Inequality constraints can be handled with tke@hn{Tucker theory
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Which hyperplane is the best - and why?

Rudolf Kruse
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No exact cut, but a ...

[
B
| Samples

with positive
label

Samples

with negative
® e ®
O @,
O
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Separate the training data with maximal separation margin

Try linear separation, but accept errors:

Penalty for errors: Distance to hyperplane times error weight

Rudolf Kruse Intelligent Data Analysis
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SVMs for linearly separable classes

With SVMs we are searching for a separating hyperplane veatmmal margin.

Optimum: The hyperplane with the highest 2f all possible separating hyper-
planes.

This is intuitively meaningful
(At constant intra-class scattering, the con dence oftriddissi cation is growing
with increasing inter-class distance)

SVMs are theoretically justi ed by Statistical Learningebiny.
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SVMs for linearly separable classes

Large-Margin Classi erSeparation line 2 is better than 1
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SVMs for linearly separable classes

P + b=+ + D= ‘v -
wx+b=+1 wx+b= 1 Training samples are classi ed

O @ ° correctly, If:

O %2 o yi(wxij + ) > 0

@ Invariance of this expression to-

O ° wards a positive scaling leads

_ to:

O yi(wxj + b 1

o with canonical hyperplanes:

O X1 ® wX; + b= +1; (class withy; = +1)
wx; + b= 1;(class withy; = 1)

wx+ b=0

The distance between the canonical hyperplanes resutipfogectingk; X»o to the
. W

unit length normal vectojrjw—jj. , .

JWjj JWjj

| maximizing  minimizingjjwijj°

2 =
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SVMs for linearly separable classes

Optimal separating plane by minimizing a quadratic fumctmlinear constraints:

Primal Optimization Problem:
minimize:J(w;b) = 3jjwjj?
to the constraint8i [y;(wx; +b) 1} i=1;2:::;

Introducing a Lagrange-Function:

1. ..
Lwib; ) = Jjwi® — ibiwxi+b) 1 O
1
leads to thedual problem |

maximizelL (w; b; ) with respect to , under the constraints:

|
b ) _ _ _ X
@%W) =0 =) w= . iYiXi
|
o) _ _ X _
@Kvéb) =0 9 _ iyYi = 0

Rudolf Kruse Intelligent Data Analysis 102



SVMs for linearly separable classes

Insert this terms i (w; b; ):

Rudolf Kruse

L(w;b; )

1. ., X
Siwij® itwx; + b) 1]
i=1
1 X X
WW W iYixi Db i+
i=1 i=1 i
1 X
W W W W+ ,
2 1=1
1 X
—Ww w+ i
1=1
1x X X
5 Y i XXt
|=1J=1 1=1
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SVMs for linearly separable classes

Dual Optimization Problem:
. X 11X X
maximize:'L{ ) = 5 ViYi i jXiX]
i=1 i=1j=1
X
to the constraints; Oand vy; =0
i=1

This optimization problem can be solved numerically wigtilp of standard quadratic
programming techniques.
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SVMs for linearly separable classes

Solutionof the optimization problem:

X! X
W = iYiXi = i Yi Xi
=1 Xij2SV
1
b = 5 W (Xp+ Xm)

for arbitraryxp 2 SV; yp=+1; undXm 2 SV; ym= 1

where
SV = fxj] i>01=1;2:::;lg
IS the set of all support vectors.

Classi cation rule:

X
sgnv x+ b ) = sgn[( YiXj)x + b ]
Xij2SV

The classi cation only depends on the support vectors!
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SVMs for linearly separable classes

Example: Support Vectors
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SVMs for linearly separable classes

Example: class +1 containg = (0; 0) andx> = (1;0);
class -1 containsg = (2;0) andx4 = (0; 2)

N
N
2@
N
N
N
N
N
N
N
N
N
N
N N
N N
1 N
N N
\ N
N N
N N
\ N
N N
N N
N N
N N
& S- ®
1 2
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SVMs for linearly separable classes

The Dual Optimization Problem is:

maximize:.L{ ) =

(1+ 2+ 3+ 2 33
to the constraints; Oand 1+ 2 3 4=0

4 5 3t+4

2
3

+4 2)

3. -1
3= 7 4= 2

SV = f(1,0) (20) (0;2)g

Solution:
=0; 2=1;
w =1 (1,0)
_ 1 1.
b _ 2?2 ( 21

Optimal separation linex + y =

Rudolf Kruse

3

320 7 (02 =
) ((1,0)+(2;0)) =

2
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SVMs for linearly separable classes

Observations:
For the Support Vectors holds; > 0

For all training samples outside the margin holgs= 0

Support Vectors form gparse representation of the sample; They are su cient
for classi cation.

The solution is the global optima and unique
The optimization procedure only requires scalar prodyg{s
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SVMs for non-linearly separable classes

In this example there is no separating line suchBi g% (wx; + b) 1]

y= 1

Three possible cases:
A) Vectors beyondthe margin, which
are correctly classi ed, I.e.
yilwx; + B 1
B) Vectorswithin the margin, which are
correctly classi ed, i.e.
0 vyiwxj+bh < 1
All three cases can be interprete@) Vectors that are not correctly classi-

astyj(wxj+b 1 ed, i.e.

A) = yi(wxj + b < 0
B) O< 1

C) >1

Rudolf Kruse Intelligent Data Analysis
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SVMs for non-linearly separable classes

Motivation for generalization:
Previous approach gives no solution for classes that aflennseparable.

Improvement of the generalization on outliers within thegma

Soft-Margin SVMintroduce \slack"-Variables

6

O ®
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SVMs for non-linearly separable classes

Penalty for outliers via \slack"-Variables

Primale Optimization Problem:

X
minimize:J(w;b; ) = jjwjj2+ C

i=1
to the constraintsi [yj(wxij+b 1 ; ;i 0]

Dual Optimization Problem:
o X 11X X
maximize:L{ ) = S5 VY XX
=1 1=1]=1
X
tothe constraints0 ; Cand vy =0
i=1
(Neither slack-Variables nor Lagrange-Multiplier ocauhe
dual optimization problem.)

The only di erence compared to the linear separable casestawC in the constraints
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SVMs for non-linearly separable classes

Solution of the optimization problem:
X X
W = iYiXi = i YiXi
i=1 Xj2SV

b Yic(1 k) W Xk, k=argmax j
|

where

SV = fxj] i>01=1;2:::;lg

describes the set of all Support Vectors.
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SVMs for non-linearly separable classes

Example: non-linearly
separable classes
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Non-linear SVMs

Non-linear class boundarieslow precision
Example: Transformation X) = (x;x4) ! C1 andC, linearly separable

ldea:

Transformation of attributex 2 <" in a higher dimensional spacg&; m >n by
<M< M
and search for an optimal linear separating hyperplandsrsgace.

Transformation increases linear separability.

Separating hyperplane #f™  non-linear separating plane<¥
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Non-linear SVMs

Problem:High dimensionality of the attribute spacé’
E.g. Polynomes gf-th degree ovex" ! < M m = O(nP)

Trick with kernel function:

Originally in<": only scalar products;x; required
new in<™: only scalar products X;) ( Xj ) required

Solution
No need to compute X;) ( Xj), but express them at reduced complexity with the
kernel function

KXi;xj) = ( %) (X%5)
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Non-linear SVMs

Example: For the transformation <2 | < ©

P. pP_. Pp_
(yuy2) = (Y8 Y5 21 2y2 2y1yz 1)

the kernel function computes

K(Xi;Xj) = (><i><j+1)2
= (Vi Yi2 (y,-l;y,-z)2+1)2
= (Yil)’jl"'pyi_ZYjZF')"_l) o
= (Y Yo pZXil; I@jz; Igv_il)’iz;l)
(yj21; yj22; it Y2 Yjyjal)
= ( xi)( %j)

the scalar product in the new attribute spac®

Rudolf Kruse Intelligent Data Analysis
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Non-linear SVMs

Example; : <21 < 3

(yuyd) = (V2" 22 v)

The kernel function

K(xiixj) = (xixj)*> = ( xi) (%) |
computes the scalar product in the new attribute spatelt is possible to compute

the scalar product of kj) and ( x;j) without applying the function .
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Nonlinear SVMs

Commonly used kernel functions:

Polynomial-Kernel:K (xj; xj) = (xin)OI
ixi Xl

Gauss-Kernel: K(xi;xj) = e —

Sigmoid-Kernel: K (Xj;Xj) = tanh( 1xjx; + 2)

Linear combination of valid kernéls new kernel functions

We do not need to know what the new attribute spaBklooks like. The only thing
we need is the kernel function as a measure for similarity.
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Non-linear SVMs

Example: Gauss-Kernad £ 1). The Support Vectors are tagged by an extra circle.
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Non-linear SVMs

Example: Gauss-Kernal £ 1) for Soft-Margin SVM.
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Final Remarks

Advantages of SVMs:
According to current knowledge SVMs vyield very good cotadgin results; in
some tasks they are considered to be the top-performer.

Sparse representation of the solution by Support Vectors

Easily practicable: few parameters, no need for a-pnowdedge
Geometrically intuitive operation

Theoretical statements about results: global optimaitalior generalization

Disadvantages of SVMs
Learning process is slow and in need of intense memory

\Tuning SVMs remains a black art: selecting a speci ¢ keandlparameters is
usually done in a try-and-see manner"
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Final Remarks

List of SVM-implementations at
http://www.kernel-machines.org/software

The most common one is LIBSVM:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Deep Learning




Problem: Object recognition in images

Imagenet Large Scale Visual Recognition ChalldrgéRO since 2010
Identify 200 di erent classes of objects (chair, tablesqgrerbike, ...)
Images with approx. 500400px, 3 color channels (RGB)

neural network with approx. 600'000 neurons in the rstrlaye

200 neurons in output layer
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Convolution

[Source]

Rudolf Kruse

Motivation: No matter
where on the image the object
IS, it should be recognized

ldea: Use the same features
on the whole image

Implementation:  Filter /
Kernel are applied to every
part of the image, sharing
weights

Parameter. Number of |-
ters, degree of overlapping

Intelligent Data Analysis
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Convolution

Feature transformation

Move a lter over features and
look at the Itered features

Multiply original feature and
lter and summarize

Original space: 5x5
lter size: 3x3
new feature size: 3x3

feature space becomes smaller

[http://u dl.stanford.edu/wiki/index.php/Featureextractionusingconvolution]
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Pooling

Feature transformation

Move a lter over features and
look at the Itered features

Consider area according to the
lter's size

Max pooling: Choose maxi-
mal value

Mean pooling: Calculate
mean value

feature space becomes smaller

[Source]
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Convolutional Neural Networks

[http://u dl.stanford.edu/wiki/index.php/Featureextractionusingconvolution]
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Results in Image Classi cation

Gra k: William Beluch, ImageNet Classi cation with Deep

Convolutional Neural Networks

Rudolf Kruse

Intelligent Data Analysis

10 years ago: impossible

Fast development over
the last few years

Often used: Ensembles of
networks

Networks are becoming
deeper:

ResNet (2015) more than
150 layers
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Application: 1Q test

solve oral comprehension questions in 1Q tests[Wang d€i18] 2

oral IQ tests consist of ve types of questions:
Analogy 1, Analogy 2, Classi cation, Synonym, Antonym

Example (Analogie 1): Isotherm is for temperature likeais@bfor ...?
() Atmosphere, (ii) Wind, (iii) Pressure, (iv) Dilationy)(Flow

Approach:
Classify each question type with an SVM

Use a specially trained deep neural network for each typeesfian
Use a huge training basis to learn words that belong tog@iNi&i2014)

Result: Deep Learning performs slightly better than pergoth a bachelor de-
gree.
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Rhythm reconstruction from EEGs

[Quelle: Sebastian Stober, DKE-Kolloquium 03.06.2014]
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German Tra ¢ Sign Recognition Benchmark (GTSRB)

Was analyzed at the International Result:

Joint Conference on Neural Networks First i . f
(IJCNN) 2011 irst time superhuman performance

In visual pattern recognition

Problem: Error rates:

One Image may belong to several Human: 116%, NN:B56%

classes (multiclass classi cation)
Stallkamp et al. 2012

More than 40 classes Used network:

More than 50'000 images Input, Conv., Max., Conv., Max.,
Conv., Max, Full, Full

Detalls
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Visualization of learned networks

Neural network for object recognition in images

What does a networgeelif it learned to detect noise in bananas?

More examples

Quelle: Heise: What do neural networks dream of? (German)
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AlphaGo: Board game Go

2 players (black, white)

stones are alternatingly placed
on a 19 x 19 grid

Goal: Encircle the largest area
encircled stones are captured

Number of possible game board con gura-
tion; 253°0 10%°°

Compared to chess: %5 1023
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AlphaGo Approach: Monte Carlo Search

Approach: Search in game tree
Learn Network 1 for human-like next moves

Learn Network 2 to evaluate con gurations

Rudolf Kruse Intelligent Data Analysis
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AlphaGo: Results

Victory against european champion Fan Hui: 5:0

Victory against world's top 10 player Lee Sedol: 4:1
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Deep Learning Libraries

Theano
http://deeplearning.net/software/theano/
Python implementation for GPU processing of mathematgakssions

Tensor ow https://www.tensor ow.org/
Used by Google's DeepMind

Keras
http://keras.io
Python implementation, based on Theano and TensorFlow

Torch
http://torch.ch/
LuaJIT and C/CUDA implementation, used by Facebook, Godgléter

DL4J
http://deeplearning4j.org/
platform independant java implementation, compatiblé\@park and Hadoop

Cae

http://ca e.berkeleyvision.org/

C++, CUDA implementation with python and MATLAB bindings
very fast, often used for image recognition, e.g. by Fakeboo
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