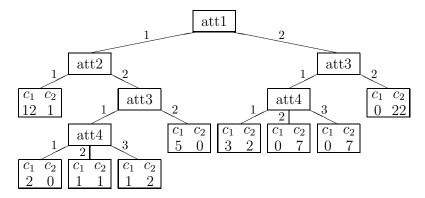
Exercise Sheet 7

Exercise 25 Decision Trees: Attribute Selection Measures

Compute the information gain and the χ^2 measure for the following two contingency tables, which refer to two descriptive attributes A, B and one class attribute C!


			A	
		a_1	a_2	a_3
	c_1	9	4	3
C	c_2	3	9	4
	c_3	4	3	9

			B	
		b_1	b_2	b_3
	c_1	9	4	3
C	c_2	6	6	4
	c_3	1	6	9

How may one describe the selection behavior of the two measures intuitively? (Hint: Mind the first row and the last column of the two tables.)

Exercise 26 Decision Trees: Pruning

Prune the following decision tree using the approach of pessimistic pruning! (parameter: 0.5 additional errors)

Exercise 27 c-Means Clustering

Consider the following two-dimensional data set:

													8
Ī	y	5	2	1	5	4	6	1	8	3	6	3	7

Process this data set with c-means clustering with c=3 (i.e., try to find 3 clusters)! Use the first three data tuples als initial positions for the cluster centers and observe the migration of the centers.

Exercise 28 c-Means Clustering

In exercises 17 and 18 on sheet 7 we considered a simple two-dimensional data set. Reconsider this data set, but assume that that no class information is available for the data points. That is, consider the following data set:

\boldsymbol{x}	3	3	4	4	5	6	7	7	8	9	1	2	2	3	4	5	5	6	7	7
y	1	2	2	3	3	4	4	6	5	7	3	4	5	6	6	7	8	8	8	9

- a) Which problem of c-means clustering becomes obvious when this data set is processed with c=2 (i.e., if one tries to find two clusters)? Hint: What is the desired result? What is produced by c-means clustering? (You need not compute the exact result of the algorithm, a qualitative description suffices. Compare the result to a naive Bayes classifier.)
- b) How could one try to cope with this problem? Hint: Recall what distinguishes a full and a naive Bayes classifier.

Additional Exercise Lagrange Theory

Determine the minimum of the function $f(x,y) = xy^2 + x + 2y$ under the constraints xy = 1 and x > 0 with the help of the method of Lagrange multipliers!