Association Analysis

Association Analysis

General Idea of Association Analysis
o Infer knowledge from databases

o Model (experts’) knowledge

Association Rules
o Market basket analysis

o Generate rules that represent that knowledge

Bayesian Networks
o Probabilistic networks (graphs)

o Model (high-dimensional) distribution of attributes as combination of several
lower dimensional distributions that are easier to handle

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Association Rules and Frequent Item Sets

Frequent Item Set Mining: Motivation

Frequent Item Set Mining is a method for market basket analysis.

[t aims at finding regularities in the shopping behavior of customers
of supermarkets, mail-order companies, on-line shops etc.

More specifically:
Find sets of products that are frequently bought together.

Possible applications of found frequent item sets:
e Improve arrangement of products in shelves, on a catalog’s pages.
e Support cross-selling (suggestion of other products), product bundling.
e Fraud detection, technical dependence analysis.

Often found patterns are expressed as association rules, for example:

If a customer buys bread and wine,
then she/he will probably also buy cheese.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Frequent Item Set Mining: Basic Notions

Let A={ay,...,am} be a set of items.

[tems may be products, special equipment items, service options etc.

Any subset I C A is called an item set.

An item set may be any set of products that can be bought (together).

Let T'=(t1,...,tp) withVi,1 <i<mn:t; C A

be a vector of transactions over A.

Each transaction is an item set, but some item sets may not appear in 1.
Transactions need not be pairwise different: it may be t; = t;. for ¢ # k.

T may also be defined as a bag or multiset of transactions.

The set A may not be explicitely given, but only implicitely as A = U ¢;.

A vector of transactions can list, for example, the sets of products bought
by the customers of a supermarket in a given period of time.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Frequent Item Set Mining: Basic Notions

Let I C A be an item set and T" a vector of transactions over A.

A transaction t € T covers the item set [or
the item set [is contained in a transaction t € T° iff [C ¢.

The set Kp(I) =4{k € {1,...,n} | I Ct.} is called the cover of I w.rt. T.

The cover of an item set is the index set of the transactions that cover it.

It may also be defined as a vector of all transactions that cover it
(which, however, is complicated to write in formally correct way).

The value sp(I) = |Kp(I)| is called the (absolute) support of I w.r.t. T.
The value op(I) = % | Kp(1)] is called the relative support of I w.rt. T.

The support of I is the number or fraction of transactions that contain it.

Sometimes o (1) is also called the (relative) frequency of I w.r.t. T.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Frequent Item Set Mining: Formal Definition

Given:
aset A={ay,...,am} of items,
a vector T' = (t1,...,tp) of transactions over A,

a number sy, € IN, 0 < spip < n or (equivalently)

a number opip € R, 0 < oy < 1, the minimum support.

Desired:
the set of frequent item sets, that is,
the set Frp(smyin) = {1 C A | sp(I) > spin} or (equivalently)
the set @p(oin) = {1 € A | op(I) > onin}t-

Note that with the relations sy = [nomin] and oy = %Smin

the two versions can easily be transformed into each other.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Frequent Item Sets: Example

transaction vector
1: {a,d, e}

. {b, ¢, d}

: {a,c,e}

: {a,c,d, e}
- {a, e}

: {a,c,d}
7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d,e}

S O = W Do

frequent item sets

0 1tems | 1 1tem 2 1tems 3 1tems
0: 100% | {a}: 70% | {a,c}: 40% | {a,c,d}: 30%
{b}: 30% | {a,d}: 50% | {a,c,e}: 30%
{c}: 70% | {a,e}: 60% | {a,d,e}: 40%
{d}: 60% | {b,c}: 30%
{e}: 0% | {c,d}: 40%
{c,e}: 40%
{d,e}: 40%

The minimum support is Sy = 3 or oy = 0.3 = 30% in this example.

There are 2° = 32 possible item sets over A = {a, b, ¢, d, e}.

There are 16 frequent item sets (but only 10 transactions).

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

Properties of the Support of an Item Set

A brute force approach that enumerates all possible item sets, determines
their support, and discards infrequent item sets is usually infeasible:

The number of possible item sets grows exponentially with the number of items.

A typical supermarket has thousands of different products.

Idea: Consider the properties of the support, in particular:

VI VJDOI: Kyp(J)CKp(l).
This property holds, since Vt : VI :¥VJ 2O I1T: JCt—1Ct.

Each additional item is another condition a transaction has to satisfy.
Transactions that do not satisfy this condition are removed from the cover.

[t follows:
VI :VJ 2 I ST([) Z ST(J)

That is: If an item set is extended, its support cannot increase.

One also says that support is anti-monotone or downward closed.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Properties of the Support of an Item Set

From VI :VJ D I : sp(I) > sp(J) it follows
VSmin : VI :VJ D1 : ST<[> < Sypin — ST<J) < Snin-
That is: No superset of an infrequent item set can be frequent.

This property is often referred to as the Apriori Property.

Rationale: Sometimes we can know a priori, that is, before checking its support
by accessing the given transaction vector, that an item set cannot be frequent.

Of course, the contraposition of this implication also holds:
VSmm VI :VJCI: ST([) > Smin — ST(J) = Smin-
That is: All subsets of a frequent item set are frequent.

This suggests a compressed representation of the set of frequent item sets.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 10

Maximal Item Sets

Consider the set of maximal (frequent) item sets:

Mrp(smin) = {1 C A | sp(I) = spin AVJ D1 :s7(J) < Spin}-

That is: An item set is maximal if it is frequent,
but none of its proper supersets is frequent.

Since with this definition we know that
Vomin : VI : I € Mp(syn) V 3J DI :sp(J) > sy

it follows (can easily be proven by successively extending the item set)
Vomin : VI 1 I € Fp(spi) — 3J € Mp(spin) - I C J.

That is: Every frequent item set has a maximal superset.

Therefore:

Vsmin © Fr(smin) = U 2!
IGMT(Smin)

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 11

Maximal Frequent Item Sets: Example

transaction vector
1: {a,d, e}

. {b, ¢, d}

: {a,c,e}

: {a,c,d, e}
- {a, e}

: {a,c,d}
7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d,e}

S O = W Do

frequent item sets

The maximal item sets are:

Every frequent item set is a subset of at least one of these sets.

0 items | 1 item 2 1tems 3 1tems

0: 100% | {a}: 70% | {a,c}: 40% | {a,c,d}: 30%

{v}: 30% | {a,d}: 50% | {a,c,e}: 30%

{c}: 70% | {a,e}: 60% | {a,d,e}: 40%
{d}: 60% | {b,c}: 30%
{e}: 70% | {c,d}: 40%
{c,e}: 40%
{d,e}: 40%
{b,c}, {a,c,d}, {a,c,e}, {a,d, e}.

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

12

Limits of Maximal Item Sets

The set of maximal item sets captures the set of all frequent item sets,
but then we know only the support of the maximal item sets.

About the support of a non-maximal frequent item set we only know:

VsSmin : VI € Frp(syin) — Mp(Sqin) @ sp(l) > ma sr(J).
min T(mm) T< mm) T(>_ JEMT(Smi),JDI T<)

This relation follows immediately from VI : VJ D I : sp(I) > sp(J),
that is, an item set cannot have a lower support than any of its supersets.

Note that we have generally

VSmin : VI € F) 1) > J).
Smin T(Sm1n> ST(>— JEMT%I?E),JQI ST()

Question: Can we find a subset of the set of all frequent item sets,
which also preserves knowledge of all support values?

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 13

Closed Item Sets

Consider the set of closed (frequent) item sets:

Cr(smin) =L C A | sp(I) = spin AV D1 :sp(J) < sp(l)}.

That is: An item set is closed if it is frequent,
but none of its proper supersets has the same support.

Since with this definition we know that
Vemin : VI I € Cp(spin) V 3J DI :sp(J) = sp()

it follows (can easily be proven by successively extending the item set)
Vsmin : VI : I € Fp(spm) — 3J € Cp(spin) - I C J.

That is: Every frequent item set has a closed superset.

Therefore:

Vsmin © Fr(smin) = U 2!
IECT(Smin)

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 14

Closed Item Sets

However, not only has every frequent item set a closed superset,
but it has a closed superset with the same support:

Vomin : VI : I € Fp(spin) — 3J D1 :J € Cp(spmin) N sp(J) = sp(I).

(Proof: see the considerations on the next slide)

The set of all closed item sets preserves knowledge of all support values:

Vsmin : VI € Fp(smin) : s7(l) = JEC’T(IEEE),JQI sp(J).

Note that the weaker statement

VSiin i VI € F) 1) > a J
Smin T(5m1n> ST() = JGCT:((?mi};)aJQI ST()

follows immediately from VI : VJ D I : sp(I) > sp(J), that is,
an item set cannot have a lower support than any of its supersets.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 15

Closed Item Sets

Alternative characterization of closed item sets:

Iclosed < sp(I)>spm A 1= ﬂ tr..
]fEKT(I)

Reminder: Kp(I)={k e {l,...,n} | I Ct.} is the coverof I wrt. T.

This is derived as follows: since Vk € Kp(I) : I C t, it is obvious that

]fEKT(I)

Vsmin : VI € Fp(spin) @ 1 C ﬂ 1.,

If I C ﬂkEKT(]) t1., it is not closed, since ﬂkeKT(I) t1. has the same support.
On the other hand, no superset of Ny g, 1) ¢tk has the cover Kp(I).

Note that the above characterization allows us to construct the (uniquely deter-
mined) closed superset of a frequent item set that has the same support.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Closed Frequent Item Sets: Example

transaction vector frequent item sets
1: {a,d, e} 0items | 1item | 2 items 3 items
g {ba C, d} @ 100% {CL} 70% {CL;C}: 40% {CL,C, d} 30%
s {a,c, Z} {v}: 30% | {a,d}: 50% | {a,c,e}: 30%
: {CL,C, 76} {C}I 70% {CL,@}I 60% {aadae}: 40%
5: {a,e}d {d}: 60% | {b,c}: 30%
? {Z’aca } {e}: 70% | {c,d}: 40%
8. } ,C}d | {c,e}: 40%
- da,c,d, e
. y &y Wy d 40
9: {c,b,e} ey 20
10: {a,d, e}

All frequent item sets are closed with the exception of {b} and {d, e}.

{b} is a subset of {b, c}, both have support 30%.
{d, e} is a subset of {a,d, e}, both have a support of 40%.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Types of Frequent Item Sets

Frequent Item Set
Any frequent item set (support is higher than the minimal support):

I frequent < sp(I) > Spin

Closed Item Set
A frequent item set is called closed if no superset has the same support:

I closed s sp) > spin A VI DI :sp(J) <sp(])

Maximal Item Set
A frequent item set is called maximal if no superset is frequent:

I maximal < sp(l) > spin A VI DI :sp(J) < Spmin

Obvious relations between these types of item sets:
e All maximal and all closed item sets are frequent.

e All maximal item sets are closed.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 18

Types of Frequent Item Sets: Example

0 1tems 1 item 2 1tems 3 1tems
0% 100% | {a}t: 70% | {a,c}t: 40% | {a,c,d}T*: 30%
{b}: 30% | {a,d}*: 50% | {a,c,e}™™: 30%
{3t 70% | {a, e} 60% | {a,d,e}™*: 40%
{d}T:60% | {b,c}*: 30%
{e}™: 70% | {c,d}T: 40%
{c,e} T 40%
{d,e}: 40%

Frequent Item Set
Any frequent item set (support is higher than the minimal support).

Closed Item Set (marked with)

A frequent item set is called closed if no superset has the same support.

Maximal Item Set (marked with *)
A frequent item set is called maximal if no superset is frequent.

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

19

Searching for Frequent Item Sets

We know that it suffices to find the closed item sets together with their support.

The characterization of closed item sets by

[cosed < sp(l)>spm A I= () t
]CEKT(I)

suggests to find them by forming all possible intersections of the transactions
and checking their support.

However, approaches using this idea are not competitive with other methods.

If the support of all frequent item sets is needed, it can be clumsy and tedious to
compute the support of a non-closed frequent item set with

Vsmin : VI € Fr(smin) — Cp(Smin) © s7T(I) = JGCT@EE)JD] sp(J).

In order to find the closed sets one may have to visit many frequent sets anyway.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 20

Finding the Frequent Item Sets

Idea: Use the properties
of the support to organize
the search for all frequent
item sets, especially

VI:¥VJDI:

ST(U < Smin
— ST(J> < Stin-

Since these properties re-
late the support of an item
set to the support of its
subsets and supersets,
it is reasonable to orga-
nize the search based on
the subset lattice of the
set A, the set of all items.

Rudolf Kruse, Christian Braune, Fabian Witt

A subset lattice for five items {a, b, ¢, d, e}:

Intelligent Data Analysis

Hasse diagram

21

Subset Lattice and Frequent Item Sets

transaction vector

1: {a,d, e}
2: {b,c,d}
3: {a,c, e}
4: {a,c,d, e}
5: {a,e}

6: {a,c,d}
7: {b,c}

8 {a,c,d, e}
9: {c,b, e}
10: {a,d,e}

Blue boxes are frequent
item sets, white boxes
infrequent item sets.

Rudolf Kruse, Christian Braune, Fabian Witt

subset lattice with frequent item sets (s, = 3):

Intelligent Data Analysis

Subset Lattice and Closed Item Sets

transaction vector

1: {a,d, e}
2: {b,c,d}
3: {a,c, e}
4: {a,c,d, e}
5: {a,e}

6: {a,c,d}
7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d,e}

Red boxes are closed
item sets, white boxes
infrequent item sets.

Rudolf Kruse, Christian Braune, Fabian Witt

subset lattice with closed item sets (syi, = 3):

Intelligent Data Analysis

23

Subset Lattice and Maximal Item Sets

transaction vector

1: {a,d, e}
2: {b,c,d}
3: {a,c, e}
4: {a,c,d, e}
5: {a,e}

6: {a,c,d}
7: {b,c}

8 {a,c,d, e}
9: {c,b, e}
10: {a,d,e}

Red boxes are maximal
item sets, white boxes
infrequent item sets.

Rudolf Kruse, Christian Braune, Fabian Witt

subset lattice with maximal item sets (s, = 3):

Intelligent Data Analysis

The Apriori Algorithm

[Agrawal and Srikant 1994]

Searching for Frequent Item Sets

One possible scheme for the search:

Determine the support of the one element item sets
and discard the infrequent items.

Form candidate item sets with two items (both items must be frequent),
determine their support, and discard the infrequent item sets.

Form candidate item sets with three items (all pairs must be frequent),
determine their support, and discard the infrequent item sets.

Continue by forming candidate item sets with four, five etc. items
until no candidate item set is frequent.

This is the general scheme of the Apriori Algorithm.

It is based on two main steps: candidate generation and pruning.

All frequent item set mining algorithms are based on these steps in some form.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 26

The Apriori Algorithm 1

function apriori (A, T, syipy)
begin
k=1,
B = Ugeallat};
Fy. = prune(Ey, T, Spin);
while F}. # () do begin
E}. 1 = candidates(F}.);
Fi 1 :=prune(Ey 1, T, Smin);
k =k +1;

end:;

return U§:1 Fj;

end (x apriori *)

Rudolf Kruse, Christian Braune, Fabian Witt

(* Apriori algorithm)
* initialize the item set size)
* start with single element sets *)

* and determine the frequent ones *)

* create item sets with one item more)

(
(
(
(* while there are frequent item sets *)
(
(* and determine the frequent ones)
(

* increment the item counter)

(% return the frequent item sets *)

Intelligent Data Analysis 27

The Apriori Algorithm 2

function candidates (F}.) (* generate candidates with k + 1 items)
begin

E = 0:

forall f1, fo € F}.

(* initialize the set of candidates)

(
with f; ={a1,...,a._1,a;} (* that differ only in one item and)

(

(>

* traverse all pairs of frequent item sets)

and fy={ay,...,a5_1, a%} * are in a lexicographic order)

and aj < a;c do begin (the order is arbitrary, but fixed) *)
f=fUfo={ay,...,a_1,ay, a%}; (* union has k + 1 items)
if Vae f: f—{a} € F}
then £ .= FU{f}

end:

)

% only if all subsets are frequent, *)
* add the new item set to the candidates *)

% (otherwise it cannot be frequent))

/N 7/ N -7/ N /N

return £ * return the generated candidates x)

end (x candidates *)

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

28

The Apriori Algorithm 3

function prune (E, T, syip)

begin
forall e € E do
st(e) = 0;

forall t € T' do
forall e € E do
ife Ct
then sp(e) == sp(e) + 1;
F =0
forall e € £ do
if sp(e) > Smin
then F := F U {e};
return F’:
end (* prune)

Rudolf Kruse, Christian Braune, Fabian Witt

(* prune infrequent candidates *)

* initialize the support counters)
* of all candidates to be checked)
* traverse the transactions)

* traverse the candidates)

% if transaction contains the candidate, *)

(

(

(

(

(

(* increment the support counter)

(* initialize the set of frequent candidates *)
(* traverse the candidates)

(x if a candidate is frequent, *)

(* add it to the set of frequent candidates *)
(

* return the pruned set of candidates)

Intelligent Data Analysis

219

Searching for Frequent Item Sets

The Apriori algorithm searches the subset lattice top-down level by level.

Collecting the frequent item sets of size £k in a set F}. has drawbacks:
A frequent item set of size k + 1 can be formed in

k(k+1)
2

possible ways. (For infrequent item sets the number may be smaller.)

j:

As a consequence, the candidate generation step may carry out a lot of
redundant work, since it suflices to generate each candidate item set once.

Question: Can we reduce or even eliminate this redundant work?

More generally:
How can we make sure that any candidate item set is generated at most once?

Idea: Assign to each item set a unique parent item set,
from which this item set is to be generated.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 30

Searching for Frequent Item Sets

A core problem is that an item set of size k (that is, with k items)
can be generated in k! different ways (on k! paths in the Hasse diagram),
because in principle the items may be added in any order.

If we consider an item by item process of building an item set
(which can be imagined as a levelwise traversal of the lattice),
there are k possible ways of forming an item set of size k
from item sets of size £ — 1 by adding the remaining item.

[t is obvious that it suffices to consider each item set at most once in order
to find the frequent ones (infrequent item sets need not be generated at all).

Question: Can we reduce or even eliminate this variety?

More generally:
How can we make sure that any candidate item set is generated at most once?

Idea: Assign to each item set a unique parent item set,
from which this item set is to be generated.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 31

Searching for Frequent Item Sets

We have to search the item subset lattice / its Hasse diagram.
Assigning unique parents turns the Hasse diagram into a tree.

Traversing the resulting tree explores each item set exactly once.

Subset lattice (Hasse diagram) and a possible tree for five items:

La |l b]l c]l d]l e |

L ab || ac || ad || ae || bc || bd || be || cd || ce dd L ab || ac || ad || ae || bc || bd || be || cd || ce || de |

[abc [abd || abe |[acd [ace |[ade || bed |[bee [bde [cde] [abe][abd]| abe |[acd |[ace |[ade |[bed || bee |[bde][cde]

abcd||abce||abde||acde||bcde labcd||abce||abde||acde||bcde]
abcde abcde

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 32

Searching with Unique Parents

Principle of a Search Algorithm based on Unique Parents:

Base Loop:

e Traverse all one-element item sets (their unique parent is the empty set).

e Recursively process all one-element item sets that are frequent.

Recursive Processing:

For a given frequent item set I:

e Generate all extensions J of I by one item (that is, J D I, |J| = |I| + 1)
for which the item set [is the chosen unique parent.

e For all J: if J is frequent, process J recursively, otherwise discard J.

Questions:

e How can we formally assign unique parents?

e How can we make sure that we generate only those extensions
for which the item set that is extended is the chosen unique parent?

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 33

Unique Parents and Prefix Trees

Item sets sharing the same longest proper prefix
are siblings, because they have the same unique parent.

This allows us to represent the unique parent tree as a prefix tree or trie.

Canonical parent tree and corresponding prefix tree for five items:

N

La Jlo |l c]l d]le] Lalblcld]e]
%\ \ ’) -
L ab || ac || ad || ae || bc || bd || be || cd || ce || de | lab | ac | ad | ae || bc | bd | be || cd | ce || de |
\\ b d ¢ d d
| abc || abd || abe || acd || ace || ade || bed || bee || bde || cde| | abc | abd | abe | | acd | ace | | ade | | bed | bee | | bde | | cde |
c d d d
labcd||abcel|abde||acde||bcde| labed|abcee| |abde| |acde| |bede]
d
|abede] labede]

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 34

Apriori: Levelwise Search

- {a.d, e} a: 7|0: 3|c: 7|d: 6]e: 7
. {b, ¢, d}

: {a,c, e}

: {a,c,d, e}
. {a, e}

: {a,c,d}
7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d, e}

S O = W N =

Example transaction database with 5 items and 10 transactions.
Minimum support: 30%, i.e., at least 3 transactions must contain the item set.

All one item sets are frequent — full second level is needed.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Apriori: Levelwise Search

- {a.d, e} a: 7|0: 3|c: 7|d: 6]e: 7
: {b, C, d} a b C d

e ef b: Olc: 4]d: 5]e: 6 c:3|d: 1le: 1| |d: 4]e: 4] |e: 4
: {a,c,d, e}
. {a, e}

: {a,c,d}
7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d, e}

S O = W N =

Determining the support of item sets: For each item set traverse the database and
count the transactions that contain it (highly inefficient).

Better: Traverse the tree for each transaction and find the item sets it contains
(efficient: can be implemented as a simple doubly recursive procedure).

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Apriori: Levelwise Search

: {a,d, e} a:. 7\b: 3|lc: 7\d: 6le: 7

E}Z’?Z}e} [ﬁc:lld:?) e: 6 c. 3 d: 4\e: 4| |e: 4

. {a, e}

: {a,c,d}
7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d,e}

S O = W N =

Minimum support: 30%, i.e., at least 3 transactions must contain the item set.
Infrequent item sets: {a, b}, {b,d}, {b,e}.

The subtrees starting at these item sets can be pruned.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Apriori: Levelwise Search

S O = W N =

7
8
9
10

: {a,d, e} a: 71b: 3lc: 7|d: 6le: 7
:{b,c,d} a b C d
E}Z’?Z}e} [ﬁc:lld:?) e: 6 6:3%];&] d: 4\e: 4| |e:
:{a:e’}’ C d C d

- {a,c,d} d: ?e: 7 e: 7| |d: e ? e: ?

10, c

:‘{{a,c?d,e}

. {c, b, e}

: {a,d, e}

Generate candidate item sets with 3 items (parents must be frequent).

Before counting, check whether the candidates contain an infrequent item set.

e An item set with k£ items has k subsets of size k — 1.

e The parent is only one of these subsets.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

38

Apriori: Levelwise Search

: {a,d, e}
. {b, ¢, d}

d: 5

edy X

. {a, e}

S O = W N =

: {a,c,d} d:

o O O

7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d,e}

a.

d: 6

€.

N

€.

O &&=

N

The item sets {b, ¢, d} and {b, ¢, e} can be pruned, because

e {b,c,d} contains the infrequent item set {b,d} and

e {b,c,e} contains the infrequent item set {b, e}.

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

39

Apriori: Levelwise Search

: {a,d, e}
. {b, ¢, d}

edy X

d: 5

€.

. {a, e}

S O = W N =

: {a,c,d} d:

wl o |9

€.

7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d,e}

Only the remaining four item sets of size 3 are evaluated.

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

a: 71b:3|c: 7T|d: 6|e:
bi C
c: 3 d: 4 e:
c d
e: 2

40

Apriori: Levelwise Search

: {a,d, e}
. {b, ¢, d}

edy X

d: 5

€.

. {a, e}

S O = W N =

: {a,c,d} d:

wl o |9

€.

7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d,e}

Minimum support: 30%, i.e., at least 3 transactions must contain the item set.

Infrequent item set: {c,d,e}.

Rudolf Kruse, Christian Braune, Fabian Witt

a.

T1b: 3|lc:7\d: 6|le: 7T

Intelligent Data Analysis

d: 4

€.

X

41

Apriori: Levelwise Search

: {a,d, e} a:. 7\b: 3|lc: 7\d: 6le: 7

: {a,c,e _ : _ . m | . .
a,c.d, e} M - 41d: ble: 6 c: 3 d: 4le: 4| |e: 4
d: :
d
e

. {a, e}

: {a,c,d}

. {b, c}

: {a,c,d, e}
. {c, b, e}

: {a,d, e}

€.

W o |9
aQ

w2

S
S
%
&

=~

S O© 00~ O O k= W ho +—

—_

Generate candidate item sets with 4 items (parents must be frequent).

Before counting, check whether the candidates contain an infrequent item set.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 42

Apriori: Levelwise Search

: {a,d, e} a:. 7\b: 3|lc: 7\d: 6le: 7

€.

. {b, ¢, d} a b c
;}Z:E:Z,}e} Mc:lld:?) e: 6 c:3m d: 4
. {a, e} ¢ d ; CEE E &]
- {a,c,d} d: 3le: 3 e: 4

. {b, c} [%]
: {a,c,d, e}

. {c, b, e}

: {a,d, e}

© 00 1 O O = W N +—

—_
-

The item set {a, ¢, d, e} can be pruned,
because it contains the infrequent item set {c, d, e}.

Consequence: No candidate item sets with four items.

Fourth access to the transaction database is not necessary.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Apriori: Node Organization 1

Idea: Optimize the organization of the counters and the child pointers.

Direct Indexing:
Fach node is a simple vector (array) of counters.
An item is used as a direct index to find the counter.
Advantage: Counter access is extremely fast.

Disadvantage: Memory usage can be high due to “gaps” in the index space.

Sorted Vectors:
Each node is a vector (array) of item/counter pairs.
A binary search is necessary to find the counter for an item.
Advantage: ~ Memory usage may be smaller, no unnecessary counters.

Disadvantage: Counter access is slower due to the binary search.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 14

Apriori: Node Organization 2

Hash Tables:

Fach node is a vector (array) of item /counter pairs (closed hashing).
The index of a counter is computed from the item code.
Advantage: Faster counter access than with binary search.

Disadvantage: Higher memory usage than sorted vectors (pairs, fill rate).
The order of the items cannot be exploited.

Child Pointers:

The deepest level of the item set tree does not need child pointers.
Fewer child pointers than counters are needed.
— It pays to represent the child pointers in a separate array.

The sorted array of item/counter pairs can be reused for a binary search.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 45

Apriori: Item Coding

[tems are coded as consecutive integers starting with 0
(needed for the direct indexing approach).

The size and the number of the “gaps” in the index space
depends on how the items are coded.

Idea: It is plausible that frequent item sets consist of frequent items.

e Sort the items w.r.t. their frequency (group frequent items).
e Sort descendingly: Prefix tree has fewer nodes.
e Sort ascendingly: There are fewer and smaller index “gaps”.

e Empirical evidence: sorting ascendingly is better.

Extension: Sort items w.r.t. the sum of the sizes
of the transacions that cover them.

e Empirical evidence: Better than simple item frequencies.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

16

Apriori: Recursive Counting

The items in a transaction are sorted (ascending item codes).

Processing a transaction is then a doubly recursive procedure.
To process a transaction for a node of the item set tree:

o Go to the child corresponding to the first item in the transaction and
count the remainder of the transaction recursively for that child.

(In the currently deepest level of the tree we increment the counter
corresponding to the item instead of going to the child node.)

o Discard the first item of the transaction and
process it recursively for the node itself.
Optimizations:
o Directly skip all items preceding the first item in the node.

o Abort the recursion if the first item is beyond the last one in the node.

o Abort the recursion if a transaction is too short to reach the deepest level.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

A7

Apriori: Transaction Representation

Direct Representation:
Each transaction is represented as an array of items.

The transactions are stored in a simple list.

Organization as a Prefix Tree:
The items in each transaction are sorted.
Transactions with the same prefix are grouped together.
Advantage: a common prefix is processed only once.

Gains from this organization depend on how the items are coded:

o Common transaction prefixes are more likely
if the items are sorted with descending frequency.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

18

Summary Apriori

Basic Processing Scheme

Breadth-first /levelwise traversal of the subset lattice.
Candidates are formed by merging item sets that differ in only one item.

Support counting is done with a doubly recursive procedure.

Advantages

“Perfect” pruning of infrequent candidate item sets (with infrequent subsets).

Disadvantages

Can require a lot of memory (since all frequent item sets are represented).

Support counting takes very long for large transactions.

Software

http://www.borgelt.net/apriori.html

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

19

Depth-First Search and Conditional Databases

In contrast to the levelwise search of the Apriori algorithm,
the Eclat Algorithm executes a depth-first search in the prefix tree.

This depth-first search can also be seen as a divide-and-conquer scheme:

e [ect the item order bea < b < ec.. ..

e Restrict the transaction vector to those transactions that contain a.
This is the conditional database for the prefix a.

Recursively search this conditional database for frequent item sets
and add the prefix a to all frequent item sets found in the recursion.

e Remove the item a from the transactions in the full transaction vector.
This is the conditional database for item sets without a.

Recursively search this conditional database for frequent item sets.

With this scheme only frequent one-element item sets have to be determined.
Larger item sets result from adding possible prefixes.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Depth-First Search and Conditional Databases

split into subproblems w.r.t. item a

item sets containing item a (and at least one other item).

. item sets not containing item a (but at least one other item).

ab | ac
b c
abc | abd | abe | | acd
c d d
abcd | abce || abde acde
d
abcde
blue : item set consisting of only item a.
green:
red
green: database with transactions containing a.
red

. database with all transactions, but with item a removed.

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

o1

Depth-First Search and Conditional Databases

be cd | ce de

abc bde cde
c
abcd | abce bede
d
abcde split into subproblems w.r.t. item b

blue : item sets {a} and {a, b}.
green: item sets containing items a and b (and at least one other item).
red : item sets containing item a, but not item b.

green: database with transactions containing a and b.
red : database with transactions containing a, but with b removed.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Depth-First Search and Conditional Databases

split into subproblems w.r.t. item b

a
ab | ac | ad | ae
b c d
abc | abd | abe | | acd | ace | | ade bce
c d d
abcd | abce || abde acde bcde
d
abcde
blue : item set consisting of only item b.
green: item sets containing item b, but not item a.
red : item sets containing neither item a nor item b.
green: database with transactions containing b, but not a.
red : database with all transactions, but with a and b removed.

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

The Eclat Algorithm

[Zaki, Parthasarathy, Ogihara, and Li 1997]

Eclat: Basic Ideas

The item sets are checked in lexicographic order
(depth-first traversal of the prefix tree).

Eclat generates more candidate item sets than Apriori,
because it does not store the support of all visited item sets.

Eclat uses a vertical transaction representation
(see next slide for details).

No subset tests and no subset generation is needed for the support computation.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Eclat: Transaction Representation

The Apriori algorithm uses a horizontal transaction representation:

each transaction is an array of the contained items.
e Note that the alternative prefix tree organization
is still an essentially horizontal representation.
The Eclat algorithm uses a vertical transaction representation:
e For each item a transaction list is created.

e The transaction list of item a indicates the transactions that contain it,
that is, it represents its cover Kp({a}).

e Advantage: the transaction list for a pair of items can be computed by
intersecting the transaction lists of the individual items.

e Generally, a vertical transaction representation can exploit

VI,JC A: KT([UJ>:KT([>HKT(J>.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

o6

Eclat: Depth-First Search

- {a.d, e} a: 7|0: 3|c: 7|d: 6|e: 7
. {b, ¢, d}

: {a,c, e}

: {a,c,d, e}

. {a, e}

: {a,c,d}

7: {b,c}

8 {a,c,d, e}

9: {c,b,e}

10: {a,d, e}

S O = W N =

Form a transaction list for each item. Here: bit vector representation.

o grey: item is contained in transaction

o white: item is not contained in transaction

Transaction database is needed only once (for the single item transaction lists).

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Eclat: Depth-First Search

:}Z’d’s}} a: 7|0: 3|c: 7|d: 6]e: 7
- {b, ¢,

: {a,c, e}
- {a,c,d, e} ||b|i||9| c:4)d: 5le: 6
- {a, e}

: {a,c,d}
7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d,e}

S O = W N =

Intersect the transaction list for item a

with the transaction lists of all other items (conditional database).

Count the number of set bits (number of containing transactions).

The item set {a, b} is infrequent and can be pruned.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Eclat: Depth-First Search

S O = W N =

7
8
9
10

I}Z,d,s}} a: 7/b: 3|lc: 7|d: 6|e: 7
. {b, ¢,

: {a,c, e}
- {a,¢,d, e} %Ci4d25626
: {a, e}

. {a,c,d}

. {b, c}

: {a,c,d, e}

: {c,b,e}

: {a,d, e}

Intersect the transaction list for item a

with the transaction lists of all other items (conditional database).

Count the number of set bits (number of containing transactions).

The item set {a, b} is infrequent and can be pruned.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Eclat: Depth-First Search

:}Z’djj}} a: 71b: 3lc: 7|d: 6le: 7
: 767

: {a,c, e}
: {a,c,d, e} bed e did 5ler 6

- {a, e} c

: {a,c,d} _ _
7 b.c} d: 3le: 3
8 {a,c,d, e}

9: {c,b,e}
10: {a,d,e}

S O = W N =

Intersect the transaction list for {a, ¢}
with the transaction lists of {a,z}, x € {d, e}.

Result: Transaction lists for the item sets {a, ¢, d} and {a,c,e}.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 60

Eclat: Depth-First Search

S O = W N =

7
8
9
10

I}Z,d,s}} a: 7/b: 3|lc: 7|d: 6|e: 7
: 7C7
: {a,c, e}

: {a,c,d, e} ed|c:4dld: Hle: 6
. {a, e} ;
14, ¢,dj =t

. {b, c}

: {a,c,d, e}
. {c, b, e}

: {a,d, e}

Intersect the transaction list for {a, c,d} and {a,c, e}.
Result: Transaction list for the item set {a,c, d, e}.

With Apriori this item set could be pruned before counting,
because it was known that {c, d, e} is infrequent.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

61

Eclat: Depth-First Search

S O = W N =

7
8
9
10

:}Z’d;}} a: 7/b: 3|lc: 7|d: 6|e: 7
: 7C7
: {a,c, e}

: {a,c,d, e} ed|c:4dld: Hle: 6
. {a, e} ;
14, ¢,dj =t

. {b, c}

: {a,c,d, e}
. {c, b, e}

: {a,d, e}

Intersect the transaction list for {a, c,d} and {a,c, e}.
Result: Transaction list for the item set {a,c, d, e}.

With Apriori this item set could be pruned before counting,
because it was known that {c, d, e} is infrequent.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

62

Eclat: Depth-First Search

: {a,d, e}
. {b, ¢, d}
: {a,c, e}

: {a,c,d, e} bed ¢ 4ld:5ler 6

. {a, e}

: {a,c,d}
7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d,e}

S O = W N =

a:. 7\b: 3|lc: 7|d: 6le: 7

Backtrack to the second level of the search tree and
intersect the transaction list for {a,d} and {a,e}.

Result: Transaction list for {a,d, e}.

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

63

Eclat: Depth-First Search

L 1a,d, e} a: 7| b: 3|c: 7|d: 6|e: 7
2: {b,c,d} LIJITJIIL]]]LIJ
3: {a,c, e} b

4: {a,c,d, e} c:4 d: b e 6 c:3|d: 1]e: 1

5: {a,e}

7 {b, ¢} d:3 e 3 e 4

8 {a,c,d, e}

9: {¢c,b,e}

10: {a,d,e}

Backtrack to the first level of the search tree and
intersect the transaction list for b with the transaction lists for ¢, d, and e.

Result: Transaction lists for the item sets {b, ¢}, {b,d}, and {b, e}.

Only one item set with sufficient support — prune all subtrees.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 64

Eclat: Depth-First Search

:{a.d, e} a: 7\b: 3|c: 7|d: 6le: 7
. {b, ¢, d}

: {a,c, e} bz

: {a,c,d, e} c:4 d: 5 e 6 M

. {a, e}

7 {b.c) d:3 e 3 e 4

8 {a,c,d, e}

9: {c, b, e}

10: {a,d, e}

S O = W N =

Backtrack to the first level of the search tree and
intersect the transaction list for b with the transaction lists for ¢, d, and e.

Result: Transaction lists for the item sets {b, ¢}, {b,d}, and {b, e}.

Only one item set with sufficient support — prune all subtrees.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 65

Eclat: Depth-First Search

{a,d, e} a: 7 b:3|c:T7|d: 6|e T
. {b, ¢, d} L-%J
: {a,c,e} ¢

: {a,c,d, e} c:4 d: 5 e 6 c: 3 d: 4)e: 4
- {a, e}

7 (b, c} d:3 e 3 e 4

8 {a,c,d, e}

9: {c,b,e}

10: {a,d,e}

S O = W N =

Backtrack to the first level of the search tree and
intersect the transaction list for ¢ with the transaction lists for d and e.

Result: Transaction lists for the item sets {c, d} and {c, e}.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Eclat: Depth-First Search

: {a,d, e}

. {b, ¢, d}

: {a,c,e}

: {a,c,d, e}
. {a, e}

: {a,c,d} _ _

7 b, c) d: 3 e 3 e
8 {a,c,d, e}

9: {c,b,e}

10: {a,d,e}

c:4 d: 5 e:

S O = W N =

§

- 4

a: 7 b:3lc:T\d: 6le: 7

C
c. 3

Intersect the transaction list for {c¢,d} and {c, e}.

Result: Transaction list for {c, d, e}.

Infrequent item set: {c,d,e}.

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

S¥

&E..

N

Iel:]IZiZ‘

™

(N}

67

Eclat: Depth-First Search

: {a,d, e}

. {b, ¢, d}

: {a,c,e}

{a,c,d, e} c.4 d: 5 e:
. {a, e}

: {a,c,d} _ _

7 b, c) d: 3 e 3 e
8 {a,c,d, e}

9: {c,b,e}

10: {a,d,e}

S O = W N =

§

- 4

a: 7 b:3lc:T\d: 6le: 7

C
c. 3

Intersect the transaction list for {c¢,d} and {c, e}.

Result: Transaction list for {c, d, e}.

Infrequent item set: {c,d,e}.

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

Iel:]IZiZ‘

68

Eclat: Depth-First Search

:{a,d, e} a: 7 b:3 ¢ 7|d: 6|e: 7
. {b, ¢, d}

: {a,c, e}

: {a,c,d, e} c:4 d: 5 e 6 c: 3
. {a, e}

7 {b.c) d:3 e 3 e 4

8 {a,c,d, e}

9: {c, b, e}

10: {a,d, e}

S O = W N =

Backtrack to the first level of the search tree and
intersect the transaction list for d with the transaction list for e.

Result: Transaction list for the item set {d, e}.
With this step the search is finished.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 69

Eclat: Bit Matrices and Item Coding

Bit Matrices

Represent transactions as a bit matrix:

e Fach column corresponds to an item.

e Fach row corresponds to a transaction.

Normal and sparse representation of bit matrices:

e Normal: one memory bit per matrix bit, zeros represented.

e Sparse: lists of column indices of set bits (transaction lists).

Which representation is preferable depends on
the ratio of set bits to cleared bits.

Item Coding

Sorting the item descendingly w.r.t. their frequency (individual or transaction size
sum) leads to a better structure of the search tree.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 70

Summary Eclat

Basic Processing Scheme

Depth-first traversal of the prefix tree.

Data is represented as lists of transaction ids (one per item).

Support counting is done by intersecting lists of transaction ids.

Advantages

Depth-first search reduces memory requirements.

Usually (considerably) faster than Apriori.

Disadvantages

Difficult to execute for modern processors (branch prediction).

Software

http://www.borgelt.net/eclat.html

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Additional Frequent Item Set Filtering

General problem of frequent item set mining:

The number of frequent item sets, even the number of closed or maximal item
sets, can exceed the number of transactions in the database by far.

Therefore: Additional filtering is necessary to find
the “relevant” or “interesting” frequent item sets.
General idea: Compare support to expectation.

e [tem sets consisting of items that appear frequently
are likely to have a high support.

e However, this is not surprising:
we expect this even if the occurrence of the items is independent.

e Additional filtering should remove item sets with a support
close to the support expected from an independent occurrence.

-3
(\V]

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Additional Frequent Item Set Filtering

Full Independence
Evaluate item sets with

Cosp(D)-alET ()
ill) = Heersr{a}) eerpr{a})

an require a minimum value for this measure.
(pr is the probability estimate based on T'.)

Assumes full independence of the items in order
to form an expectation about the support of an item set.

Advantage: Can be computed from only the support of the item set
and the support values of the individual items.

Disadvantage: If some item set [scores high on this measure,
then all J D I are also likely to score high,
even if the items in J — I are independent of 1.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Additional Frequent Item Set Filtering

Incremental Independence
Evaluate item sets with

oi(l) = min n sp({) . pr({)
' acl sp(I —{a})-sp({a}) ael pp(I —{a})-pr({a})

an require a minimum value for this measure.
(pr is the probability estimate based on T'.)

Advantage: If I contains independent items,
the minimum ensures a low value.

Disadvantages: We need to know the support values of all subsets I — {a}.

If there exist high scoring independent subsets I7 and I
with |[I1| > 1, [Io| > 1, [NIy =) and [UL, =1,
the item set [still receives a high evaluation.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 74

Additional Frequent Item Set Filtering

Subset Independence
Evaluate item sets with

1 (1
osi(I) = min nsr(l) — min prid)

JclJ# sp(I—J)-sp(J) JcrJg#0 pr(I —J)-pp(J)

an require a minimum value for this measure.
(pr is the probability estimate based on T'.)

Advantage: Detects all cases where a decomposition is possible
and evaluates them with a low value.

Disadvantages: We need to know the support values of all proper subsets J.

Improvement: Use incremental independence and in the minimum consider
only items {a} for which I — {a} has been evaluated high.

This captures subset independence “incrementally”.

~
Ot

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Summary Frequent Item Set Mining

Algorithms for frequent item set mining differ in:

e the traversal order of the prefix tree:
(breadth-first /levelwise versus depth-first traversal)

e the transaction representation:
horizontal (item arrays) versus vertical (transaction lists)
versus specialized data structures like FP-trees

e the types of frequent item sets found:
frequent versus closed versus mazximal item sets
(additional pruning methods for closed and maximal item sets)

Additional filtering is necessary to reduce the size of the output.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Association Rules: Basic Notions

Often found patterns are expressed as association rules, for example:

If a customer buys bread and wine,
then she/he will probably also buy cheese.

Formally, we consider rules of the form X — Y,
with X, Y C Aand X NY = 0.

Support of a Rule X — Y:

Either: ¢p(X = Y)=0p(X UY) (more common: rule is correct)
Or: sp(X = Y) =op(X) (more plausible: rule is applicable)

Confidence of a Rule X — Y

op(X UY) _ sp(XUY) _ s7(1)
op(X) sp(X) sp(X)

The confidence can be seen as an estimate of P(Y | X).

CT<X — Y) =

——

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis (1

Association Rules: Formal Definition

Given:
aset A={ay,...,am} of items,
a vector T'= (t1,...,tp) of transactions over A,

a real number Sy, 0 < Gpip < 1, the minimum support,

a real number cpip, 0 < ¢pip < 1, the minimum confidence.

Desired:

the set of all association rules, that is, the set

R={R: X =Y | op(R) > quin A cr(R) > cmin}-

General Procedure:

Find the frequent item sets.

Construct rules and filter them w.r.t. ¢y and cpin.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Generating Association Rules

Which minimum support has to be used for finding the frequent item sets
depends on the definition of the support of a rule:

o fp(X —=Y)=0p(XUY),
then o = Swuin or equivalently spin = [MSmin |-
o [f §T<X — Y) = OT<AX>7

then oy = SminCmin OF equivalently sy = [1SminCmin | -

After the frequent item sets have been found,

the rule construction then traverses all frequent item sets I and
splits them into disjoint subsets X and Y (X NY =0 and X UY = 1),
thus forming rules X — Y.

e Filtering rules w.r.t. confidence is always necessary.

e Filtering rules w.r.t. support is only necessary if ¢p(X — Y) = op(X).

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 79

Properties of the Confidence

From VI :VJ C I : sp(I) < sp(J) it obviously follows

sp(XUY) | sp(XUY)
sp(X) sp(X —{a})

VX,Y :Vae X :
and therefore

VX, Y Vae X: cp(X —=Y)>cp(X —{a} = Y U{a}).

That is: Moving an item from the antecedent to the consequent
cannot increase the confidence of a rule.

As an immediate consequence we have

VX, Y Vae X: cp(X =Y)<cpn — op(X —{a} = Y U{a}) < cpin-

That is: If a rule fails to meet the minimum confidence,
no rules over the same item set and with
a larger consequent need to be considered.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 80

Generating Association Rules

function rules (F);
R = 0:
forall f € F' do begin
m =1
Hun = Use f{{i}}
repeat
forall h € H,, do

it 0 2 i

then R
else H,, = Hy, —{h};
H,, 11 := candidates(Hy,);

m =m + 1;
until H,, = 0 or m > |f|;
end:;
return R;

end; (x rules %)

Rudolf Kruse, Christian Braune, Fabian Witt

— RU{|(f -1

* — generate association rules)

* initialize the set of rules)

* traverse the frequent item sets)

* start with rule heads (consequents))
* that contain only one item)

* traverse rule heads of increasing size *)
* traverse the possible rule heads)

* if the confidence is high enough, *)

— h|}; (x add rule to the result)

* otherwise discard the head)

* create heads with one item more)

* increment the head item counter x)

* until there are no more rule heads *)
* or antecedent would become empty *)
* return the rules found)

o~ o~

Intelligent Data Analysis

81

Generating Association Rules

function candidates (F}.) (* generate candidates with k + 1 items)
begin

E = 0:

forall f1, fo € F}.

(* initialize the set of candidates)

(
with f; ={ay,...,ap_1,ar} (* that differ only in one item and x)

(

(>

* traverse all pairs of frequent item sets)

and fy={ay,...,a5_1, a%} * are in a lexicographic order)

and aj < a;c do begin (the order is arbitrary, but fixed) *)
f=fUfo={ay,...,a_1,ay, a%}; (* union has k + 1 items)
if Vae f: f—{a} € F}
then £ .= FU{f}

end:

)

% only if all subsets are frequent, *)
* add the new item set to the candidates *)

% (otherwise it cannot be frequent))

/N 7/ N -7/ N /N

return £ * return the generated candidates x)

end (x candidates *)

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Frequent Item Sets: Example

transaction vector
1: {a,d, e}

. {b, ¢, d}

: {a,c,e}

: {a,c,d, e}
- {a, e}

: {a,c,d}
7: {b,c}

8 {a,c,d, e}
9: {c,b,e}
10: {a,d,e}

S O = W Do

frequent item sets

0 1tems | 1 1tem 2 1tems 3 1tems
0: 100% | {a}: 70% | {a,c}: 40% | {a,c,d}: 30%
{b}: 30% | {a,d}: 50% | {a,c,e}: 30%
{c}: 70% | {a,e}: 60% | {a,d,e}: 40%
{d}: 60% | {b,c}: 30%
{e}: 0% | {c,d}: 40%
{c,e}: 40%
{d,e}: 40%

The minimum support is Sy = 3 or oy = 0.3 = 30% in this example.

There are 2° = 32 possible item sets over A = {a, b, ¢, d, e}.

There are 16 frequent item sets (but only 10 transactions).

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

83

Generating Association Rules

Example: [= {a,c,e}, X ={c,e}, Y = {a}.

sp({a,c,e}) 30%

— a) = = =75
e Reey) a%
Minimum confidence: 80%

association | support of | support of | confidence
rule all items antecedent
b— c: 30% 30% 100%
d — a: 50% 60% 83.3%
e — a: 60% 70% 85.7%
a— e: 60% 70% 85.7%
d,e = a: | 40% 40% 100%
a,d— e | 40% 50% 80%

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

84

Support of an Association Rule

The two rule support definitions are not equivalent:

transaction vector

: {a,c, e}

two association rules

1 association | support of | support of | confidence
2: {b,d} rule all items antecedent

ij ?ZL Z’}d} a—c 3 (37.5%) | 5 (62.5%) 67.7%
5 {a. b, c,d} b—d 4 (50.0%) | 4 (50.0%) 100.0%
6: {c,

. g,j,eb? d} Let the minimum confidence be ¢y;, = 65%.

8: {a,c,d}

For ¢p(R) = o(X UY) and 3 < ¢ip, < 4 only the rule b — d is generated,
but not the rule a — c.

For ¢p(R) = o(X) there is no value ¢;;, that generates only the rule b — d,
but not at the same time also the rule a — c.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Additional Rule Filtering

Simple Measures

General idea: Compare pp(Y | X)=cp(X —Y)
and pr(Y) =cp(0 =Y)=op(Y).

(Absolute) confidence difference to prior:
dr(R) = [ep(X = Y) = op(Y)]
(Absolute) difference of confidence quotient to 1:

cr(X =Y) op(Y) }'
or(Y) Tep(X —=Y)

qr(R) = '1 - miﬂ{

Confidence to prior ratio (lift):

CT<X — Y)
op(Y)

Ip(R) =

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

86

Additional Rule Filtering

More Sophisticated Measures

Consider the 2 x 2 contingency table or the estimated probability table:

Xqt| XcCt Xqt|Xxct
Y&t nog | nor | no. YZ1t| poo por | po.
Y Ct| nj nip o | ni. YCt| po P11 | pL

n. ni | n. 20 p1 |1

n_ 1s the total number of transactions.
n1 is the number of transactions to which the rule is applicable.

n11 1s the number of transactions for which the rule is correct.

i uh nj

Itis pij=3 pio=gt pj=50 fordj=12

General idea: Use measures for the strength of dependence of X and Y.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 87

An Information-theoretic Evaluation Measure

Information Gain (Kullback and Leibler 1951, Quinlan 1986)

n
Based on Shannon Entropy H = —) p;logo p; (Shannon 1948)

1=1
[gain(Xa Y) — H(Y) - H(Y‘X)
ky) kx ky
= — pilogp;. > D (> pijjlogap;;
H(Y) Entropy of the distribution of ¥
H(Y|X) FExpected entropy of the distribution of Y

if the value of the X becomes known

H(Y)—H(Y|X) Expected entropy reduction or information gain

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

88

A Statistical Evaluation Measure

v2 Measure

Compares the actual joint distribution
with a hypothetical independent distribution.

Uses absolute comparison.

Can be interpreted as a difference measure.

kx k
f i (pip.j — pij)?
i=1j=1 Pi.P.j

Side remark: Information gain can also be interpreted as a difference measure.

kx ky Dis
]gam(X Y) Z sz] logy —
J=1l1=1 Pi.P.j

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 89

A Statistical Evaluation Measure

v2 Measure

Compares the actual joint distribution
with a hypothetical independent distribution.

Uses absolute comparison.

Can be interpreted as a difference measure.

kx k
f i (pip.; — pij)
i=1j=1 Pi.P.j

For ky = ky = 2 (as for rule evaluation) the x* measure simplifies to

(X,Y) =

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

(p1.p1 —p11)* . (n1n1 —n.np)?

pr.(1=pi)pi(l—p1) “ni(n.—np)niln. —ny)

Summary Association Rules

Association Rule Induction is a Two Step Process

e [ind the frequent item sets (minimum support).

e Form the relevant association rules (minimum confidence).

Generating the Association Rules

e Form all possible association rules from the frequent item sets.

e Filter “interesting” association rules
based on minimum support and minimum confidence.
Filtering the Association Rules

e Compare rule confidence and consequent support.
e [nformation gain

o X2 measure

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

91

Industrial Applications

Car manufacturer collects servicing tasks on all their vehicles.

e What are interesting subgroups of cars?
e How do these subgroups behave over time?

e Which cars’ suspension failure rate is strongly increasing in winter?

Bank assesses credit contracts w.r.t. terminability.

e What changes were there in the past?
e Any common factors?

e How do I communicate this to a non-statistician?

Tracking user activity in a virtual environment

e Are there any oddities in user behavior?

e How do I parameterize “odd” things?

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Or: What they have and what they want

Given:

High-dimensional data
Many-valued data

Time-stamped data

Asked for:

Fasy-to-understand patterns (rules)

Exploratory tools (visualization and inspection)

Natural way of interaction

Exploit temporal information (if desired)

Rudolf Kruse, Christian Braune, Fabian Witt

Intelligent Data Analysis

93

Rule Icons

Every rule
(Aj=a1 N NAp=ap) - C=c
of a given rule set is represented as an icon:

e For every possible item there is a reserved segment on the outer border.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 94

Rule Icons

Every rule
(Aj=a1 N NAp=ap) - C=c
of a given rule set is represented as an icon:

e For every possible item there is a reserved segment on the outer border.

e If the item is present in the antecedent, the segment is colored.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

Rule Icons

Every rule
(A =a1 N~ NAp=ap) - C=c
of a given rule set is represented as an icon:
e For every possible item there is a reserved segment on the outer border.
e If the item is present in the antecedent, the segment is colored.

e Interior encodes a rule-measure: here confidence.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

96

Rule Icons: Overlapping

The cover of two rules may be non-empty. Use a percentage bar to display the
mutual overlap.

Special case: inclusion

Gender = male — Cancer = yes
Gender = male A Smoker = yes — Cancer = yes

Gender=male gi; Gender=male
Smoker=y

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 97

Rule Icons: Overlapping

The cover of two rules may be non-empty. Use a percentage bar to display the
mutual overlap.

General case:

% . o

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

98

Rule Icons: Location

Finally, arrange the icons in a two-dimensional chart.
Choose association rule measures for the two axes and the size of the icon

Our suggestion: For a rule X — Y choose the following measures:

e x-coordinate: recall, i.e. cp(Y — X)
e y-coordinate: lift, i.e. cp(X —Y)/op(Y)
e size: support, i.e. op(X UY)

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 99

Real-world Example: Daimler AG

Car database

300 000 vehicles N | .
subset of 180 attributes = s
2 to 300 values per attribute f

Probabilistic Dependency Network

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 100

Real-world Example: Daimler AG

Klassenvariable

15,0 1 _ a—l

14,5
14,0
135 1
13,0 1
12,5 1
12,0 4
11,58 1
11,0 1
108
10,0
8.5 4
0.0 1 0-2
8.5
804
7.5 1
7.0 1 \

B.5 1 \
5.0 4
5.5 1
5,04
4.5
4.0 1
3.5 1
3.0 4
251
2.0 1
1.5 1
1.0 7
0.5 4

0.0 : : : : : : : : : : : : : : : : :
D000 D025 0050 0075 0400 0125 0450 0175 0200 0225 0250 0275 0300 0325 0350 0375 0400 0425

recall(Temperatur, Laufleistung | Klassenvariable)

)

ng

lift(Klassenvariable | Temperatur, Laufleistu

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 101

Real-world Example: Daimler AG

Explorative Analysis Tool

£ Modeler
(= Import ¥ Save... 3§ Exit 4 Edit Topol Ordering - Al Nodes AllEdges Tools ¥ Debug ¥

Overview Model | Rules ', CPT-Analyzer i

32 s Aircondition

KAS,0
KAS AEG
HAG.1SL
KAS, O
KAS NOR
k&40
K&, AEC
KA L
A4, 06
KA NOR
1A2.0
KA2 AEG
KAZISL
KAz, 0M
KA2.NOR
43,0
A3 AEG
A3 ISL
kA3, 06
KA NOR
o
JAEG
IsL
Ohot
NOR

MNOR

Properties E
|]
Attribute

[[:Iass ']

Okt IsL

Parent Attributes
| Aircondition
] Country

|| Engine

FOEEOE

okay
schadhaft

SHAS @KHAL & KAZ ®KAT ¢ HAY

OM
NOR

AEG

EIDEIBIEDIE .

(4}

i Bxes Massures -

e ixis ‘Retall vj

-ocs: [LFE -]

Z-dxis: {Suppurt v-‘

i B b
Show instances
["] Antialiasing
Transparent
[] Passibilistic made

Min, Cov.:

- 1

2|

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 102

Real-world Example: ADAC

Customer database

Car and customer information

Assessment of vehicle quality

[Fahrzeugalter

O Pz

] Kunden&iter
Geschlecht
MotorLeistung
Kilometerstand

= 2] (=] =
Ab 15 [~
5.9
?
10-14 =
¥ Unter3 b {

A Anes Measures

X-duis: [Reeall -
Y-uds: [Lift -
Z-Axist {Support 'J
4 Sebtings

)
Autodiagnose
AutoDiagnose Digital (ADD)

Show instances

14 of 400 inst. <
[[] &ntialiasing o instances

Transparent
[1 Passibilistic mode

Create Rule
Min. Cow.:

3,5% of all instances

26,42% of instances with Fahrzeugalker=10-14

[~ actions |

[* Rule Extraction IH

Attribute

Fahrzeugalter

Motarleistung 60-79
Geschlecht m

Heuristics Yalues
LHS Support:
Confidence:
Recall:
Lift:
RHS Suppork:
Leverage:
Suppork:
Interestingness:

Inv. Interestingness:

0,145
0,241
0,264
1,822
0,132
0,016
0,035
0,481
0,44

Rudolf Kruse, Christian Braune, Fabian Witt

£

[l

Intelligent Data Analysis

103

Temporal Change of Rules

Why considering the temporal development of rules?
(i.e. the change of certain rule evaluation measures)

e FKailure patterns usually do not arise out of a sudden
but rather evolve slowly over time.

e A fixed problem takes some while to have a measurable effect.

How to present this evolution to the user?

e (Create a time series for every measure used for locating
and scaling the rule icon.

e Interpolate between the frames and present an animation.

Problem: Need to reduce the number of rules.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

How does that look like?

lift A {ﬁ; = lift A

30 + 2 3.0 +

25) ‘. 58 .. ‘ .
T L ' i e

20 L > k. 20 4
< ; !
[4 y g
- i,
o ‘\{ |
151 @& by " 4 5 15
Y, s

i‘,;wrl‘ ® 4

i,
10 -‘~"‘4 = e 0

k P A l Ag k-

AR TR ‘,\.'

Py A st

[Sy O 4

2 o] [Poaam
051+ 4 & 05 4 & 05

N =

e

+ +—> t - L t —>
0.25 05 recall 0.25 05 recall 0.25 0.5 recall

Real-world dataset

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 105

How does that look like?

lift A

3.0 +

25 1 v / Obviously, there is a demand for

post-processing the rule set!

20 +

1.5 4

L

05

| | | : : | | | | —
0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 045 0.50
recall

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 106

Temporal Change of Rules

Divide dataset into reasonable time frames

Run respective pattern induction algorithm

Quantify each pattern w.r.t. any desired measure(s)

Generate time series for each measure and each pattern

Match the time series against a user-specified concept

Rank them according to the membership of the concept

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

107

User-driven Post-processing

Users often have an idea in which direction to investigate but cannot explicitly phrase
a query to a Data Mining system. However, we can use intentions like

“Show me only those rules that had a strong increasing support and a in-
creasing confidence in the last quarter.”

or

“Which patterns exhibit an increasing lift while the support was stable or at
most slightly decreasing?”

to thin out the rule set.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 108

User-driven Post-processing

Specify a fuzzy partition on the change rate domain
of every pattern evaluation measure.

Rudolf Kruse, Christian Braune,

fast_decr decr unch incr fast_incr
1
-04 -0.2 0 0.2 0.4 u for lift change
-0.2 -0.1 0 0.1 0.2 u for confidence change

Fabian Witt Intelligent Data Analysis

109

User-driven Post-processing

Specify a fuzzy partition on the change rate domain
of every pattern evaluation measure.

Encode the user-concept as a fuzzy antecedent.

E.g. “lift is unchanged and confidence is increasing’:
(Ajris unch A Agyypis incr)

will be evaluated as

unch) , o iner) , -
T @ = o) i@ = o))

where T is a t-norm that represents a fuzzy conjunction.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

110

User-driven Post-processing

Specify a fuzzy partition on the change rate domain
of every pattern evaluation measure.

Encode the user-concept as a fuzzy antecedent.

Order the patterns w.r.t. concept membership degrees.

lift A lift lift
3.0 + 3.0 3.0
25 + } ﬁ\ 2.5 25
(b)
20 + 2.0 (b) 2.0
/'
m, |
e e? i
15 4 ‘E ﬂ' 15 - 4 ? 15 i
L ‘B “’ Y 4
niTBn YA d{‘: Wq
0 ey RN 3 y cﬁ = ! %
1.0 ——Y\' ‘J‘ ﬁ 1.0~5‘i_;” ‘ m 1.0 ~ai=z v&-\\
Ry \ e A - l‘\" (a)
et e . [T
AT 2 S
05 L7 05— @) 05+ ‘
o.gzs o.%s r?call 0.}25 o.%s ricall o.}zs o.%s r?call

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

111

Summary Industrial Applications

Requirements

Easy-to-understand patterns
Exploratory visual tools
Natural and intuitive interaction

Exploitation of temporal information

Desired Properties of Rules

Almost free of parameters (support and confidence have a clear notion and can
even be increased after the induction)

No black box approach
Intuitive type of patterns (decision rules, business rules)
Natural way of treating missing values.

Light data preprocessing overhead

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 112

Probabilistic Causal Networks
BayesNetworks)

The Big Objective(s)

In a wide variety of application fields two main problems need to be addressed over
and over:

How can (expert) knowledge of complex domains be efficiently rep-
resented?

How can inferences be carried out within these representations?

How can such representations be (automatically) extracted from
collected data?

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 114

Example 1: Planning in car manufacturing

Available information

“Engine type e; can only be combined with transmission t9 or t5.”
“Transmission t5 requires crankshaft co.”

“Convertibles have the same set of radio options as SUVs.”

Possible questions/inferences:

“Can a station wagon with engine e4 be equipped with tire set yg?”

“Supplier Sg failed to deliver on time. What production line
has to be modified and how?”

“Are there any peculiarities within the set of cars that suffered
an aircondition failure?”

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

11!

Example 2: Medical reasoning

Available information:

“Malaria is much less likely than flu.”
“Flu causes cough and fever.”
“Nausea can indicate malaria as well as flu.”

“Nausea never indicated pneunomia before.”

Possible questions/inferences

“The patient has fever. How likely is he to have malaria?”

“How much more likely does flu become if we can exclude malaria?”

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 116

Common Problems

Both scenarios share some severe problems:

Large Data Space
It is intractable to store all value combinations, i.e. all car part combinations or

inter-disease dependencies.
(Example: VW Bora has 102" theoretical value combinations™)
Sparse Data Space

Even if we could handle such a space, it would be extremely sparse, i.e. it would
be impossible to find good estimates for all the combinations.

(Example: with 100 diseases and 200 symptoms, there would be about 1002 dif-
ferent scenarios for which we had to estimate the probability.*)

* The number of particles in the observable universe is estimated to be between 10”® and 10%°.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

117

Idea to Solve the Problems

Given: A large (high-dimensional) distribution d representing the
domain knowledge.

Desired: A set of smaller (lower-dimensional) distributions {d1,...,ds}
(maybe overlapping) from which the original d could be
reconstructed with no (or as few as possible) errors.

With such a decomposition we can draw any conclusions from {dy,...,ds} that
could be inferred from & — without, however, actually reconstructing it.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 118

Example: Car Manufacturing

Let us consider a car configuration is described by three attributes:
e Engine E, dom(F) = {ej, e9,e3}
e Breaks B, dom(B) = {by, bo, b3}
e Tires T', dom(T') = {t;,t9,t3,t4}

Therefore the set of all (theoretically) possible car configurations is:
() = dom(F) x dom(B) x dom(T)

Since not all combinations are technically possible (or wanted by marketing) a set
of rules is used to cancel out invalid combinations.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 119

Example: Car Manufacturing

Possible car configurations

Every cube designates a valid
value combination.

10 car configurations in our model.

E.
t1 to tlul Different colors are intended to
| ©3 distinguish the cubes only.
Va4 €2)
€1
bb; g
by -

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 120

Example

2-D projections

[s it possible to reconstruct 0 from
the 0;7

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 121

Example: Reconstruction of 0 with ogp and op7r

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 122

Example: Reconstruction of 0 with ogp and op7r

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 123

Example: Reconstruction of 0 with ogp and op7r

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 124

Example — Qualitative Aspects

Lecture theatre in winter: Waiting for Mr. K and Mr. B.
Not clear whether there is ice on the roads.
3 variables:

e E road condition: dom(E) = {ice, —ice}

e K Khad an accident: dom(K) = {yes, no}

e B B had an accident: dom(B) = {yes, no}

[gnorance about these states is modelled via the observer’s belief.

J E influences K and B
(the more ice the more accidents)

T Knowledge about accident increases belief in ice

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

125

Example

A priori knowledge Evidence Inferences
E unknown B has accident =- E = ice more likely
= K has accident more likely
E = —ice B has accident =- no change in belief about E
= no change in belief about accident of K
E unknown K and B dependent
E known K and B independent

(E)
K B

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 126

Dependence vs. Reasoning

Rule: A entails B with certainty x: A5 B

Deduction (—):
A and A 5 B, therefore B more likely as effect (causality)

Abduction (+):
B and A 5 B, therefore A more likely as cause (no causality)

For this reason, the notion “dependency model” is to be preferred to “causal network”.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 127

Objective

[s it possible to exploit local constraints (wherever they may come from — both struc-
tural and expert knowledge-based) in a way that allows for a decomposition of the large
(intractable) distribution P(X7q,..., Xy) into several sub-structures {Cj,...,Cn}
such that:

The collective size of those sub-structures is much smaller than that of the original
distribution P.

The original distribution P is recomposable (with no or at least as few as possible
errors) from these sub-structures in the following way:

P(Xl, ce ,Xn> = ﬁ \IJZ<Cz>
1=1

where ¢; is an instantiation of C; and U;(c;) € R a factor potential.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 128

Bayes Networks

Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes rep-
resent propositions or variables and the directed edges model a direct causal dependence
between the connected nodes. The strength of dependence is defined by conditional
probabilities.

@ In general (according chain rule):
P(X1,...,Xg) = P(Xg| X5,...,X7)
@ @ P(X5| Xy,...,Xq)
P(Xy | X3, X9, X1):
@ @ P(X3 | X2, X1)
P(X; | X1)-
@ P(X1)

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 129

Bayes Networks

Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes rep-
resent propositions or variables and the directed edges model a direct causal dependence
between the connected nodes. The strength of dependence is defined by conditional
probabilities.

@ According graph (independence structure):
P(X1,...,Xg) = P(Xg| X5)-
&) & P(X5 | X3 X3)
P(Xy | Xo)
& & P(X3 | X))
P(Xy | X1):
(Xs) P(X)

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 130

Formal Framework

Nomenclature for the next slides:

o X{,....Xp Variables
(properties, attributes, random variables, propositions)

o (,....0, respective finite domains
(also designated with dom(X;))

o O= X Universe of Discourse (tuples that characterize objects
i=1 described by X7q,..., Xp)

o Qi:{x(l),...,az(ni)} n=1...,n, n; €N

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 131

Belief Network

A Belief Network (V,E,P) consists of a set V = {X,..., X} of random
variables and a set E of directed edges between the variables.

Each variable has a finite set of mutual exclusive and collectively exhaustive states.
The variables in combination with the edges form a directed, acyclic graph.

Each variable with parent nodes By, ..., By, is assigned a
potential table P(A | By, ..., Bn).

Note, that the connections between the nodes not necessarily express a causal
relationship.

For every belief network, the following equation holds:

PV) =]1 Plv]cw))
veV:P(c(v))>0

with ¢(v) being the parent nodes of v.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 132

Example

New burglar alarm has been installed and is fairly reliable, yet sometimes also
reacts on earthquakes

Neighbours John and Mary agree to call each other, when they hear the alarm.

John sometimes mistakes the ringing of the phone for an alarm and Mary some-
times does not hear the alarm, because she listens to loud music.

Burglary Earthquake

P(E)
002

SN o
o
L

A PM)
T 70
F 01

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

10

3

Example

Choice of universe of discourse

Variable Domain
A metastatic cancer {ay, a0}
B increased serum calcium {by, b9}
C' brain tumor {c1,00}
D coma {dy,ds}
E headache {e1,eo}

Analysis of dependencies

Rudolf Kruse, Christian Braune, Fabian Witt

-1 — present,-o — absent
(

(0 ={ay,az} x -+ X {e1, 2}
0| = 32

Intelligent Data Analysis

19

Example

Choice of probability parameters

P(a,b,c,d,e) abbr. P(A=a,B=0b,C=¢,D=d,E =c¢)
= Ple|c)P(d|b,c)P(c|a)P(b|a)P(a)

Shorthand notation

11 values to store instead of 31

Consult experts, textbooks, case studies, surveys, etc.

Calculation of conditional probabilities

Calculation of marginal probabilities

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

135

Crux of the Matter

Knowledge acquisition (Where do the numbers come from?)
— learning strategies

Computational complexities
— exploit independencies

Problem:

When does the independency of X and Y given Z hold in (V, E, P)?

How can we determine P(X,Y | Z) = P(X | Z)P(Y | Z) solely using the graph
structure?

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 136

Dependencies

Converging Connection

@ @ Meal quality

A quality of ingredients
@ B cook’s skill
C' meal quality

If C'is not instantiated (i. e., no value specified /observed), A and B are marginally
independent.

After instantiation (observation) of C' the variables A and B become conditionally
dependent given C'.

Evidence can only be transferred over a converging connection if the variable in
between (or one of its successors) is initialized.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 137

Dependencies

Converging Connection (cont.)

@ @ Meal quality

A

O Q@

quality of ingredients
cook’s skill
meal quality

restaurant success

If nothing is known about the restaurant success or meal quality or both, the
cook’s skills and quality of the ingredients are unrelated, thas is, independent.

However, it we observe that the restaurant has no success, we can infer that the

meal quality might be bad.

If we further learn that the ingredients quality is high, we will conclude that the
cook’s skills must be low, thus rendering both variables dependent.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

138

Dependencies

Diverging Connection

@ @ Diagnosis

A body temperature

@ B cough

C disease

If C'is unknown, knowledge about A ist relevant for B and vice versa, i.e. A and
B are marginally dependent.

However, if C'is observed, A and B become conditionally independent given C'.

A influences B via C. If C' is known it in a way blocks the information from
flowing from A to B, thus rendering A and B (conditionally) independent.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 139

Dependencies

Serial Connection

Accidents
(A) (B)

A rain
@ B accident risk

C road conditions

Analog scenario to case 2

A influences C' and C influences B. Thus, A influences B.
If C' is known, it blocks the path between A and B.

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis

140

Summary

Summary

o Knowledge about conditional dependencies can be modelled as graphs.

o Problems arise, of the resulting graph is not acyclic (evidence can be propa-
gated in several ways).

o Evidence propagation (not covered here) still easily possible with hyper-tree
structure. (More on that in the lecture on Bayesian Networks next winter

semester)

Rudolf Kruse, Christian Braune, Fabian Witt Intelligent Data Analysis 141

