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General Idea of Regression

◦ Method of least squares

Linear Regression

◦ An illustrative example

Polynomial Regression

◦ Generalization to polynomial functional relationships

Multivariate Regression

◦ Generalization to more than one function argument

Logistic Regression

◦ Generalization to non-polynomial functional relationships

◦ An illustrative example

Summary



Regression

Christian Braune, Pascal Held, Alexander Dockhorn Intelligent Data Analysis 3

Also known as: Method of Least Squares (Carl Friedrich Gauß)

Given: • A data set of data tuples
(one or more input values and one output value).

• A hypothesis about the functional relationship
between output and input values.

Desired: • A parameterization of the conjectured function
that minimizes the sum of squared errors (“best fit”).

Depending on

the hypothesis about the functional relationship and

the number of arguments to the conjectured function

different types of regression are distinguished.



Reminder: Function Optimization
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Task: Find values ~x = (x1, . . . , xm) such that f (~x) = f (x1, . . . , xm) is optimal.

Often feasible approach:

A necessary condition for a (local) optimum (maximum or minimum) is
that the partial derivatives w.r.t. the parameters vanish (Pierre Fermat).

Therefore: (Try to) solve the equation system that results from setting
all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize f (x, y) = x2 + y2 + xy − 4x− 5y.

Solution procedure:

Take the partial derivatives of the objective function and set them to zero:

∂f

∂x
= 2x + y − 4 = 0,

∂f

∂y
= 2y + x− 5 = 0.

Solve the resulting (here: linear) equation system: x = 1, y = 2.
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Given: data set ((x1, y1), . . . , (xn, yn)) of n data tuples

Conjecture: the functional relationship is linear, i.e., y = g(x) = a + bx.

Approach: Minimize the sum of squared errors, i.e.

F (a, b) =
n
∑

i=1

(g(xi)− yi)
2 =

n
∑

i=1

(a + bxi − yi)
2.

Necessary conditions for a minimum:

∂F

∂a
=

n
∑

i=1

2(a + bxi − yi) = 0 and

∂F

∂b
=

n
∑

i=1

2(a + bxi − yi)xi = 0
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Result of necessary conditions: System of so-called normal equations, i.e.

na +





n
∑

i=1

xi



 b =
n
∑

i=1

yi,





n
∑

i=1

xi



 a +





n
∑

i=1

x2i



 b =
n
∑

i=1

xiyi.

Two linear equations for two unknowns a and b.

System can be solved with standard methods from linear algebra.

Solution is unique unless all x-values are identical.

The resulting line is called a regression line.



Linear Regression: Example
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y 1 3 2 3 4 3 5 6
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A regression line can be interpreted as a maximum likelihood estimator:

Assumption: The data generation process can be described well by the model

y = a + bx + ξ,

where ξ is normally distributed with mean 0 and (unknown) variance σ2

(σ2 independent of x, i.e. same dispersion of y for all x).

As a consequence we have

f (y | x) = 1√
2πσ2

· exp
(

−(y − (a + bx))2

2σ2

)

.

With this expression we can set up the likelihood function

L((x1, y1), . . . (xn, yn); a, b, σ
2)

=
n
∏

i=1

f (xi)f (yi | xi) =
n
∏

i=1

f (xi) ·
1√
2πσ2

· exp
(

−(yi − (a + bxi))
2

2σ2

)

.
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To simplify taking the derivatives, we compute the natural logarithm:

lnL((x1, y1), . . . (xn, yn); a, b, σ
2)

= ln
n
∏

i=1

f (xi) ·
1√
2πσ2

· exp
(

−(yi − (a + bxi))
2

2σ2

)

=
n
∑

i=1

ln f (xi) +
n
∑

i=1

ln
1√
2πσ2

− 1

2σ2

n
∑

i=1

(yi − (a + bxi))
2

From this expression it becomes clear that (provided f (x) is independent of a, b, and
σ2) maximizing the likelihood function is equivalent to minimizing

F (a, b) =
n
∑

i=1

(yi − (a + bxi))
2.

Interpreting the method of least squares as a maximum likelihood estimator works also
for the generalizations to polynomials and multilinear functions discussed next.
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Generalization to polynomials

y = p(x) = a0 + a1x + . . . + amxm

Approach: Minimize the sum of squared errors, i.e.

F (a0, a1, . . . , am) =
n
∑

i=1

(p(xi)− yi)
2 =

n
∑

i=1

(a0 + a1xi + . . . + amxmi − yi)
2

Necessary conditions for a minimum: All partial derivatives vanish, i.e.

∂F

∂a0
= 0,

∂F

∂a1
= 0, . . . ,

∂F

∂am
= 0.



Polynomial Regression
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System of normal equations for polynomials

na0 +





n
∑

i=1

xi



 a1 + . . . +





n
∑

i=1

xmi



 am =
n
∑

i=1

yi





n
∑

i=1

xi



 a0 +





n
∑

i=1

x2i



 a1 + . . . +





n
∑

i=1

xm+1
i



 am =
n
∑

i=1

xiyi

... ...




n
∑

i=1

xmi



 a0 +





n
∑

i=1

xm+1
i



 a1 + . . . +





n
∑

i=1

x2mi



 am =
n
∑

i=1

xmi yi,

m + 1 linear equations for m + 1 unknowns a0, . . . , am.

System can be solved with standard methods from linear algebra.

Solution is unique unless the points lie exactly on a polynomial of lower degree.
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Generalization to more than one argument

z = f (x, y) = a + bx + cy

Approach: Minimize the sum of squared errors, i.e.

F (a, b, c) =
n
∑

i=1

(f (xi, yi)− zi)
2 =

n
∑

i=1

(a + bxi + cyi − zi)
2

Necessary conditions for a minimum: All partial derivatives vanish, i.e.

∂F

∂a
=

n
∑

i=1

2(a + bxi + cyi − zi) = 0,

∂F

∂b
=

n
∑

i=1

2(a + bxi + cyi − zi)xi = 0,

∂F

∂c
=

n
∑

i=1

2(a + bxi + cyi − zi)yi = 0.



Multilinear Regression
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System of normal equations for several arguments

na +





n
∑

i=1

xi



 b +





n
∑

i=1

yi



 c =
n
∑

i=1

zi





n
∑

i=1

xi



 a +





n
∑

i=1

x2i



 b +





n
∑

i=1

xiyi



 c =
n
∑

i=1

zixi





n
∑

i=1

yi



 a +





n
∑

i=1

xiyi



 b +





n
∑

i=1

y2i



 c =
n
∑

i=1

ziyi

3 linear equations for 3 unknowns a, b, and c.

System can be solved with standard methods from linear algebra.

Solution is unique unless all data points lie on a straight line.
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General multilinear case:

~y = f (~x1, . . . , ~xm) = a0 +
m
∑

k=1

ak~xk

Approach: Minimize the sum of squared errors, i.e.

F (~a) = (X~a− ~y)⊤(X~a− ~y),

where

X =







1 x11 . . . x1m
... ... . . . ...
1 xn1 . . . xnm





 , ~y =







y1
...
yn





 , and ~a =













a0
a1
...
am













Necessary condition for a minimum:

∇~aF (~a) = ∇~a(X~a− ~y)⊤(X~a− ~y) = ~0



Multilinear Regression
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∇~a F (~a) may easily be computed by remembering that the differential operator

∇~a =

(

∂

∂a0
, . . . ,

∂

∂am

)

behaves formally like a vector that is “multiplied” to the sum of squared errors.

Alternatively, one may write out the differentiation componentwise.



Reminder: Vector Derivatives
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What is the derivative of ~x⊤~x w. r. t. ~x ?

∇~x~x
⊤~x =

(

∂~x⊤~x
∂x1

, · · · , ∂~x
⊤~x

∂xm

)

We get: k = 1, . . . ,m

∂~x⊤~x
∂xk

=
∂

∂xk

m
∑

i=1

xixi

=
∂

∂xk

(

x21 + · · · + x2k + · · · + x2m

)

=
∂

∂xk
x21 + · · · + ∂

∂xk
x2k + · · · + ∂

∂xk
x2m

= 2xk

Therefore we get:

∇~x~x
⊤~x = (2x1, . . . , 2xk, . . . , 2xm) = 2~x



Multilinear Regression
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With the former method we obtain for the derivative:

∇~a (X~a− ~y)⊤(X~a− ~y)

= (∇~a (X~a− ~y))⊤ (X~a− ~y) + ((X~a− ~y)⊤ (∇~a (X~a− ~y)))⊤

= (∇~a (X~a− ~y))⊤ (X~a− ~y) + (∇~a (X~a− ~y))⊤ (X~a− ~y)

= 2X⊤(X~a− ~y)

= 2X⊤X~a− 2X⊤~y = ~0



Multilinear Regression
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Necessary condition for a minimum therefore:

∇~aF (~a) = ∇~a(X~a− ~y)⊤(X~a− ~y)

= 2X⊤X~a− 2X⊤~y !
= ~0

As a consequence we get the system of normal equations:

X⊤X~a = X⊤~y

This system has a unique solution if X⊤X is not singular. Then we have

~a = (X⊤X)−1X⊤~y.

(X⊤X)−1X⊤ is called the (Moore–Penrose) pseudoinverse of the matrix X.

With the matrix-vector representation of the regression problem an extension to mul-
tipolynomial regression is straighforward:
Simply add the desired products of powers to the matrix X.



Logistic Regression
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Generalization to non-polynomial functions

Idea: Find transformation to linear/polynomial case.

Simple example: The function y = axb

can be transformed into ln y = ln a + b · ln x.

Special case: logistic function

y =
Y

1 + ea+bx
⇔ 1

y
=

1 + ea+bx

Y
⇔ Y − y

y
= ea+bx.

Result: Apply so-called Logit Transformation

ln

(

Y − y

y

)

= a + bx.



Logistic Regression: Example
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x 1 2 3 4 5

y 0.4 1.0 3.0 5.0 5.6

Transform the data with

z = ln

(

Y − y

y

)

, Y = 6.

The transformed data points are

x 1 2 3 4 5

z 2.64 1.61 0.00 −1.61 −2.64

The resulting regression line is

z ≈ −1.3775x + 4.133.



Logistic Regression: Example
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Attention: The sum of squared errors is minimized only in the space the trans-
formation maps to, not in the original space.

Nevertheless this approach usually leads to very good results.
The result may be improved by a gradient descent in the original space.



Logistic Regression: Two-dimensional Example
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Example logistic function for two arguments x1 and x2:

y =
1

1 + exp(4− x1 − x2)
=

1

1 + exp
(

4− (1, 1)(x1, x2)⊤
)

4

3

2

1

0 0
1

2
3

4

4

3

2

1

0
0 1 2 3 4

0.1 0.2 0.3 0.4 0.5

0.6

0.7

0.8

0.9



Logistic Regression: Two Class Problems
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Let C be a class attribute, dom(C)={c1, c2}, and ~X an m-dim. random vector.

Let P (C = c1 | ~X = ~x) = p(~x) and P (C = c2 | ~X = ~x) = 1− p(~x).

Given: A set of data points X = {~x1, . . . , ~xn} (realizations of ~X),
each of which belongs to one of the two classes c1 and c2.

Desired: A simple description of the function p(~x).

Approach: Describe p by a logistic function:

p(~x) =
1

1 + ea0+~a~x
=

1

1 + exp
(

a0 +
∑m

i=1 aixi

)

Apply logit transformation to p(x):

ln

(

1− p(~x)

p(~x)

)

= a0 + ~a~x = a0 +
m
∑

i=1

aixi

The values p(~xi) may be obtained by kernel estimation.



Kernel Estimation
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Idea: Define an “influence function” (kernel), which describes how strongly a
data point influences the probability estimate for neighboring points.

Common choice for the kernel function: Gaussian function

K(~x, ~y) =
1

(2πσ2)
m
2

exp

(

−(~x− ~y)⊤(~x− ~y)

2σ2

)

Kernel estimate of probability density given a data set X = {~x1, . . . , ~xn}:

f̂ (~x) =
1

n

n
∑

i=1

K(~x, ~xi).

Kernel estimation applied to a two class problem:

p̂(~x) =

∑n
i=1 c(~xi)K(~x, ~xi)
∑n

i=1K(~x, ~xi)
.

(It is c(~xi) = 1 if xi belongs to class c1 and c(~xi) = 0 otherwise.)



Regression Trees
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Target variable is not a class,
but a numeric quantity.

Simple regression trees:
predict constant values in leaves.
(blue lines)

More complex regression trees:
predict linear functions in leaves.
(red line)

x

y

30 60

x: input variable, y: target variable



Regression Trees: Attribute Selection
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distributions of
the target value

split w.r.t.
a test attribute

a1 a2

The variance / standard deviation is compared to
the variance / standard deviation in the branches.

The attribute that yields the highest reduction is selected.



Regression Trees: An Example
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A regression tree for the Iris data (petal width)
(induced with reduction of sum of squared errors)



Summary Regression
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Minimize the Sum of Squared Errors

◦ Write the sum of squared errors
as a function of the parameters to be determined.

Exploit Necessary Conditions for a Minimum

◦ Partial derivatives w.r.t. the parameters to determine must vanish.

Solve the System of Normal Equations

◦ The best fit parameters are the solution of the system of normal equations.

Non-polynomial Regression Functions

◦ Find a transformation to the multipolynomial case.

◦ Logistic regression can be used to solve two class classification problems.


