C. Braune

Exercise Sheet 10

Exercise 35 Logistic Regression

The following table shows the number of American intercontinental ballistic missiles (ICBMs) in the years from 1960 to 1969:

year, x	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
number, y	18	63	294	424	834	854	904	1054	1054	1054

Find a best fit curve for this data set using logistic regression $(Y=1060)$! Draw the original data and sketch the curve $y=\frac{1060}{1+e^{a+b x}}$!

Additional Exercise Exponential Regression

Radioactive substances decay according to the law $N(t)=N_{0} e^{-\lambda t}$, where t is the time, λ a substance-specific decay parameter, N_{0} the number of atoms of the substance at the beginning and $N(t)$ the number of remaining atoms at time point t. With the help of Geiger-Müller counter the following values n were measured for the number of α particles that were emitted by a small amount of a radioactive substance up to different time points t :

t (in s)	0	30	60	90	120	150	180	210	240
n	0	306	552	655	768	863	901	919	956

Each counted α particle indicates that one atom of the radioactive substance decayed. Determine the half-life of the radioactive substance! What element is this substance?
Procedure: Find a best fit curve $n=n_{0}\left(1-e^{a+b t}\right)$!
(Hint: You have to find a transformation that reduces the problem to the problem of finding a best fit line (regression line); $n_{0}=1000$.) Although the value for a may differ from zero with this approach, $-b$ may be seen as an approximation of the decay parameter λ, from which the half-life can easily be determined. The half-life of a substance is the time after which only half of the originally present atoms remain.

Exercise 36
Please use the Apriori algorithm for solving this exercise!
a) Find the frequent/maximal/closed item sets for the following transaction vector and $s_{\text {min }}=3$:

1:	a	d	f						
2:	b	d							
3:	b	c							
$4:$	b	d	e						
$5:$	c	d	f						
$6:$	a	c	d	e					
$7:$	b	c	d						
$8:$	a	b	d						
$9:$	b	c	e	g					
$10:$	a	b	d						

b) Find an example of a transaction database for which the number of maximal item sets goes down if the minimum support is reduced; or explain in some other way why it is possible that the number of maximal item sets can also become smaller if the minimum support is reduced.

