Exercise Sheet 7

Exercise 26 *c*-Means Clustering

Consider the following two-dimensional data set:

x	1	6	8	3	2	2	6	6	7	7	8	8
y	5	2	1	5	4	6	1	8	3	6	3	7

Process this data set with c-means clustering with c = 3 (i.e., try to find 3 clusters)! Use the first three data tuples als initial positions for the cluster centers and observe the migration of the centers.

Exercise 27 *c*-Means Clustering

In exercises 17 and 18 on sheet 7 we considered a simple two-dimensional data set. Reconsider this data set, but assume that that no class information is available for the data points. That is, consider the following data set:

x																				
y	1	2	2	3	3	4	4	6	5	7	3	4	5	6	6	7	8	8	8	9

- a) Which problem of c-means clustering becomes obvious when this data set is processed with c = 2 (i.e., if one tries to find two clusters)? Hint: What is the desired result? What is produced by c-means clustering? (You need not compute the exact result of the algorithm, a qualitative description suffices. Compare the result to a naive Bayes classifier.)
- b) How could one try to cope with this problem?Hint: Recall what distinguishes a full and a naive Bayes classifier.

Additional Exercise Lagrange Theory

Determine the minimum of the function $f(x, y) = xy^2 + x + 2y$ under the constraints xy = 1 and x > 0 with the help of the method of Lagrange multipliers!

Exercise 28 Fuzzy Clustering

Consider the one-dimensional data set

We want to process this data set with fuzzy c-means clustering with c = 2 (two clusters) and a fuzzifier of w = 2. Assume that the cluster centers are initialized to 1 and 5. Execute one step of alternating optimization as it is used for fuzzy clustering, i.e.:

- a) Compute the membership degrees of the data points for the initial cluster centers!
- b) Compute new cluster centers from the membership degrees computed in this way!

Exercise 29 Expectation Maximization

Consider again the one-dimensional data set used in exercise 28, which we want to process in this exercise with the expectation maximization algorithm to estimate the parameters of a mixture of two normal/Gaussian distributions. Let the prior probabilities of the two clusters be fixed to $\theta_i = \frac{1}{2}$ and the variances to $\sigma_i^2 = 1$, i = 1, 2. (That is, only the expected values of the normal distributions — the cluster centers — are to be adapted.) Use the same values for the initial cluster centers as in exercise 28, that is, 1 and 5. Computeone expectation step and one maximization step, i.e.:

- a) Compute the posterior probabilities of the data points for the initial cluster centers!
- b) Estimate new cluster centers from the data point weights computed in this way!