Time Series Analysis
• Motivation

• Decomposition Models
 ◦ Additive models, multiplicative models

• Global Approaches
 ◦ Regression
 ◦ With and without seasonal component

• Local Approaches
 ◦ Moving Averages Smoothing
 ◦ With and without seasonal component

• Summary
Example: Temperatures data set (fictive)

- The plot shows the average temperature per day for 50 years.
- Is there any trend visible?
- How to extract seasonal effects?
 Decomposition Models

• The time series is given as a sequence of values

\[y_1, \ldots, y_t, \ldots, y_n \]

• We assume that every \(y_t \) is a composition of (some of) the following components:
 \[g_t \] trend component
 \[s_t \] seasonal component
 \[c_t \] cyclical variation
 \[\epsilon_t \] irregular component (random factors, noise)

• Assume a functional dependency:

\[y_t = f(g_t, s_t, c_t, \epsilon_t) \]
Components of Time Series

Trend Component
- Reflects long-term developments.
- Often assumed to be a monotone function of time.
- Represents the actual component we are interested in.

Cyclic Component
- Reflects mid-term developments.
- Models economical cycles such as booms and recessions.
- Variable cycle length.
- We do not consider this component here.

Remark: Often, both components are combined.
Components of Time Series

Seasonal Component
- Reflects short-term developments.
- Constant cycle length (i.e., 12 months)
- Represents changes that (re)occur rather regularly.

Irregular Component
- Represents everything else that cannot be related to the other components.
- Combines irregular changes, random noise and local fluctuations.
- We assume that the values are small and have an average of zero.
Decompositions

Additive Decomposition

\[y_t = g_t + s_t + \epsilon_t \]

- Pure trend model: \(y_t = g_t + \epsilon_t \) (stock market, no season)
- Possible extension: \(y_t = g_t + s_t + x_t \beta + \epsilon_t \) (calendar effects)

Multiplicative Decomposition

\[y_t = g_t \cdot s_t \cdot \epsilon_t \]

- Seasonal changes may increase with trend.
- Transform into additive model:

\[\tilde{y}_t = \log y_t + \log s_t + \log \epsilon_t \]
Goal: Estimate the components from a given time series, i.e.

\[\hat{y}_t + \hat{s}_t + \epsilon_t \approx y_t \]

Application: With the estimates, we can compute the

- trend-adjusted series: \(y_t - \hat{g}_t \)
- season-adjusted series: \(y_t - \hat{s}_t \)
- We only consider additive models here.

⇒ Additional assumptions necessary in order to find ways to infer the desired components.
• **Global approach:** There is a fix functional dependence throughout the entire time range. (⇒ regression models)

• **Local approach:** We do not postulate a global model and rather use local estimations to describe the respective components.

• **Seasonal effects:** We have to decide beforehand whether to assume a seasonal component or not.

<table>
<thead>
<tr>
<th></th>
<th>Global</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>without Season</td>
<td>Regression</td>
<td>Smoothing Averages</td>
</tr>
<tr>
<td>with Season</td>
<td>Dummy Variables</td>
<td>Smoothing Averages</td>
</tr>
</tbody>
</table>
Global Approach (without Season)

Model: \[y_t = g_t + \epsilon_t \]

Assumptions:

- No seasonal component: \(s_t = 0 \)
- Depending on \(g_t \), use regression analysis to estimate the parameter(s) to define the trend component.
 - linear trend: \(g_t = \beta_0 + \beta_1 t \)
 - quadratic trend: \(g_t = \beta_0 + \beta_1 t + \beta_2 t^2 \)
 - polynomial trend: \(g_t = \beta_0 + \beta_1 t + \cdots + \beta_q t^q \)
 - exponential trend: \(g_t = \beta_0 \exp(\beta_1 t) \)
 - logistic trend: \(g_t = \frac{\beta_0}{\beta_1 + \exp(-\beta_2 t)} \)
Global Approach (with Season)

Model: \(y_t = s_t + \epsilon_t \) (no trend)

Assumptions:

• No trend component: \(g_t = 0 \)

• Seasonal component does not change from period to period.

• Introduce *dummy variables* for every time span (here: months) that serve as indicator functions to determine to which month a specific \(t \) belongs:

\[
s_m(t) = \begin{cases}
1, & \text{if } t \text{ belongs to month } m \\
0, & \text{otherwise}
\end{cases}
\]

• The seasonal component is then set up as

\[
s_t = \sum_{m=1}^{12} \beta_m s_m(t).
\]

• Determine the *monthly effects* \(\beta_m \) with normal least squares method.
Global Approach (with Season)

Model: \[y_t = g_t + s_t + \epsilon_t \]

Assumptions:

- Estimate \(\hat{g}_t \) while temporarily ignoring \(s_t \).
- Estimate \(s_t \) from the trend-adjusted \(\tilde{y}_t = y_t - \hat{g}_t \).

Model: \[y_t = \alpha_1 t + \cdots + \alpha_q t^q + \cdots + \beta_1 s_1(t) + \cdots + \beta_{12} s_{12}(t) + \epsilon_t \]

Assumptions:

- Seasonal component does not change from period to period.
- Model the seasonal effects with trigonometric functions:

\[s_t = \beta_0 + \sum_{m=1}^{6} \beta_m \cos\left(2\pi \frac{m}{12} t\right) + \sum_{m=1}^{5} \gamma_m \sin\left(2\pi \frac{m}{12} t\right) \]

- Determine \(\alpha_1, \ldots, \alpha_q, \beta_0, \ldots, \beta_6 \) and \(\gamma_1, \ldots, \gamma_5 \) with normal least squares method.
Local Approach (without Season)

General Idea: Smooth the time series.

- Estimate the trend component g_t at time t as the average of the values around time t.

For a given time series y_1, \ldots, y_n, the **Smoothing Average** y_t^* of order r is defined as follows:

$$
y_t^* = \begin{cases}
\frac{1}{2k + 1} \cdot \sum_{j=-k}^{k} y_{t+j}, & \text{if } r = 2k + 1 \\
\frac{1}{2k} \cdot \left(\frac{1}{2} y_{t-k} + \sum_{j=-k+1}^{k-1} y_{t+j} + \frac{1}{2} y_{t+k} \right), & \text{if } r = 2k
\end{cases}
$$
Local Approach (without Season)

Model: \[y_t = g_t + \epsilon_t \]

Assumptions:

- In every time frame of width \(2k + 1 \) the time series can be assumed to be linear.
- \(\epsilon_t \) averages to zero.
- Then we use the smoothing average to estimate the trend component:

\[\hat{g}_t = y_t^* \]
Local Approach (with Season)

Model: \[y_t = g_t + s_t + \epsilon_t \]

Assumptions:

- Seasonal component has period length \(p \) (repeats after \(p \) points):
 \[s_t = s_{t+p}, \quad t = 1, \ldots, n - p \]

- Sum of seasonal values is zero:
 \[\sum_{j=1}^{p} s_j = 0 \]

- Trend component is linear in time frames of width \(p \) (if \(p \) is odd)
 or \(p + 1 \) (if \(p \) is even).

- Irregular component averages to zero.
Local Approach (with Season)

Let $k = \frac{p - 1}{2}$ (for odd p) or $k = \frac{p}{2}$ (for even p).

Then:

- Estimate the trend component with smoothing average:

 $$\hat{g}_t = y_t^*, \quad k + 1 \leq t \leq n - k$$

- Estimate the seasonal components s_1, \ldots, s_p as follows:

 $$\hat{s}_i = \tilde{s}_i - \frac{1}{p} \sum_{j=1}^{p} \tilde{s}_j \quad \text{with} \quad \tilde{s}_t \frac{1}{m_i - l_i + 1} \sum_{j=l}^{m_i} (y_{i+jp} - y_{i+jp}^*), \quad 1 \leq i \leq p$$

 where

 $$m_i = \max \{m \in \mathbb{N}_0 \mid i + mp \leq n - k\}$$

 and

 $$l_i = \min \{l \in \mathbb{N}_0 \mid i + lp \geq k + 1\}$$
We can extract an increase and decrease of 1 degree during 50 years even though the amount of noise is more than twice as large than the actual trend.
Example

5 years period, trend ±8 degrees, noise amount ±2 degrees
Example

100 years period, trend ±1 degree, noise amount ±3 degrees
Summary

- **Definition of the problem domain**
 - Consider a time series to be composed of subcomponents.
 - Additive and multiplicative models.

- **Global and local approaches**
 - With and without seasonal components.

- **Robust to noise**
 - Noise can be higher than the trend component itself.