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Time Series

e Motivation

e Decomposition Models

o Additive models, multiplicative models

e Global Approaches

o Regression
o With and without seasonal component

e Local Approaches

o Moving Averages Smoothing
o With and without seasonal component

¢ Summary
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Motivation: Temperatures

Example: Temperatures data set (fictive)
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e The plot shows the average temperature per day for 50 years.
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e [s there any trend visible?

e How to extract seasonal effects?
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Decomposition Models

e The time series is given as a sequence of values

yl?"'?yt7"°7yn

e We assume that every y; is a composition of (some of) the following components:

o g+ trend component
o s; seasonal component
o ¢¢ cyclical variation

o ¢ irregular component (random factors, noise)

e Assume a functional dependency:

vt = f(gt, St, Ct, €t)
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Components of Time Series

Trend Component

e Reflects long-term developments.
e Often assumed to be a monotone function of time.

e Represents the actual component we are interested in.

Cyclic Component

e Reflects mid-term developments.
e Models economical cycles such as booms and recessions.
e Variable cycle length.

e We do not consider this component here.

Remark: Often, both components are combined.
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Components of Time Series

Seasonal Component

e Reflects short-term developments.
e Constant cycle length (i.e., 12 months)

e Represents changes that (re)occur rather regularly.

Irregular Component

e Represents everything else that cannot be related to the other components.
e Combines irregular changes, random noise and local fluctuations.

e We assume that the values are small and have an average of zero.
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Decompositions

Additive Decomposition

e Pure trend model:

e Possible extension:

Yt =gt + St T €
Yt = gt + € (stock market, no season)

Yt = gt + s¢ + 11 + € (calendar effects)

Multiplicative Decomposition

Yt = gt - St - €

e Scasonal changes may increase with trend.

e Transform into additive model:
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Yt = log y¢ + log st + log €
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Time Series Analysis

Goal: Estimate the components from a given time series, i. e.
Jgtt+stte = oy

Application: With the estimates, we can compute the

e trend-adjusted series: Yt — Gt
e scason-adjusted series: Yt — St

e We only consider additive models here.

= Additional assumptions necessary in order to find ways
to infer the desired components.
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Overview

e Global approach: There is a fix functional dependence
throughout the entire time range. (= regression models)

e Local approach: We do not postulate a global model and
rather use local estimations to describe the respective components.

e Seasonal effects: We have to decide beforehand whether
to assume a seasonal component or not.

Global Local

without Season Regression Smoothing Averages

with Season | Dummy Variables | Smoothing Averages
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Global Approach (without Season)

Model: Yt = Gt + €4

Assumptions:

e No seasonal component: sy = 0

e Depending on ¢g¢, use regression analysis to estimate the
parameter(s) to define the trend component.

o linear trend:
o quadratic trend:
o polynomial trend:

o exponential trend:

o logistic trend:
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gt = By + Pt
gt = By + Bit + Bot?
gt = Po+ Brt + - - - + Bytd

gt = Boexp(Fit)

_ Bo
It = Brtexp(—pat)
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Global Approach (with Season)

Model: Y = St + € (no trend)

Assumptions:

No trend component: g = 0
Seasonal component does not change from period to period.

Introduce dummy variables for every time span (here: months) that
serve as indicator functions to determine to which
month a specific ¢ belongs:

(0 1, if ¢ belongs to month m
S s
" 0, otherwise

12
The seasonal component is then set up as s¢ = Z Bmsm/(t).
m=1

Determine the monthly effects By, with normal least squares method.
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Global Approach (with Season)

Model: Yt = g+ + St + €¢

Assumptions:

e [istimate g; while temporarily ignoring s;.

e Listimate s; from the trend-adjusted v = y¢ — g+

Model: yr =it + - tagtf+-+ Brsi(t) + - + Brasialt) + €
Assumptions:

e Seasonal component does not change from period to period.

e Model the seasonal effects with trigonometric functions:

§ 5
st = Py + mz_:l Bm cos (2#%75) + Z Vim, SiN (ZW%IS)

m=1

e Determine aq, ..., aq, 5, ..., 8and 7y, ... ,v5 with normal least squares method.
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Local Approach (without Season)

General Idea: Smooth the time series.

e [istimate the trend component g+ at time ¢ as the average of the values around
time .

For a given time series y1, . .., yn, the Smoothing Average y; of order r
is defined as follows:

"

k
1 .
: Z Yttis ifr=2k+1
k1 =,
yr =4
1 1 k-1 1 |
— - Yk + DL Y+ + Yek),  ifr=2k
%k 2 P 2
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Local Approach (without Season)

Model: Yt = Gt + €4

Assumptions:
e [n every time frame of width 2k + 1 the time series can be assumed to be linear.

® ¢; averages to zero.

e Then we use the smoothing average to estimate the trend component:
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Local Approach (with Season)

Model: Yt = g + St + €

Assumptions:

e Seasonal component has period length p (repeats after p points):
St = St+p, t=1,...,n—p

p
e Sum of seasonal values is zero: Z §j = 0
J=1

e Trend component is linear in time frames of width p (if p is odd)
or p+ 1 (if p is even).

e [rregular component averages to zero.
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Local Approach (with Season)

Let k = % (for odd p) or k =4 (for even p).

Then:
e [istimate the trend component with smoothing average:

gt:yf, Ek+1<t<n-—k

e [istimate the seasonal components s1, ..., sp as follows:
) ) 1 p ) . 1 my .
S; = 8; — 1_?]2:_1 $; with Stm@ 1 jz_:l(yiﬂp Yitjp)s
where
m; =max {m € Ny |t +mp <n —k}
and

L=min{leNy|i+Ip>k+1}
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Example (from motivation)
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e We can extract an increase and decrease of 1 degree during 50 years even though
the amount of noise is more than twice as large than the actual trend.
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Example
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5 years period, trend £8 degrees, noise amount +2 degrees
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100 years period, trend 41 degree, noise amount +3 degrees
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Summary

e Definition of the problem domain

o Consider a time series to be composed of subcomponents.

o Additive and multiplicative models.

e Global and local approaches

o With and without seasonal components.

e Robust to noise

o Noise can be higher than the trend component itself.
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