Regression

Regression

• General Idea of Regression

• Method of least squares

• Linear Regression

• An illustrative example

• Polynomial Regression

• Generalization to polynomial functional relationships

• Multivariate Regression

• Generalization to more than one function argument

• Logistic Regression

- Generalization to non-polynomial functional relationships
- An illustrative example

• Summary

Regression

Also known as: **Method of Least Squares** (Carl Friedrich Gauß)

Given:

- A data set of data tuples (one or more input values and one output value).
- A hypothesis about the functional relationship between output and input values.

Desired: • A parameterization of the conjectured function that minimizes the sum of squared errors ("best fit").

Depending on

- the hypothesis about the functional relationship and
- the number of arguments to the conjectured function

different types of regression are distinguished.

Reminder: Function Optimization

Task: Find values $\vec{x} = (x_1, \dots, x_m)$ such that $f(\vec{x}) = f(x_1, \dots, x_m)$ is optimal.

Often feasible approach:

- A necessary condition for a (local) optimum (maximum or minimum) is that the partial derivatives w.r.t. the parameters vanish (Pierre Fermat).
- Therefore: (Try to) solve the equation system that results from setting all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize $f(x,y) = x^2 + y^2 + xy - 4x - 5y$.

Solution procedure:

1. Take the partial derivatives of the objective function and set them to zero:

$$\frac{\partial f}{\partial x} = 2x + y - 4 = 0, \qquad \frac{\partial f}{\partial y} = 2y + x - 5 = 0.$$

2. Solve the resulting (here: linear) equation system: x = 1, y = 2.

Linear Regression

- Given: data set $((x_1, y_1), \ldots, (x_n, y_n))$ of n data tuples
- Conjecture: the functional relationship is linear, i.e., y = g(x) = a + bx.

Approach: Minimize the sum of squared errors, i.e.

$$F(a,b) = \sum_{i=1}^{n} (g(x_i) - y_i)^2 = \sum_{i=1}^{n} (a + bx_i - y_i)^2.$$

Necessary conditions for a minimum:

$$\frac{\partial F}{\partial a} = \sum_{i=1}^{n} 2(a + bx_i - y_i) = 0 \quad \text{and}$$

$$\frac{\partial F}{\partial b} = \sum_{i=1}^{n} 2(a + bx_i - y_i)x_i = 0$$

Linear Regression

Result of necessary conditions: System of so-called **normal equations**, i.e.

$$na + \left(\sum_{i=1}^{n} x_i\right)b = \sum_{i=1}^{n} y_i,$$
$$\left(\sum_{i=1}^{n} x_i\right)a + \left(\sum_{i=1}^{n} x_i^2\right)b = \sum_{i=1}^{n} x_i y_i.$$

- Two linear equations for two unknowns a and b.
- System can be solved with standard methods from linear algebra.
- Solution is unique unless all x-values are identical.
- The resulting line is called a **regression line**.

Linear Regression: Example

x	1	2	3	4	5	6	7	8
y	1	3	2	3	4	3	15	6

$$y = \frac{3}{4} + \frac{7}{12}x.$$

Least Squares and Maximum Likelihood

A regression line can be interpreted as a **maximum likelihood estimator**:

Assumption: The data generation process can be described well by the model

$$y = a + bx + \xi,$$

where ξ is normally distributed with mean 0 and (unknown) variance σ^2 (σ^2 independent of x, i.e. same dispersion of y for all x).

As a consequence we have

$$f(y \mid x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left(-\frac{(y - (a + bx))^2}{2\sigma^2}\right).$$

With this expression we can set up the **likelihood function**

$$L((x_1, y_1), \dots (x_n, y_n); a, b, \sigma^2)$$

$$= \prod_{i=1}^n f(x_i) f(y_i \mid x_i) = \prod_{i=1}^n f(x_i) \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left(-\frac{(y_i - (a + bx_i))^2}{2\sigma^2}\right).$$

Least Squares and Maximum Likelihood

To simplify taking the derivatives, we compute the natural logarithm:

$$\ln L((x_1, y_1), \dots (x_n, y_n); a, b, \sigma^2)$$

$$= \ln \prod_{i=1}^n f(x_i) \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left(-\frac{(y_i - (a + bx_i))^2}{2\sigma^2}\right)$$

$$= \sum_{i=1}^n \ln f(x_i) + \sum_{i=1}^n \ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - (a + bx_i))^2$$

From this expression it becomes clear that (provided f(x) is independent of a, b, and σ^2) maximizing the likelihood function is equivalent to minimizing

$$F(a,b) = \sum_{i=1}^{n} (y_i - (a + bx_i))^2.$$

Interpreting the method of least squares as a maximum likelihood estimator works also for the generalizations to polynomials and multilinear functions discussed next.

Polynomial Regression

Generalization to polynomials

$$y = p(x) = a_0 + a_1 x + \dots + a_m x^m$$

Approach: Minimize the sum of squared errors, i.e.

$$F(a_0, a_1, \dots, a_m) = \sum_{i=1}^{n} (p(x_i) - y_i)^2 = \sum_{i=1}^{n} (a_0 + a_1 x_i + \dots + a_m x_i^m - y_i)^2$$

Necessary conditions for a minimum: All partial derivatives vanish, i.e.

$$\frac{\partial F}{\partial a_0} = 0, \quad \frac{\partial F}{\partial a_1} = 0, \quad \dots, \quad \frac{\partial F}{\partial a_m} = 0.$$

Polynomial Regression

System of normal equations for polynomials

$$na_{0} + \left(\sum_{i=1}^{n} x_{i}\right) a_{1} + \dots + \left(\sum_{i=1}^{n} x_{i}^{m}\right) a_{m} = \sum_{i=1}^{n} y_{i}$$

$$\left(\sum_{i=1}^{n} x_{i}\right) a_{0} + \left(\sum_{i=1}^{n} x_{i}^{2}\right) a_{1} + \dots + \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) a_{m} = \sum_{i=1}^{n} x_{i} y_{i}$$

$$\vdots$$

$$\left(\sum_{i=1}^{n} x_{i}^{m}\right) a_{0} + \left(\sum_{i=1}^{n} x_{i}^{m+1}\right) a_{1} + \dots + \left(\sum_{i=1}^{n} x_{i}^{2m}\right) a_{m} = \sum_{i=1}^{n} x_{i}^{m} y_{i},$$

- m+1 linear equations for m+1 unknowns a_0,\ldots,a_m .
- System can be solved with standard methods from linear algebra.
- Solution is unique unless the points lie exactly on a polynomial of lower degree.

Generalization to more than one argument

$$z = f(x, y) = a + bx + cy$$

Approach: Minimize the sum of squared errors, i.e.

$$F(a,b,c) = \sum_{i=1}^{n} (f(x_i, y_i) - z_i)^2 = \sum_{i=1}^{n} (a + bx_i + cy_i - z_i)^2$$

Necessary conditions for a minimum: All partial derivatives vanish, i.e.

$$\frac{\partial F}{\partial a} = \sum_{i=1}^{n} 2(a + bx_i + cy_i - z_i) = 0,$$

$$\frac{\partial F}{\partial b} = \sum_{i=1}^{n} 2(a + bx_i + cy_i - z_i)x_i = 0,$$

$$\frac{\partial F}{\partial c} = \sum_{i=1}^{n} 2(a + bx_i + cy_i - z_i)y_i = 0.$$

System of normal equations for several arguments

$$na + \left(\sum_{i=1}^{n} x_{i}\right)b + \left(\sum_{i=1}^{n} y_{i}\right)c = \sum_{i=1}^{n} z_{i}$$

$$\left(\sum_{i=1}^{n} x_{i}\right)a + \left(\sum_{i=1}^{n} x_{i}^{2}\right)b + \left(\sum_{i=1}^{n} x_{i}y_{i}\right)c = \sum_{i=1}^{n} z_{i}x_{i}$$

$$\left(\sum_{i=1}^{n} y_{i}\right)a + \left(\sum_{i=1}^{n} x_{i}y_{i}\right)b + \left(\sum_{i=1}^{n} y_{i}^{2}\right)c = \sum_{i=1}^{n} z_{i}y_{i}$$

- 3 linear equations for 3 unknowns a, b, and c.
- System can be solved with standard methods from linear algebra.
- Solution is unique unless all data points lie on a straight line.

General multilinear case:

$$\vec{y} = f(\vec{x}_1, \dots, \vec{x}_m) = a_0 + \sum_{k=1}^m a_k \vec{x}_k$$

Approach: Minimize the sum of squared errors, i.e.

$$F(\vec{a}) = (\mathbf{X}\vec{a} - \vec{y})^{\top} (\mathbf{X}\vec{a} - \vec{y}),$$

where

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{nm} \end{pmatrix}, \qquad \vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \text{and} \quad \vec{a} = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{pmatrix}$$

Necessary condition for a minimum:

$$\nabla_{\vec{a}} F(\vec{a}) = \nabla_{\vec{a}} (\mathbf{X}\vec{a} - \vec{y})^{\top} (\mathbf{X}\vec{a} - \vec{y}) = \vec{0}$$

• $\nabla_{\vec{a}} F(\vec{a})$ may easily be computed by remembering that the differential operator

$$\nabla_{\vec{a}} = \left(\frac{\partial}{\partial a_0}, \dots, \frac{\partial}{\partial a_m}\right)$$

behaves formally like a vector that is "multiplied" to the sum of squared errors.

• Alternatively, one may write out the differentiation componentwise.

Reminder: Vector Derivatives

• What is the derivative of $\vec{x}^{\top}\vec{x}$ w.r.t. \vec{x} ?

$$\nabla_{\vec{x}} \vec{x}^{\top} \vec{x} = \left(\frac{\partial \vec{x}^{\top} \vec{x}}{\partial x_1}, \cdots, \frac{\partial \vec{x}^{\top} \vec{x}}{\partial x_m} \right)$$

• We get: k = 1, ..., m

$$\frac{\partial \vec{x}^{\top} \vec{x}}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^m x_i x_i$$

$$= \frac{\partial}{\partial x_k} \left(x_1^2 + \dots + x_k^2 + \dots + x_m^2 \right)$$

$$= \frac{\partial}{\partial x_k} x_1^2 + \dots + \frac{\partial}{\partial x_k} x_k^2 + \dots + \frac{\partial}{\partial x_k} x_m^2$$

$$= 2x_k$$

• Therefore we get:

$$\nabla_{\vec{x}}\vec{x}^{\top}\vec{x} = (2x_1, \dots, 2x_k, \dots, 2x_m) = 2\vec{x}$$

With the former method we obtain for the derivative:

$$\nabla_{\vec{a}} (\mathbf{X}\vec{a} - \vec{y})^{\top} (\mathbf{X}\vec{a} - \vec{y})$$

$$= (\nabla_{\vec{a}} (\mathbf{X}\vec{a} - \vec{y}))^{\top} (\mathbf{X}\vec{a} - \vec{y}) + ((\mathbf{X}\vec{a} - \vec{y})^{\top} (\nabla_{\vec{a}} (\mathbf{X}\vec{a} - \vec{y})))^{\top}$$

$$= (\nabla_{\vec{a}} (\mathbf{X}\vec{a} - \vec{y}))^{\top} (\mathbf{X}\vec{a} - \vec{y}) + (\nabla_{\vec{a}} (\mathbf{X}\vec{a} - \vec{y}))^{\top} (\mathbf{X}\vec{a} - \vec{y})$$

$$= 2\mathbf{X}^{\top} (\mathbf{X}\vec{a} - \vec{y})$$

$$= 2\mathbf{X}^{\top} \mathbf{X}\vec{a} - 2\mathbf{X}^{\top} \vec{y} = \vec{0}$$

Necessary condition for a minimum therefore:

$$\nabla_{\vec{a}} F(\vec{a}) = \nabla_{\vec{a}} (\mathbf{X} \vec{a} - \vec{y})^{\top} (\mathbf{X} \vec{a} - \vec{y})$$
$$= 2\mathbf{X}^{\top} \mathbf{X} \vec{a} - 2\mathbf{X}^{\top} \vec{y} \stackrel{!}{=} \vec{0}$$

As a consequence we get the system of **normal equations**:

$$\mathbf{X}^{\top}\mathbf{X}\vec{a} = \mathbf{X}^{\top}\vec{y}$$

This system has a unique solution if $\mathbf{X}^{\top}\mathbf{X}$ is not singular. Then we have

$$\vec{a} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \vec{y}.$$

 $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$ is called the (Moore–Penrose) **pseudoinverse** of the matrix \mathbf{X} .

With the matrix-vector representation of the regression problem an extension to **mul-tipolynomial regression** is straighforward:

Simply add the desired products of powers to the matrix \mathbf{X} .

Logistic Regression

Generalization to non-polynomial functions

Idea: Find transformation to linear/polynomial case.

Simple example: The function $y = ax^b$

can be transformed into $\ln y = \ln a + b \cdot \ln x.$

Special case: logistic function

$$y = \frac{Y}{1 + e^{a + bx}} \qquad \Leftrightarrow \qquad \frac{1}{y} = \frac{1 + e^{a + bx}}{Y} \qquad \Leftrightarrow \qquad \frac{Y - y}{y} = e^{a + bx}.$$

Result: Apply so-called **Logit Transformation**

$$\ln\left(\frac{Y-y}{y}\right) = a + bx.$$

Logistic Regression: Example

x	1	2	3	4	15
y	0.4	1.0	3.0	5.0	5.6

Transform the data with

$$z = \ln\left(\frac{Y - y}{y}\right), \qquad Y = 6.$$

The transformed data points are

x	1	2	3	4	5
z	2.64	1.61	0.00	-1.61	-2.64

The resulting regression line is

$$z \approx -1.3775x + 4.133$$
.

Logistic Regression: Example

- **Attention:** The sum of squared errors is minimized only in the space the transformation maps to, not in the original space.
- Nevertheless this approach usually leads to very good results.

 The result may be improved by a gradient descent in the original space.

Logistic Regression: Two-dimensional Example

Example logistic function for two arguments x_1 and x_2 :

$$y = \frac{1}{1 + \exp(4 - x_1 - x_2)} = \frac{1}{1 + \exp(4 - (1, 1)(x_1, x_2)^{\top})}$$

Logistic Regression: Two Class Problems

- Let C be a class attribute, $dom(C) = \{c_1, c_2\}$, and \vec{X} an m-dim. random vector. Let $P(C = c_1 \mid \vec{X} = \vec{x}) = p(\vec{x})$ and $P(C = c_2 \mid \vec{X} = \vec{x}) = 1 - p(\vec{x})$.
- Given: A set of data points $\mathbf{X} = \{\vec{x}_1, \dots, \vec{x}_n\}$ (realizations of \vec{X}), each of which belongs to one of the two classes c_1 and c_2 .
- **Desired:** A simple description of the function $p(\vec{x})$.
- Approach: Describe p by a logistic function:

$$p(\vec{x}) = \frac{1}{1 + e^{a_0 + \vec{a}\vec{x}}} = \frac{1}{1 + \exp(a_0 + \sum_{i=1}^{m} a_i x_i)}$$

Apply logit transformation to p(x):

$$\ln\left(\frac{1 - p(\vec{x})}{p(\vec{x})}\right) = a_0 + \vec{a}\vec{x} = a_0 + \sum_{i=1}^m a_i x_i$$

The values $p(\vec{x}_i)$ may be obtained by kernel estimation.

Kernel Estimation

- **Idea:** Define an "influence function" (kernel), which describes how strongly a data point influences the probability estimate for neighboring points.
- Common choice for the kernel function: **Gaussian function**

$$K(\vec{x}, \vec{y}) = \frac{1}{(2\pi\sigma^2)^{\frac{m}{2}}} \exp\left(-\frac{(\vec{x} - \vec{y})^{\top}(\vec{x} - \vec{y})}{2\sigma^2}\right)$$

• Kernel estimate of probability density given a data set $\mathcal{X} = \{\vec{x}_1, \dots, \vec{x}_n\}$:

$$\hat{f}(\vec{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\vec{x}, \vec{x}_i).$$

• Kernel estimation applied to a two class problem:

$$\hat{p}(\vec{x}) = \frac{\sum_{i=1}^{n} c(\vec{x}_i) K(\vec{x}, \vec{x}_i)}{\sum_{i=1}^{n} K(\vec{x}, \vec{x}_i)}.$$

(It is $c(\vec{x}_i) = 1$ if x_i belongs to class c_1 and $c(\vec{x}_i) = 0$ otherwise.)

Regression Trees

- Target variable is not a class, but a numeric quantity.
- Simple regression trees:

 predict constant values in leaves.

 (blue lines)

• More complex regression trees: predict linear functions in leaves. (red line)

x: input variable, y: target variable

Regression Trees: Attribute Selection

- The variance / standard deviation is compared to the variance / standard deviation in the branches.
- The attribute that yields the highest reduction is selected.

Regression Trees: An Example

A regression tree for the Iris data (petal width)

(induced with reduction of sum of squared errors)

Summary Regression

• Minimize the Sum of Squared Errors

• Write the sum of squared errors as a function of the parameters to be determined.

• Exploit Necessary Conditions for a Minimum

• Partial derivatives w.r.t. the parameters to determine must vanish.

• Solve the System of Normal Equations

• The best fit parameters are the solution of the system of normal equations.

• Non-polynomial Regression Functions

- Find a transformation to the multipolynomial case.
- Logistic regression can be used to solve two class classification problems.