Regression




Regression

e General Idea of Regression

o Method of least squares

e Linear Regression

o An illustrative example

e Polynomial Regression

o Generalization to polynomial functional relationships

e Multivariate Regression

o (Generalization to more than one function argument
e Logistic Regression

o Generalization to non-polynomial functional relationships

o An illustrative example

¢ Summary

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis



Regression

Also known as: Method of Least Squares (Carl Friedrich Gauf)

Given: e A data set of data tuples
(one or more input values and one output value).

e A hypothesis about the functional relationship
between output and input values.

Desired: e A parameterization of the conjectured function
that minimizes the sum of squared errors ( “best fit”).

Depending on
e the hypothesis about the functional relationship and

e the number of arguments to the conjectured function

different types of regression are distinguished.
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Reminder: Function Optimization

Task: Find values ¥ = (z1, ..., xy) such that f(Z) = f(x1,...,Tm) is optimal.
Often feasible approach:

e A necessary condition for a (local) optimum (maximum or minimum) is
that the partial derivatives w.r.t. the parameters vanish (Pierre Fermat).

e Therefore: (Try to) solve the equation system that results from setting
all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize f(x,y) = z? 4+ 2 + zy — 4z — by.
Solution procedure:

1. Take the partial derivatives of the objective function and set them to zero:

0 0
_f:2x+y_4:07 _f:2y—|—x—5:0.
ox oy

2. Solve the resulting (here: linear) equation system: r=1y=2.
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Linear Regression
o Given: data set ((z1,y1),---,(Tn,yn)) of n data tuples
e Conjecture: the functional relationship is linear, i.e., y = g(x) = a + bx.

Approach: Minimize the sum of squared errors, i.e.

Fla,b) = Y (glay) —5;)° = Y (a+ bz —y;)°.

1=1 1=1

Necessary conditions for a minimum:

OF n

5 = > 2a+br;—y) = 0 and
1=1

OF n

% = Z 2(& + bx; — yz)xz = 0
1=1
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Linear Regression

Result of necessary conditions: System of so-called normal equations, i.e.

n n
na + Z x; | b= Z Yis
i=1 i=1

n n

n
in a + Z:CZQ b:szyZ
= 1=1

1=1 1=1

e T'wo linear equations for two unknowns a and b.
e System can be solved with standard methods from linear algebra.
e Solution is unique unless all x-values are identical.

e The resulting line is called a regression line.
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Linear Regression: Example
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Least Squares and Maximum Likelihood

A regression line can be interpreted as a maximum likelihood estimator:

Assumption: The data generation process can be described well by the model

Yy =a+br +¢&,

where £ is normally distributed with mean 0 and (unknown) variance o

(02 independent of x, i.e. same dispersion of y for all z).

As a consequence we have

1 (y—(a+bx))2
f(wa)—W-exp<— . )

With this expression we can set up the likelihood function

L((1, y1) (:vn,yn) a,b,o”)

4 (a4 bz;))?
H flyil =) = Hf(;(;i).ﬁ.exp(_(yz <20+Qb >>>.

1=1 1=1
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Least Squares and Maximum Likelihood

To simplify taking the derivatives, we compute the natural logarithm:

In L((z1,91), - - - (Tn, yn); a, b, UQ)

_ lnf[l Flay) L oo <_(y¢—(a+bl’z’))2>

V2ro? 207
n 1 n
= In f(x;) + In — —5 y; — (a + bx
Z__Zl @ Z \/% 2022 1( ( z))

From this expression it becomes clear that (provided f(x) is independent of a, b, and
02) maximizing the likelihood function is equivalent to minimizing

n

Fla,b) = 3y — (a+ bay)>

1=1
Interpreting the method of least squares as a maximum likelihood estimator works also
for the generalizations to polynomials and multilinear functions discussed next.
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Polynomial Regression

Generalization to polynomials

y=p(r)=ag+ax+...+anc"

Approach: Minimize the sum of squared errors, i.e.

n n

Flag,ay,...,am) = Y (plw;) —yi)* = Y (a0 + a1 + ... + ama]’ — y;)

Necessary conditions for a minimum: All partial derivatives vanish, i.e.

OF _
8&0_

OF

or oF _
8&1_ B

0.
dam,

0, 0, ...,
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Polynomial Regression

System of normal equations for polynomials

n n n
nagy + (Z%‘)al—l—...—l— (Zaﬂ”) Cbm:zyz’
1=1 ' '

n n n n
(Z xgn) ag + (Z x;ﬂ“) ap + ...+ (Z x?m) am =Y _ 'y,
1=1 1=1 1=1 1=1
e m + 1 linear equations for m + 1 unknowns ag, ..., am.

e System can be solved with standard methods from linear algebra.

e Solution is unique unless the points lie exactly on a polynomial of lower degree.
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Multilinear Regression

Generalization to more than one argument

2= f(x,y) =a+bxr+ cy

Approach: Minimize the sum of squared errors, i.e.

n n

Fla,bye) = Y (flziu) — 2)° = D (a+ by +cy; — %)
i=1 1=1

Necessary conditions for a minimum: All partial derivatives vanish, i.e.

OF &
i=1
OF &
i=1
OF "
- = Z 2(a + bx; +cy; — z)y; = 0.

I
| —
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Multilinear Regression

System of normal equations for several arguments

1=1 1=1 1=1 1=1

n n mn 2 n
yila+ [ D wmyi o+ | Dovile=) zy
1=1 1=1 1=1 1=1

e 3 linear equations for 3 unknowns a, b, and c.

e System can be solved with standard methods from linear algebra.

e Solution is unique unless all data points lie on a straight line.
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Multilinear Regression

General multilinear case:

m
g=[f(Z1,....%m) = a0+ Y _ apZy
=1

Approach: Minimize the sum of squared errors, i.e.

F(a) = (Xa —¢) (Xd - ),

where
1 11 -+ T1im U1 ( ZO \
X=1: : P : y=| : : and  a=| !
L xp1 o0 Znm Yn \ dm )

Necessary condition for a minimum:
ViF(@) = Vg(Xd — ) (Xd— §) =0
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Multilinear Regression

e V- F(@) may easily be computed by remembering that the differential operator

0 0

behaves formally like a vector that is “multiplied” to the sum of squared errors.

e Alternatively, one may write out the differentiation componentwise.
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Reminder: Vector Derivatives

e What is the derivative of Z' Z w.1.t. T ?

- aﬂﬂ oz '
fo—l_x p— ( e o

o Weget: k=1,...,m

o'z o0 o

e Therefore we get:
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T
8:[31 ’ 6xm

_ o
&Ek axkizl e
d 2 2
= Jar (a4 +af+- - +ad)
O @ 22y O
— 1§ B —
&Ek 1 aajk k aajk m
ZZZIZk
Voi &= (2xq,..., 258, ..., 2%y) = 27
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Multilinear Regression

With the former method we obtain for the derivative:
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oX ' (Xd — )

o)X 'Xg—-2X"'g = 0
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Multilinear Regression

Necessary condition for a minimum therefore:

VaF (@) = ViXd—g) (Xd—7)
|

= 2X'Xg—-2X'g = 0

As a consequence we get the system of normal equations:

X'Xg=X"y

This system has a unique solution if X ' X is not singular. Then we have

i=(X'X)"'X'g
(X "X)7I1X T is called the (Moore Penrose) pseudoinverse of the matrix X.

With the matrix-vector representation of the regression problem an extension to mul-
tipolynomial regression is straighforward:
Simply add the desired products of powers to the matrix X.
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Logistic Regression

Generalization to non-polynomial functions

Idea: Find transformation to linear/polynomial case.

Simple example: The function Yy = az?
can be transformed into ny=la+b-Inz.
Special case: logistic function
b
y = Y N 1:1_1_6%—3: N Y_yzea%—baz.

Result: Apply so-called Logit Transformation

y _
1n<—y>:a+baz.
Yy
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Logistic Regression: Example

Transform the data with

The transformed data points are

The resulting regression line is

Prof. R. Kruse, Chr. Braune

X

1

Z

2.64 | 1.61 | 0.00 | —1.61 | —2.64

z~ —1.377hx + 4.133.

Intelligent Data Analysis

20



Logistic Regression: Example

| VY Y =6
4 - 6L
3 4
2 . ?
1 - 47
0 3
—1 1 9
—9 . )
—3 X
—4 4 0 T T T T T >
0 1 2 3 4 5

e Attention: The sum of squared errors is minimized only in the space the trans-
formation maps to, not in the original space.

e Nevertheless this approach usually leads to very good results.
The result may be improved by a gradient descent in the original space.
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Logistic Regression: Two-dimensional Example

Example logistic function for two arguments x1 and xo:

2o

Intelligent Data Analysis
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Logistic Regression: Two Class Problems

o Let C be a class attribute, dom(C')={cq, c2}, and X an m-dim. random vector.
Let P(C=c | X =2) =p(@) and P(C=cy | X =7) =1 — p().

e Given: A set of data points X = {7, ..., Zy} (realizations of X'),
each of which belongs to one of the two classes ¢; and co.

e Desired: A simple description of the function p(¥).

e Approach: Describe p by a logistic function:

1 1
p(gj) p— == p—
1 + et tar 1+ exp (ao + > aixi)

Apply logit transformation to p(x):

1 —px n
In <w> = qy+dl = ap+ )Y a;x
p(T) i=1

The values p(&;) may be obtained by kernel estimation.
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Kernel Estimation

e Idea: Define an “influence function” (kernel), which describes how strongly a
data point influences the probability estimate for neighboring points.

e Common choice for the kernel function: Gaussian function

1 T ) (-7
K@D = —= exp (-0 T=0)
(2mo?)2 20
e Kernel estimate of probability density given a data set X = {Z1,...,Zp}:
" 1 M
f(@) = EZKQafz)
1=1

e Kernel estimation applied to a two class problem:

ﬁ(f) _ ?:1 C(@')K<f> f@)

(It is ¢(&;) = 1 if x; belongs to class ¢; and ¢(%;) = 0 otherwise.)
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Regression Trees

e Target variable is not a class,
but a numeric quantity.

e Simple regression trees:
predict constant values in leaves.

(blue lines)

e More complex regression trees:
predict linear functions in leaves.

(red line)
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x: Input variable, y: target variable
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Regression Trees: Attribute Selection

distributions of
the target value
/ a9
split w.r.t.

a test attribute

e The variance / standard deviation is compared to
the variance / standard deviation in the branches.

e The attribute that yields the highest reduction is selected.
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Regression Trees: An Example

A regression tree for the Iris data (petal width)
(induced with reduction of sum of squared errors)

sepal_length

petal_width

<<4.35
petal_length 1.192
=4.35
1.435
<515 .
|}
L N B
1.80476 . &

>5.15 e

petal_length

petal_length

2.09412
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Summary Regression

e Minimize the Sum of Squared Errors

o Write the sum of squared errors
as a function of the parameters to be determined.

e Exploit Necessary Conditions for a Minimum

o Partial derivatives w.r.t. the parameters to determine must vanish.

e Solve the System of Normal Equations

o The best fit parameters are the solution of the system of normal equations.

e Non-polynomial Regression Functions

o Find a transformation to the multipolynomial case.

o Logistic regression can be used to solve two class classification problems.
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