Probability Foundations

Reminder: Probability Theory

- Goal: Make statements and/or predictions about results of physical processes.
- Even processes that seem to be simple at first sight may reveal considerable difficulties when trying to predict.
- Describing real-world physical processes always calls for a simplifying mathematical model.
- Although everybody will have some intuitive notion about probability, we have to formally define the underlying mathematical structure.
- Randomness or chance enters as the incapability of precisely modelling a process or the inability of measuring the initial conditions.
- Example: Predicting the trajectory of a billard ball over more than 9 banks requires more detailed measurement of the initial conditions (ball location, applied momentum etc.) than physically possible according to Heisenberg's uncertainty principle.

Reality vs. Model

- Producing a result of a physical process is referred to as an observed outcome.
- Assessing or predicting the probability of every possible outcome is not straightforward but often implicitly assumed to be clear.
- We will study this "non-straightforwardness" with three real-world examples:
- Rolling a die.
- Arrivals of inquiries at a call center.
- The weight of a bread roll purchased from a bakery. (Inspired by a broadcast of Quarks \& Co. from WDR.)
- Obviously, all examples differ in the nature of the space of possible observable outcomes.

Example 1: Rolling a Die

- Physical Process

Shaking a six-sided die in a dice cup.
Then cast it and read off the number of pips.

- Possible Outcomes
$\because \square \because \because \because$
- Sources of Randomness
- Inaccurate knowledge about locations, momenta.
- Inellastic collisions inside the dice cup.
- Inhomogeneous material distribution of the die.
- Uneven table surface.
- Unknown frictions, airflow etc.
- Model

Outcomes have equal probability.

Example 2: Phone Calls at a Call Center

- Physical Process

Counting the number of phone calls that arrive at a call center within a predefined time window.

- Possible Outcomes

The events (if any) happening in time and space.

- Sources of Randomness
- Calls are initiated by human beings: no predictability.
- Misdialed calls.
- Technical problems resulting in lost calls.
- Model

Poisson distribution of number of calls.

Example 3: Bread Rolls at a Bakery

- Physical Process

Baking a bread roll from a piece of dough.
Measuring its weight (with arbitrary precision).

- Possible Outcomes

Bread rolls.

- Sources of Randomness
- Amount of dough put on the baking sheet.
- Baking process (ingredients, temperature, time).
- Model

Gaussian distribution of the weight.

Formal Approach on the Model Side

- We conduct an experiment that has a set Ω of possible outcomes.
E. g.:
- Rolling a die $(\Omega=\{1,2,3,4,5,6\})$
- Arrivals of phone calls $\left(\Omega=\mathbb{N}_{0}\right)$
- Bread roll weights ($\Omega=\mathbb{R}_{+}$)
- Such an outcome is called an elementary event.
- All possible elementary events are called the frame of discernment Ω (or sometimes universe of discourse).
- The set representation stresses the following facts:
- All possible outcomes are covered by the elements of Ω. (collectively exhaustive).
- Every possible outcome is represented by exactly one element of Ω. (mutual disjoint).

Events

- Often, we are interested in higher-level events (e.g. casting an odd number, arrival of at least 5 phone calls or purchasing a bread roll heavier than 80 grams)
- Any subset $A \subseteq \Omega$ is called an event which occurs, if the outcome $\omega_{0} \in \Omega$ of the random experiment lies in A :

$$
\text { Event } A \subseteq \Omega \text { occurs } \Leftrightarrow \bigvee_{\omega \in A}\left(\omega=\omega_{0}\right)=\text { true } \quad \Leftrightarrow \quad \omega_{0} \in A
$$

- Since events are sets, we can define for two events A and B :
- $A \cup B$ occurs if A or B occurs; $A \cap B$ occurs if A and B occurs.
- \bar{A} occurs if A does not occur (i. e., if $\Omega \backslash A$ occurs).
- A and B are mutually exclusive, iff $A \cap B=\emptyset$.

Event Algebra

- A family of sets $\mathcal{E}=\left\{E_{1}, \ldots, E_{n}\right\}$ is called an event algebra, if the following conditions hold:
- The certain event Ω lies in \mathcal{E}.
- If $E \in \mathcal{E}$, then $\bar{E}=\Omega \backslash E \in \mathcal{E}$.
- If E_{1} and E_{2} lie in \mathcal{E}, then $E_{1} \cup E_{2} \in \mathcal{E}$ and $E_{1} \cap E_{2} \in \mathcal{E}$.
- If Ω is uncountable, we require the additional property:

For a series of events $E_{i} \in \mathcal{E}, i \in \mathbb{N}$, the events $\bigcup_{i=1}^{\infty} E_{i}$ and $\bigcap_{i=1}^{\infty} E_{i}$ are also in \mathcal{E}. \mathcal{E} is then called a σ-algebra.

Side remarks:

- Smallest event algebra: $\mathcal{E}=\{\emptyset, \Omega\}$
- Largest event algebra (for finite or countable Ω): $\mathcal{E}=2^{\Omega}=\{A \subseteq \Omega \mid$ true $\}$

Probability Function

- Given an event algebra \mathcal{E}, we would like to assign every event $E \in \mathcal{E}$ its probability with a probability function $P: \mathcal{E} \rightarrow[0,1]$.
- We require P to satisfy the so-called Kolmogorov Axioms:
- $\forall E \in \mathcal{E}: 0 \leq P(E) \leq 1$
- $P(\Omega)=1$
- For pairwise disjoint events $E_{1}, E_{2}, \ldots \in \mathcal{E}$ holds:

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

Note that for $|\Omega|<\infty$ the union and sum are finite also.

- From these axioms one can conclude the following (incomplete) list of properties:
- $\forall E \in \mathcal{E}: P(\bar{E})=1-P(E)$
- $P(\emptyset)=0$
- If $E_{1}, E_{2} \in \mathcal{E}$ are mutually exclusive, then $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$.

Elementary Probabilities and Densities

Question 1: How to calculate P ?
Question 2: Are there "default" event algebras?

- Idea for question 1: We have to find a way of distributing (thus the notion distribution) the unit mass of probability over all elements $\omega \in \Omega$.
- If Ω is finite or countable a probability mass function p is used:

$$
p: \Omega \rightarrow[0,1] \quad \text { and } \quad \sum_{\omega \in \Omega} p(\omega)=1
$$

- If Ω is uncountable (i. e., continuous) a probability density function f is used:

$$
f: \Omega \rightarrow \mathbb{R} \quad \text { and } \quad \int_{\Omega} f(\omega) \mathrm{d} \omega=1
$$

"Default" Event Algebras

- Idea for question 2 ("default" event algebras) we have to distinguish again between the cardinalities of Ω :
- Ω finite or countable:

$$
\mathcal{E}=2^{\Omega}
$$

- Ω uncountable, e. g. $\Omega=\mathbb{R}$:

$$
\mathcal{E}=\mathcal{B}(\mathbb{R})
$$

- $\mathcal{B}(\mathbb{R})$ is the Borel Algebra, i. e., the smallest σ-algebra that contains all closed intervals $[a, b] \subset \mathbb{R}$ with $a<b$.
- $\mathcal{B}(\mathbb{R})$ also contains all open intervals and single-item sets.
- It is sufficient to note here, that all intervals are contained

$$
\{[a, b],] a, b],] a, b[,[a, b[\subset \mathbb{R} \mid a<b\} \subset \mathcal{B}(\mathbb{R})
$$

because the event of a bread roll having a weight between 80 g and 90 g is represented by the interval [80,90$]$.

Random Variable

- A function $X: D \rightarrow M$ is called a random variable if and only if the preimage of any value of M is an event (in some probability space).
- If X is numeric, we call $F(x)$ with

$$
F(x)=P(X \leq x)
$$

the distribution function of X.

Example: Rolling a Die

$$
\Omega=\{1,2,3,4,5,6\} \quad X=\mathrm{id}
$$

$$
p_{1}(\omega)=\frac{1}{6}
$$

$$
F_{1}(x)=P(X \leq x)
$$

$$
\begin{aligned}
\sum_{\omega \in \Omega} p_{1}(\omega) & =\sum_{i=1}^{6} p_{1}\left(\omega_{i}\right) \\
& =\sum_{i=1}^{6} \frac{1}{6}=1
\end{aligned}
$$

$$
\begin{aligned}
P(X \leq x) & =\sum_{x^{\prime} \leq x} P\left(X=x^{\prime}\right) \\
P(a<X \leq b) & =F_{1}(b)-F_{1}(a)
\end{aligned}
$$

$$
P(X=x)=P(\{X=x\})=P\left(X^{-1}(x)\right)=P(\{\omega \in \Omega \mid X(\omega)=x\})
$$

Example: Arriving Phone Calls

$\Omega=\mathbb{N}_{0} \quad X=\mathrm{id}$

$$
p_{2}(k ; \lambda)=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

$$
\begin{aligned}
\sum_{k \in \mathbb{N}_{0}} p_{2}(k ; \lambda) & =\sum_{k=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda} \cdot \underbrace{\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}}_{=e^{\lambda}} \\
& =e^{-\lambda} \cdot e^{\lambda}=1
\end{aligned}
$$

$$
F_{2}(k ; \lambda)=\sum_{i=0}^{k} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}
$$

$$
P(X \leq x)=\sum_{x^{\prime} \leq x} P\left(X=x^{\prime}\right)
$$

$$
P(a<X \leq b)=F_{2}(b)-F_{2}(a)
$$

Example: Weight of a Bread Roll

$$
\Omega=\mathbb{R} \quad X=\mathrm{id}
$$

$$
f_{3}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

$$
\int_{-\infty}^{+\infty} f_{3}(x) \mathrm{d} x=1
$$

$$
F_{3}(x)=\int_{-\infty}^{x} f_{3}(x) \mathrm{d} x
$$

$$
\begin{aligned}
P(X \leq x) & =P(]-\infty, x]) \\
& =\int_{-\infty}^{x} f_{3}(x) \mathrm{d} x \\
P(a<X \leq b) & =P(] a, b]) \\
& =\int_{a}^{b} f_{3}(x) \mathrm{d} x \\
& =F_{3}(b)-F_{3}(a)
\end{aligned}
$$

Poisson Distribution

- Limit case of the Binomial distribution:

$$
\lim _{n \rightarrow \infty} b_{X}(k ; n, p)=\lim _{n \rightarrow \infty}\binom{n}{k} p^{k}(1-p)^{n-k}=e^{-\lambda} \cdot \frac{\lambda^{k}}{k!}
$$

with $k=0,1,2, \ldots$ and $\lambda=n \cdot p$.

- Expected Value: $E(X)=\lambda$
- Variance:

$$
V(X)=\lambda
$$

- Models, e. g.
- Number of cars that pass a gate.
- Number of customers at a register.
- Number of calls at a call center.
- λ is the rate parameter (i. e., occurrences per unit time)

Exponential Distribution

- A continuous random variable with density function

$$
f_{X}(x ; \lambda)= \begin{cases}\lambda \cdot e^{-\lambda x} & \text { if } x \geq 0, \lambda>0 \\ 0 & \text { otherwise }\end{cases}
$$

is exponentially distributed.

- Expected Value: $\quad E(X)=\frac{1}{\lambda} \quad F_{X}(x ; \lambda)= \begin{cases}1-e^{-\lambda x} & \text { if } x \geq 0, \lambda>0 \\ 0 & \text { otherwise }\end{cases}$
- Variance: $\quad V(X)=\frac{1}{\lambda^{2}}$
- Models, e.g.
- Lifetime of electrical devices.
- Waiting times in a queue.
- Time between failures of a system.

Relation between Poisson and Exponential Distributions

- Assume an arrival process with λ arrivals (per unit time, say 1h)
- The random variable that describes the number of arrivals within the next unit time interval is Poisson distributed with parameter λ.
- The random variable that describes the probability of the waiting times between two arrivals is exponentially distributed with (the same!) λ.

Example:

- Small ticks denote arrivals, large ticks mark unit time windows.
- 60 arrivals, 15 unit time windows.
- Poisson sample $\vec{x}_{P}=(4,3,2,10,2,7,5,6,4,3,0,3,8,2,1)$
- Exponential sample $\vec{x}_{E}=(0.1192,0.4544,0.0821,0.1352, \ldots)$
- $\lambda=4$

