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Probability Foundations



Reminder: Probability Theory
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• Goal: Make statements and/or predictions about
results of physical processes.

• Even processes that seem to be simple at first sight
may reveal considerable difficulties when trying to predict.

• Describing real-world physical processes always calls
for a simplifying mathematical model.

• Although everybody will have some intuitive notion about
probability, we have to formally define the underlying
mathematical structure.

• Randomness or chance enters as the incapability of precisely
modelling a process or the inability of measuring the initial conditions.

◦ Example: Predicting the trajectory of a billard ball over more than 9 banks
requires more detailed measurement of the initial conditions (ball location,
applied momentum etc.) than physically possible according to Heisenberg’s
uncertainty principle.



Reality vs. Model
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• Producing a result of a physical process is referred
to as an observed outcome.

• Assessing or predicting the probability of every possible
outcome is not straightforward but often
implicitly assumed to be clear.

• We will study this “non-straightforwardness” with
three real-world examples:

◦ Rolling a die.

◦ Arrivals of inquiries at a call center.

◦ The weight of a bread roll purchased from a bakery.
(Inspired by a broadcast of Quarks & Co. from WDR.)

• Obviously, all examples differ in the nature of
the space of possible observable outcomes.



Example 1: Rolling a Die
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• Physical Process
Shaking a six-sided die in a dice cup.
Then cast it and read off the number of pips.

• Possible Outcomes

• Sources of Randomness

◦ Inaccurate knowledge about locations, momenta.

◦ Inellastic collisions inside the dice cup.

◦ Inhomogeneous material distribution of the die.

◦ Uneven table surface.

◦ Unknown frictions, airflow etc.

• Model
Outcomes have equal probability.



Example 2: Phone Calls at a Call Center
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• Physical Process
Counting the number of phone calls that arrive
at a call center within a predefined time window.

• Possible Outcomes
The events (if any) happening in time and space.

• Sources of Randomness

◦ Calls are initiated by human beings: no predictability.

◦ Misdialed calls.

◦ Technical problems resulting in lost calls.

• Model
Poisson distribution of number of calls.



Example 3: Bread Rolls at a Bakery
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• Physical Process
Baking a bread roll from a piece of dough.
Measuring its weight (with arbitrary precision).

• Possible Outcomes
Bread rolls.

• Sources of Randomness

◦ Amount of dough put on the baking sheet.

◦ Baking process (ingredients, temperature, time).

• Model
Gaussian distribution of the weight.



Formal Approach on the Model Side
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• We conduct an experiment that has a set Ω of possible outcomes.
E. g.:

◦ Rolling a die (Ω = {1, 2, 3, 4, 5, 6})
◦ Arrivals of phone calls (Ω = N0)

◦ Bread roll weights (Ω = R+)

• Such an outcome is called an elementary event.

• All possible elementary events are called the frame of discernment Ω
(or sometimes universe of discourse).

• The set representation stresses the following facts:

◦ All possible outcomes are covered by the elements of Ω.
(collectively exhaustive).

◦ Every possible outcome is represented by exactly one element of Ω.
(mutual disjoint).



Events
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• Often, we are interested in higher-level events
(e. g. casting an odd number, arrival of at least 5 phone calls or
purchasing a bread roll heavier than 80 grams)

• Any subset A ⊆ Ω is called an event which occurs, if the outcome ω0 ∈ Ω of
the random experiment lies in A:

Event A ⊆ Ω occurs ⇔
∨

ω∈A
(ω = ω0) = true ⇔ ω0 ∈ A

• Since events are sets, we can define for two events A and B:

◦ A ∪B occurs if A or B occurs; A ∩B occurs if A and B occurs.

◦ A occurs if A does not occur (i. e., if Ω\A occurs).

◦ A and B are mutually exclusive, iff A ∩B = ∅.



Event Algebra
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• A family of sets E = {E1, . . . , En} is called an event algebra,
if the following conditions hold:

◦ The certain event Ω lies in E .
◦ If E ∈ E , then E = Ω\E ∈ E .
◦ If E1 and E2 lie in E , then E1 ∪ E2 ∈ E and E1 ∩ E2 ∈ E .

• If Ω is uncountable, we require the additional property:

For a series of events Ei ∈ E , i ∈ N, the events
∞⋃

i=1
Ei and

∞⋂

i=1
Ei are also in E .

E is then called a σ-algebra.

Side remarks:

• Smallest event algebra: E = {∅,Ω}
• Largest event algebra (for finite or countable Ω): E = 2Ω = {A ⊆ Ω | true}



Probability Function

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis 10

• Given an event algebra E , we would like to assign every event E ∈ E its
probability with a probability function P : E → [0, 1].

• We require P to satisfy the so-called Kolmogorov Axioms:

◦ ∀E ∈ E : 0 ≤ P (E) ≤ 1

◦ P (Ω) = 1

◦ For pairwise disjoint events E1, E2, . . . ∈ E holds:

P (
∞⋃

i=1
Ei) =

∞∑

i=1
P (Ei)

Note that for |Ω| < ∞ the union and sum are finite also.

• From these axioms one can conclude the following (incomplete) list of properties:

◦ ∀E ∈ E : P (E) = 1− P (E)

◦ P (∅) = 0

◦ If E1, E2 ∈ E are mutually exclusive, then P (E1 ∪ E2) = P (E1) + P (E2).



Elementary Probabilities and Densities
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Question 1: How to calculate P ?

Question 2: Are there “default” event algebras?

• Idea for question 1: We have to find a way of distributing (thus the
notion distribution) the unit mass of probability over all elements ω ∈ Ω.

◦ If Ω is finite or countable a probability mass function p is used:

p : Ω → [0, 1] and
∑

ω∈Ω
p(ω) = 1

◦ If Ω is uncountable (i. e., continuous) a probability density
function f is used:

f : Ω → R and
∫

Ω
f(ω) dω = 1



“Default” Event Algebras
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• Idea for question 2 (“default” event algebras) we have to distinguish
again between the cardinalities of Ω:

◦ Ω finite or countable: E = 2Ω

◦ Ω uncountable, e. g. Ω = R: E = B(R)

• B(R) is the Borel Algebra, i. e., the smallest σ-algebra
that contains all closed intervals [a, b] ⊂ R with a < b.

• B(R) also contains all open intervals and single-item sets.

• It is sufficient to note here, that all intervals are contained

{[a, b] , ]a, b] , ]a, b[ , [a, b[ ⊂ R | a < b} ⊂ B(R)

because the event of a bread roll having a weight between
80 g and 90 g is represented by the interval [80, 90].



Random Variable
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• A function X : D → M is called a random variable
if and only if the preimage of any value of M is an
event (in some probability space).

• If X is numeric, we call F (x) with

F (x) = P (X ≤ x)

the distribution function of X .



Example: Rolling a Die
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Ω = {1, 2, 3, 4, 5, 6} X = id

p1(ω) =
1
6 F1(x) = P (X ≤ x)
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ω

p1(ω)
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x

F1(x)

∑

ω∈Ω
p1(ω) =

6∑

i=1
p1(ωi)

=
6∑

i=1

1

6
= 1

P (X ≤ x) =
∑

x′≤x

P (X = x′)

P (a < X ≤ b) = F1(b)− F1(a)

P (X = x) = P ({X = x}) = P (X−1(x)) = P ({ω ∈ Ω | X(ω) = x})



Example: Arriving Phone Calls
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Ω = N0 X = id

p2(k;λ) = e−λ · λ
k

k! F2(k;λ) =
k∑

i=0
e−λ · λ

i

i!
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∑

k∈N0

p2(k;λ) =
∞∑

k=0

e−λ · λ
k

k!

= e−λ ·
∞∑

k=0

λk

k!
︸ ︷︷ ︸
=eλ

= e−λ · eλ = 1

P (X ≤ x) =
∑

x′≤x

P (X = x′)

P (a < X ≤ b) = F2(b)− F2(a)



Example: Weight of a Bread Roll
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Ω = R X = id

f3(x;µ, σ
2) = 1√

2πσ2
· exp

(
−(x−µ)2

2σ2

)
F3(x) =

∫ x

−∞
f3(x) dx
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f3(x;µ,σ)

µ = 4,σ = 1
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µ = 4,σ = 1

∫ +∞

−∞
f3(x) dx = 1 P (X ≤ x) = P (]−∞, x])

=
∫ x

−∞
f3(x)dx

P (a < X ≤ b) = P (]a, b])

=
∫ b

a
f3(x)dx

= F3(b)− F3(a)



Poisson Distribution
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• Limit case of the Binomial distribution:

lim
n→∞ bX(k;n, p) = lim

n→∞

(
n

k

)

pk(1− p)n−k = e−λ · λ
k

k!

with k = 0, 1, 2, . . . and λ = n · p.

• Expected Value: E(X) = λ

• Variance: V (X) = λ

• Models, e. g.

◦ Number of cars that pass a gate.

◦ Number of customers at a register.

◦ Number of calls at a call center.

• λ is the rate parameter (i. e., occurrences per unit time)



Exponential Distribution
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• A continuous random variable with density function

fX(x;λ) =





λ · e−λx if x ≥ 0,λ > 0

0 otherwise

is exponentially distributed.

• Expected Value: E(X) = 1
λ FX(x;λ) =





1− e−λx if x ≥ 0,λ > 0

0 otherwise

• Variance: V (X) = 1
λ2

• Models, e. g.

◦ Lifetime of electrical devices.

◦ Waiting times in a queue.

◦ Time between failures of a system.



Relation between Poisson and Exponential Distributions
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• Assume an arrival process with λ arrivals (per unit time, say 1h)

• The random variable that describes the number of arrivals within the next
unit time interval is Poisson distributed with parameter λ.

• The random variable that describes the probability of the waiting times be-
tween two arrivals is exponentially distributed with (the same!) λ.

Example:

t
• Small ticks denote arrivals, large ticks mark unit time windows.

• 60 arrivals, 15 unit time windows.

• Poisson sample %xP = (4, 3, 2, 10, 2, 7, 5, 6, 4, 3, 0, 3, 8, 2, 1)

• Exponential sample %xE = (0.1192, 0.4544, 0.0821, 0.1352, . . .)

• λ = 4


