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Lecture
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Conditions for Certificates (Scheine)

• ticked at least two thirds of the assignments,

• presented at least two times a solution during the exercise, and

• passed a small colloquium (approx. 10 min) or a written test (if there are more
than 20 students) after the course.

Conditions for Exams

• ticked at least two thirds of the assignments,

• presented at least two times a solution during the exercise, and

• succesfully took part in the programming contest (more info in this in the first
exercise)

• passed a colloquium (approx. 20 min) or a written test (if there are more than 20
students) after the course.
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Berthold, Borgelt, Ḧı¿12ppner, Kla-
wonn: Guide to Intelligent Data Anal-
ysis, Springer 2011



Intelligent Data Analysis
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• Introduction

• Data and Knowledge

◦ Characteristics and Differences of Data and Knowledge

◦ Quality Criteria for Knowledge

◦ Example: Tycho Brahe and Johannes Kepler

• Knowledge Discovery and Data Mining

◦ How to Find Knowledge?

◦ The Knowledge Discovery Process (KDD Process)

◦ Data Analysis / Data Mining Tasks

◦ Data Analysis / Data Mining Methods

• Summary



Introduction
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• Today every enterprise uses electronic information processing systems.

◦ Production and distribution planning

◦ Stock and supply management

◦ Customer and personnel management

• Usually these systems are coupled with a database system
(e.g. databases of customers, suppliers, parts etc.).

• Every possible individual piece of information can be retrieved.

• However: Data alone are not enough.

◦ In a database one may “not see the wood for the trees”.

◦ General patterns, structures, regularities go undetected.

◦ Often such patterns can be exploited to increase turnover
(e.g. joint sales in a supermarket).



Data
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Examples of Data

• “Columbus discovered America in 1492.”

• “Mr Jones owns a Volkswagen Golf.”

Characteristics of Data

• refer to single instances
(single objects, persons, events, points in time etc.)

• describe individual properties

• are often available in huge amounts (databases, archives)

• are usually easy to collect or to obtain
(e.g. cash registers with scanners in supermarkets, Internet)

• do not allow us to make predictions



Knowledge
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Examples of Knowledge

• “All masses attract each other.”

• “Every day at 5 pm there runs a train from Magdeburg to Berlin.”

Characteristic of Knowledge

• refers to classes of instances
(sets of objects, persons, points in time etc.)

• describes general patterns, structure, laws, principles etc.

• consists of as few statements as possible (this is an objective!)

• is usually difficult to find or to obtain
(e.g. natural laws, education)

• allows us to make predictions



Criteria to Assess Knowledge
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• Not all statements are equally important, equally substantial, equally useful.

⇒ Knowledge must be assessed.

Assessment Criteria

• Correctness (probability, success in tests)

• Generality (range of validity, conditions of validity)

• Usefulness (relevance, predictive power)

• Comprehensibility (simplicity, clarity, parsimony)

• Novelty (previously unknown, unexpected)

Priority

• The priorities of criteria in science and economy are different

• Optimality is not always necessary in economy

• Economy often focuses more on usefulness, comprehensibility, novelty



Tycho Brahe (1546–1601)
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Who was Tycho Brahe?

• Danish nobleman and astronomer

• In 1582 he built an observatory on the island of Ven (32 km NE of Copenhagen).

• He determined the positions of the sun, the moon and the planets
(accuracy: one angle minute, without a telescope!).

• He recorded the motions of the celestial bodies for several years.

Brahe’s Problem

• He could not summarize the data he had collected in a uniform and consistent
scheme.

• The planetary system he developed (the so-called Tychonic system) did not stand
the test of time.



Johannes Kepler (1571–1630)
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Who was Johannes Kepler?

• German astronomer and assistant of Tycho Brahe

• He advocated the Copernican planetary system.

• He tried all his life to find the laws that govern the motion of the planets.

• He started from the data that Tycho Brahe had collected.

Kepler’s Laws

1. Each planet moves around the sun in an ellipse, with the sun at one focus.

2. The radius vector from the sun to the planet sweeps out equal areas
in equal intervals of time.

3. The squares of the periods of any two planets are proportional to the cubes

of the semi-major axes of their respective orbits: T ∼ a
3
2 .



How to find Knowledge?
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We do not know any universal method to discover knowledge.

Problems

• Today huge amounts of data are available in databases.

We are drowning in information,
but starving for knowledge. John Naisbett

• Manual methods of analysis have long ceased to be feasible.

• Simple aids (e.g. displaying data in charts) are too limited.

Attempts to Solve the Problems

• Intelligent Data Analysis

• Knowledge Discovery in Databases

• Data Mining



Knowledge Discovery and Data Mining
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As a response to the challenge raised by the growing volume of data a new research
area has emerged, which is usually characterized by one of the following phrases:

• Knowledge Discovery in Databases (KDD)

Usual characterization:

KDD is the non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data. [Fayyad et al. 1996]

• Data Mining

◦ Data mining is that step of the knowledge discovery process
in which data analysis methods are applied to find interesting patterns.

◦ It can be characterized by a set of types of tasks that have to be solved.

◦ It uses methods from a variety of research areas.
(statistics, databases, machine learning, artificial intelligence, soft computing etc.)



Data Mining Tasks 1
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Classification

• Predict outcome of an experiment with a finite number of possible results (e. g.
yes/no, bird/plane/superman, good/neutral/bad)

• Applicable for binary or categorical results

• Prediction may be less expensive or easier to check

Examples
• Is this customer creditworthy?

• Will this customer respond to out mailing?

• Will the quality of this product be acceptable?



Data Mining Tasks 2
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Regression

• Similar to classification

• Prediction of a numerical value

Examples
• What will be tomorrow’s temperature?

• How much will a customer spend?

• How much will a machine’s temperature increase in the next production cy-
cle?



Data Mining Tasks 3
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Cluster Analysis

• Summarizing data. split data set into (mostly) disjunctive sub sets.

• No need to examine data set as a whole but inspect clusters only

• Gain insight in the structure of the data

Examples
• Are there different groups of customers?

• How many operating points does the machine have and how do they look like?



Data Mining Tasks 4
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Association Analysis

• Find correlations or interdependencies between items

• Focus on relationships between all attributes

Examples
• What optional equipments of a car often go together?

• If a customer already bought A and B, what will they also buy?



Data Mining Tasks 5
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Deviation Analysis

• Find observations that do not follow a general trend

• Outliers w.r.t. some concept

Examples
• Under which circumstances does the system behave differently

• What have customers in common that stand out of the crowd



CRISP-DM
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Cross Industry Standard Process for Data Mining

• Data Mining Process Model developed within an EU project

• Several phases that are repeated until data mining project is finished

CRISP-Phases
1. Project understanding

2. Data understanding

3. Data preparation

4. Modeling

5. Evaluation

6. Deployment



CRISP-DM Model
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1. Project understanding
◦ What exactly is the problem, what the expected

benefit?

◦ What should a solution look like?

◦ What is known about the domain?

2. Data understanding
◦ What (relevant) data is available?

◦ What about data quality/quantity/recency?

3. Data preparation
◦ Can data quality be increased?

◦ How can it be transformed for modeling?

4. Modeling
◦ What models is best suited to solve the problem?

◦ What is the best technique to get the model?

◦ How good does the model perform technically?

5. Evaluation
◦ How good is the model in terms of project require-

ments?

◦ What have we learned from the project?

6. Deployment
◦ How can the model be best deployed?

◦ Is there a way to know if the model is still valid?
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Statistics



Statistics
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• Descriptive Statistics

◦ Tabular and Graphical Representations

◦ Characteristic Measures

◦ Principal Component Analysis

• Inductive Statistics

◦ Parameter Estimation
(point and interval estimation, finding estimators)

◦ Hypothesis Testing
(parameter test, goodness-of-fit test, dependence test)

◦ Model Selection
(information criteria, minimum description length)

• Summary



Statistics: Introduction
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Statistics is the art to collect, to display, to analyze, and to interpret
data in order to gain new knowledge.

[Sachs 1999]

[...] statistics, that is, the mathematical treatment of reality, [...]

Hannah Arendt

There are lies, damned lies, and statistics.
Benjamin Disraeli

Statistics, n. Exactly 76.4% of all statistics (including this one) are
invented on the spot. However, in 83% of cases it is inappropriate to
admit it.

The Devil’s IT Dictionary

86.8748648% of all statistics pretend an accuracy that is not justified by
the applied methods.

source unknown



Basic Notions
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• Object, Case
Data describe objects, cases, persons etc.

• (Random) Sample
The objects or cases described by a data set is called a sample,
their number the sample size.

• Attribute
Objects and cases are described by attributes,
patients in a hospital, for example, by age, sex, blood pressure etc.

• (Attribute) Value
Attributes have different possible values.
The age of a patient, for example, is a non-negative number.

• Sample Value
The value an attribute has for an object in the sample is called sample value.



Scale Types / Attribute Types
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Scale Type Possible Operations Examples

nominal equality sex
(categorical, qualitative) blood group

ordinal equality exam grade
(rank scale, comparative) greater/less than wind strength

metric equality length
(interval scale, quantitative) greater/less than weight

difference time
maybe ratio temperature

• Nominal scales are sometimes divided into dichotomic (two values)
and polytomic (more than two values).

• Metric scales may or may not allow us to form a ratio:
weight and length do, temperature does not.
time as duration does, time as calender time does not.
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Descriptive Statistics



Tabular Representations: Frequency Table
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• Given data set: x = (3, 4, 3, 2, 5, 3, 1, 2, 4, 3, 3, 4, 4, 1, 5, 2, 2, 3, 5, 3, 2, 4, 3, 2, 3)

ak hk rk
∑k

i=1 hi
∑k

i=1 ri

1 2 2
25 = 0.08 2 2

25 = 0.08

2 6 6
25 = 0.24 8 8

25 = 0.32

3 9 9
25 = 0.36 17 17

25 = 0.68

4 5 5
25 = 0.20 22 22

25 = 0.88

5 3 3
25 = 0.12 25 25

25 = 1.00

• Absolute Frequency hk (frequency of an attribute value ak in the sample).

• Relative Frequency rk = hk
n , where n is the sample size (here n = 25).

• Cumulated Absolute/Relative Frequency
∑k

i=1 hi and
∑k

i=1 ri.



Tabular Representations: Contingency Tables
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• Frequency tables for two or more attributes are called contingency tables.

• They contain the absolute or relative frequency of value combinations.

a1 a2 a3 a4
∑

b1 8 3 5 2 18
b2 2 6 1 3 12
b3 4 1 2 7 14
∑

14 10 8 12 44

• A contingency table may also contain the marginal frequencies,
i.e., the frequencies of the values of individual attributes.

• Contingency tables for a higher number of dimensions (> 4) may be difficult to
read.



Graphical Representations: Pole and Bar Chart
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• Numbers, which may be, for example, the frequencies of attribute values are rep-
resented by the lengths of poles (left) or bars (right).
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• Bar charts are the most frequently used and most comprehensible way of displaying
absolute frequencies.

• A wrong impression can result if the vertical scale does not start at 0
(for frequencies or other absolute numbers).



Frequency Polygon and Line Chart
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• Frequency polygon: the ends of the poles of a pole chart are connected by lines.
(Numbers are still represented by lengths.)
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• If the attribute values on the horizontal axis are not ordered, connecting the ends
of the poles does not make sense.

• Line charts are frequently used to display time series.



Area and Volume Charts

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis 32

• Numbers may also be represented by other geometric quantities than lengths, like
areas or volumes.

• Area and volume charts are usually less comprehensible than bar charts, be-
cause humans have more difficulties to compare areas and especially volumes than
lengths. (exception: the represented numbers are areas or volumes)

1
2 3 4 5

• Sometimes the height of a two- or three-dimensional object is used to represent a
number. The diagram then conveys a misleading impression.



Pie and Stripe Charts
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• Relative numbers may be represented by angles or sections of a stripe.

1

2

3

4

5

1 2 3 4 5

Mosaic Chart

• Mosaic charts can be used to display contingency tables.

• More than two attributes are possible, but then separation distances and color
must support the visualization to keep it comprehensible.



Histograms
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• Intuitively: Histograms are frequency bar charts for metric data.

• However: Since there are so many different values,
values have to be grouped in order to arrive a proper representation.

Most common approach: form equally sized intervals (so-called bins)
and count the frequency of sample values inside each interval.

• Attention: Depending on the size and the position of the bins
the histogram may look considerably different.

• In sketches often only a rough outline of a histogram is drawn:



Scatter Plots
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• Scatter plots are used to display two-dimensional metric data sets.

• Sample values are the coordinates of a point.
(Numbers are represented by lengths.)

• Scatter plots provide a simple means for checking for dependency.



How to Lie with Statistics

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis 36

Often the vertical axis of
a pole or bar chart does
not start at zero, but at
some higher value.

In such a case the con-
veyed impression of the
ratio of the depicted val-
ues is completely wrong.

This effect is used to
brag about increases in
turnover, speed etc.

Sources of these diagrams and those on
the following transparencies:
D. Huff: How to Lie with Statistics.
W. Krämer: So lügt man mit Statistik.



How to Lie with Statistics
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• Depending on the position of the zero line of a pole, bar, or line chart
completely different impressions can be conveyed.



How to Lie with Statistics
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• Poles and bars are frequently replaced by (sketches of) objects
in order to make the diagram more aesthetically appealing.

• However, objects are perceived as 2- or even 3-dimensional and
thus convey a completely different impression of the numerical ratios.



How to Lie with Statistics
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Foreign outstanding debits of German banks in million Euros as of 2010:

379579
167092 ≈ 2.2

AUK
AF

≈ 5.0



How to Lie with Statistics
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• In the left diagram the areas of the barrels represent the numerical value. However,
since the barrels are drawn 3-dimensional, a wrong impression of the numerical
ratios is conveyed.

• The right diagram is particularly striking: an area measure is represented by the
side length of a rectangle representing the apartment.



Descriptive Statistics: Characteristic Measures
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Idea: Describe a given sample by few characteristic measures
and thus summarize the data.

• Localization Measures
Localization measures describe, usually by a single number, where the data points
of a sample are located in the domain of an attribute.

• Dispersion Measures
Dispersion measures describe how much the data points vary around a localization
parameter and thus indicate how well this parameter captures the localization of
the data.

• Shape Measures
Shape measures describe the shape of the distribution of the data points relative
to a reference distribution. The most common reference distribution is the normal
distribution (Gaussian).



Location Measures for Metric Attributes: Mode and Median
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• Mode x∗

The mode is the attribute value that is most frequent in the sample.
It need not be unique, because several values can have the same frequency.
It is the most general measure, because it is applicable for all scale types.

• Median x̃
The median minimizes the sum of absolute differences:

n
∑

i=1

|xi − x̃| = min . and thus it is
n
∑

i=1

sgn(xi − x̃) = 0

If x = (x(1), . . . , x(n)) is a sorted data set, the median is defined as

x̃ =







x
(n+1

2 )
, if n is odd,

1
2

(

x(n2 )
+ x(n2+1)

)

, if n is even.

The median is applicable to ordinal and metric attributes.



Localization Measures: Arithmetic Mean
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• Arithmetic Mean x̄
The arithmetic mean minimizes the sum of squared differences:

n
∑

i=1

(xi − x̄)2 = min . and thus it is
n
∑

i=1

(xi − x̄) =
n
∑

i=1

xi − nx̄ = 0

The arithmetic mean is defined as

x̄ =
1

n

n
∑

i=1

xi.

The arithmetic mean is only applicable to metric attributes.

• Even though the arithmetic mean is the most common localization measure, the
median is preferable if

◦ there are few sample cases,

◦ the distribution is asymmetric, and/or

◦ one expects that outliers are present.



How to Lie with Statistics
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Dispersion Measures: Range and Interquantile Range
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A man with his head in the freezer and feet in the oven
is on the average quite comfortable.

old statistics joke

• Range R
The range of a data set is the difference between the maximum and the minimum
value.

R = xmax − xmin = max n
i=1xi −min n

i=1xi

• Interquantile Range
The p-quantile of a data set is a value such that a fraction of p of all sample values
are smaller than this value. (The median is the 1

2-quantile.)

The p-interquantile range, 0 < p < 1
2, is the difference between

the (1− p)-quantile and the p-quantile.

The most common is the interquartile range (p = 1
4)



Dispersion Measures: Average Absolute Deviation
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• Average Absolute Deviation
The average absolute deviation is the average of the absolute deviations of the
sample values from the median or the arithmetic mean.

• Average Absolute Deviation from the Median

dx̃ =
1

n

n
∑

i=1

|xi − x̃|

• Average Absolute Deviation from the Arithmetic Mean

dx̄ =
1

n

n
∑

i=1

|xi − x̄|

• It is always dx̃ ≤ dx̄, since the median minimizes the sum of absolute deviations.
(see the definition of the median)



Dispersion Measures: Variance and Standard Deviation
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• Variance s2

It would be natural to define the variance as the average squared deviation:

v2 =
1

n

n
∑

i=1

(xi − x̄)2.

However, inductive statistics suggests that it is better defined as

s2 =
1

n− 1

n
∑

i=1

(xi − x̄)2.

• Standard Deviation s
The standard deviation is the square root of the variance, i.e.,

s =
√

s2 =

√

√

√

√

1

n− 1

n
∑

i=1

(xi − x̄)2.



Dispersion Measures: Variance and Standard Deviation
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• Special Case: Normal/Gaussian Distribution

The variance/standard deviation provides information about
the height of the mode and the width of the curve.

1√
2πσ2

1√
2πσ2e

1√
2πσ2e2

µ

σ σ

2σ 2σ
x

fX(x;µ, σ2) = 1√
2πσ2

· exp
(

−(x−µ)2

2σ2

)

• µ: expected value, estimated by mean value x̄

σ2: variance, estimated by (empirical) variance s2

σ: standard deviation, estimated by (empirical) standard deviation s

(Details about parameter estimation are studied later.)



Dispersion Measures: Variance and Standard Deviation
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Note that it is often more convenient to compute the variance using the formula that
results from the following transformation:

s2 =
1

n− 1

n
∑

i=1

(xi − x̄)2 =
1

n− 1

n
∑

i=1

(

x2i − 2xix̄ + x̄2
)

=
1

n− 1





n
∑

i=1

x2i − 2x̄
n
∑

i=1

xi +
n
∑

i=1

x̄2





=
1

n− 1





n
∑

i=1

x2i − 2nx̄2 + nx̄2



 =
1

n− 1





n
∑

i=1

x2i − nx̄2





=
1

n− 1







n
∑

i=1

x2i −
1

n





n
∑

i=1

xi





2






• Advantage: The sums
∑n

i=1 xi and
∑n

i=1 x
2
i can both be computed in the same

traversal of the data and from them both mean and variance are computable.



Shape Measures: Skewness
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• The skewness α3 (or skew for short) measures whether, and if, how much,
a distribution differs from a symmetric distribution.

• It is computed from the 3rd moment about the mean,
which explains the index 3.

α3 =
1

n · v3
n
∑

i=1

(xi − x̄)3 =
1

n

n
∑

i=1

z3i

where zi =
xi − x̄

v
and v2 =

1

n

n
∑

i=1

(xi − x̄)2.

α3 < 0: right steep α3 = 0: symmetric α3 > 0: left steep



Shape Measures: Kurtosis
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• The kurtosis or excess α4 measures how much a distribution is arched,
usually compared to a Gaussian distribution.

• It is computed from the 4th moment about the mean,
which explains the index 4.

α4 =
1

n · v4
n
∑

i=1

(xi − x̄)4 =
1

n

n
∑

i=1

z4i

where zi =
xi − x̄

v
and v2 =

1

n

n
∑

i=1

(xi − x̄)2.

α4 < 3: leptokurtic α4 = 3: Gaussian α4 > 3: platikurtic



Moments of Data Sets
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• The k-th moment of a dataset is defined as

m′
k =

1

n

n
∑

i=1

xki .

The first moment is the mean m′
1 = x̄ of the data set.

Using the moments of a data set the variance s2 can also be written as

s2 = 1
n−1

(

m′
2 − 1

nm
′2
1

)

and also v2 = 1
nm

′
2 − 1

n2
m′2

1 .

• The k-th moment about the mean is defined as

mk =
1

n

n
∑

i=1

(xi − x̄)k.

It is m1 = 0 and m2 = v2 (i.e., the average squared deviation).

The skewness is α3 =
m3

m
3/2
2

and the kurtosis is α4 =
m4
m2

2
.



Visualizing Characteristic Measures: Box Plots
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xmax maximum

Q3 3. quartile

x̄ arithmetic mean
x̃ = Q2 median/2. quartile

Q1 1. quartile

xmin minimum

A box plot is a common way to
combine some important char-
acteristic measures into a single
graphic.

Often the central box is drawn
laced (〉〈) w.r.t. the arithmetic
mean in order to emphasize its
location.

Box plots are often used to get a quick impression of the distribution of the data by
showing them side by side for several attributes.



Multidimensional Characteristic Measures
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General Idea: Transfer the formulae to vectors.

• Arithmetic Mean
The arithmetic mean for multidimensional data is the vector mean of the data
points. For two dimensions it is

(x, y) =
1

n

n
∑

i=1

(xi, yi) = (x̄, ȳ)

For the arithmetic mean the transition to several dimensions only combines the
arithmetic means of the individual dimensions into one vector.

• Other measures are transferred in a similar way.
However, sometimes the transfer leads to new quantities, as for the variance.



Excursion: Vector Products
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For the variance, the square of the difference to the mean has to be generalized.

Inner Product
Scalar Product

~v⊤~v













v1
v2
...
vm













(v1, v2, . . . , vm)
∑m

i=1 v
2
i

Outer Product
Matrix Product

~v~v⊤ ( v1, v2, . . . , vm )












v1
v2
...
vm

























v21 v1v2 · · · v1vm
v1v2 v22 · · · v2vm
... . . . ...

v1vm v2vm · · · v2m













• In principle both vector products may be used for a generalization.

• The second, however, yields more information about the distribution:

◦ a measure of the (linear) dependence of the attributes,

◦ a description of the direction dependence of the dispersion.



Covariance Matrix
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• Covariance Matrix
Compute variance formula with vectors (square: outer product ~v~v⊤):

S =
1

n− 1

n
∑

i=1

((

xi
yi

)

−
(

x̄

ȳ

))((

xi
yi

)

−
(

x̄

ȳ

))⊤
=

(

s2x sxy
sxy s2y

)

where

s2x =
1

n− 1





n
∑

i=1

x2i − nx̄2



 (variance of x)

s2y =
1

n− 1





n
∑

i=1

y2i − nȳ2



 (variance of y)

sxy =
1

n− 1





n
∑

i=1

xiyi − nx̄ȳ



 (covariance of x and y)



Reminder: Variance and Standard Deviation
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• Special Case: Normal/Gaussian Distribution

The variance/standard deviation provides information about
the height of the mode and the width of the curve.

1√
2πσ2

1√
2πσ2e

1√
2πσ2e2

µ

σ σ

2σ 2σ
x

fX(x;µ, σ2) = 1√
2πσ2

· exp
(

−(x−µ)2

2σ2

)

• µ: expected value, estimated by mean value x̄,

σ2: variance, estimated by (empirical) variance s2,
σ: standard deviation, estimated by (empirical) standard deviation s.

Important: standard deviation has same unit as expected value.



Multivariate Normal Distribution
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• A univariate normal distribution has the density function

fX(x;µ, σ2) =
1√
2πσ2

· exp
(

−(x− µ)2

2σ2

)

µ: expected value, estimated by mean value x̄,

σ2: variance, estimated by (empirical) variance s2,
σ: standard deviation, estimated by (empirical) standard deviation s.

• A multivariate normal distribution has the density function

f ~X
(~x; ~µ,Σ) =

1
√

(2π)m|Σ|
· exp

(

−1

2
(~x− ~µ)⊤Σ−1(~x− ~µ)

)

m: size of the vector ~x (it is m-dimensional),
~µ: mean value vector, estimated by (empirical) mean value vector ~̄x,
Σ: covariance matrix, estimated by (empirical) covariance matrix S,
|Σ|: determinant of the covariance matrix Σ.



Interpretation of a Covariance Matrix
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• The variance/standard deviation relates the spread of the distribution to
the spread of a standard normal distribution (σ2 = σ = 1).

• The covariance matrix relates the spread of the distribution to
the spread of a multivariate standard normal distribution (Σ = 1).

• Example: bivariate normal distribution

standard general

• Question: Is there a multivariate analog of standard deviation?



Covariance Matrices of Example Data Sets
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Σ =
(

3.59 0.19
0.19 3.54

)

L =
(

1.90 0
0.10 1.88

)

Σ =
(

2.33 1.44
1.44 2.41

)

L =
(

1.52 0
0.95 1.22

)

Σ =
(

1.88 1.62
1.62 2.03

)

L =
(

1.37 0
1.18 0.80

)

Σ =
(

2.25 −1.93
−1.93 2.23

)

L =
(

1.50 0
−1.29 0.76

)
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Correlation and

Principal Component Analysis



Correlation Coefficient
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• The covariance is a measure of the strength of linear dependence
of the two quantities.

• However, its value depends on the variances of the individual dimensions.
⇒ Normalize to unit variance in the individual dimensions.

• Correlation Coefficient
(more precisely: Pearson’s Product Moment Correlation Coefficient)

r =
sxy
sxsy

, r ∈ [−1,+1].

• r measures the strength of linear dependence:

r = −1: the data points lie perfectly on a descending straight line.
r = +1: the data points lie perfectly on an ascending straight line.

• r = 0: there is no linear dependence between the two attributes
(but there may be a non-linear dependence!).



Correlation Coefficients of Example Data Sets
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no
correlation
(r ≈ 0.05)

weak
positive
correlation
(r ≈ 0.61)

strong
positive
correlation
(r ≈ 0.83)

strong
negative
correlation
(r ≈ −0.86)



Correlation Matrix
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• Normalize Data

Transform data to mean value 0 and variance/standard deviation 1:

∀i; 1 ≤ i ≤ n : x′i =
xi − x̄

sx
, y′i =

yi − ȳ

sy
.

• Compute Covariance Matrix of Normalized Data

Sum outer products of transformed data vectors:

Σ′ =
1

n− 1

n
∑

i=1

(

x′i
y′i

)(

x′i
y′i

)⊤
=

(

1 r
r 1

)

Subtraction of mean vector is not necessary (because it is (0, 0)⊤).
Diagonal elements are always 1 (because of unit variance in each dimension).

• Normalizing the data and then computing the covariances or
computing the covariances and then normalizing them has the same effect.



Correlation Matrix: Interpretation
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Special Case: Two Dimensions

• Correlation matrix

Σ′ =





1 r

r 1



 ,
eigenvalues: σ21, σ

2
2

correlation: r =
σ21−σ22
σ21+σ

2
2

• Eigenvalue decomposition

T =





c −s

s c









σ1 0

0 σ2



 ,
s = sin π

4 = 1√
2
, σ1 =

√
1 + r,

c = cos π4 = 1√
2
, σ2 =

√
1− r.

unit
circle

1

2

3

4

mapping with T

~v′ = T~v

1

2

3

4

σ1

σ2

π

4



Correlation Matrix: Interpretation
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• For two dimensions the eigenvectors of a correlation matrix are always

~v1 =





1√
2
, 1√

2



 and ~v2 =



− 1√
2
, 1√

2





(or their opposites −~v1 or −~v2 or exchanged).

The reason is that the normalization trans-
forms the data points in such a way, that the
ellipse, the unit circle is mapped to by the
“square root” of the covariance matrix of the
normalized data, is always inscribed into the
square [−1, 1] × [−1, 1]. Hence the ellipse’s
major axes are the square’s diagonals.

• The situation is analogous in m-dimensional spaces:
the eigenvectors are always m of the 2m−1 diagonals
of the m-dimensional unit (hyper-)cube around the origin.



Correlation and Stochastic (In)Dependence
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• Note: stochastic independence ⇒ r = 0,
but: r = 0 6⇒ stochastic independence.

• Example: Suppose the data points lie symmetrically on a parabola.

• The correlation coefficient of this data set is r = 0,
because there is no linear dependence between the two attributes.
However, there is a perfect quadratic dependence,
and thus the two attributes are not stochastically independent.



Regression Line
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• Since the covariance/correlation measures linear dependence,
it is not surprising that it can be used to define a regression line:

(y − ȳ) =
sxy
s2x

(x− x̄) or y =
sxy
s2x

(x− x̄) + ȳ.

• The regression line can be seen as a conditional arithmetic mean:
there is one arithmetic mean for the y-dimensions for each x-value.

• This interpretation is supported by the fact that the regression line minimizes the
sum of squared differences in y-direction.
(Reminder: the arithmetic mean minimizes the sum of squared differences.)

• More information on regression and the method of least squares
in the corresponding chapter.



Principal Component Analysis
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• Correlations between the attributes of a data set can be used to
reduce the number of dimensions:

◦ Of two strongly correlated features only one needs to be considered.

◦ The other can be reconstructed approximately from the regression line.

◦ However, the feature selection can be difficult.

• Better approach: Principal Component Analysis (PCA)

◦ Find the direction in the data space that has the highest variance.

◦ Find the direction in the data space that has the highest variance
among those perpendicular to the first.

◦ Find the direction in the data space that has the highest variance
among those perpendicular to the first and second and so on.

◦ Use first directions to describe the data.



Principal Component Analysis: Physical Analog
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• The rotation of a body around an axis through its center of gravity can be described
by a so-called inertia tensor, which is a 3× 3-matrix

Θ =







Θxx Θxy Θxz

Θxy Θyy Θyz

Θxz Θyz Θzz





 .

• The diagonal elements of this tensor are called the moments of inertia.
They describe the “resistance” of the body against being rotated.

• The off-diagonal elements are the so-called deviation moments.
They describe forces vertical to the rotation axis.

• All bodies possess three perpendicular axes through their center of gravity, around
which they can be rotated without forces perpendicular to the rotation axis. These
axes are called principal axes of inertia.
There are bodies that possess more than 3 such axes (example: a homogeneous sphere),
but all bodies have at least three such axes.



Principal Component Analysis: Physical Analog
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The principal axes
of inertia of a box.

• The deviation moments cause “rattling” in the bearings of the rotation axis, which
cause the bearings to wear out quickly.

• A car mechanic who balances a wheel carries out, in a way, a principal axes
transformation. However, instead of changing the orientation of the axes, he/she
adds small weights to minimize the deviation moments.

• A statistician who does a principal component analysis, finds, in a way, the axes
through a weight distribution with unit weights at each data point, around which
it can be rotated most easily.



Principal Component Analysis: Formal Approach
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• Normalize all attributes to arithmetic mean 0 and standard deviation 1:

x′ =
x− x̄

sx

• Compute the correlation matrix Σ
(i.e., the covariance matrix of the normalized data)

• Carry out a principal axes transformation of the correlation matrix,
that is, find a matrix R, such that R⊤ΣR is a diagonal matrix.

• Formal procedure:

◦ Find the eigenvalues and eigenvectors of the correlation matrix,
i.e., find the values λi and vectors ~vi, such that Σ~vi = λi~vi.

◦ The eigenvectors indicate the desired directions.

◦ The eigenvalues are the variances in these directions.



Principal Component Analysis: Formal Approach
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• Select dimensions using the percentage of explained variance.

◦ The eigenvalues λi are the variances σ
2
i in the principal dimensions.

◦ It can be shown that the sum of the eigenvalues of anm×m correlation matrix
is m. Therefore it is plausible to define λi

m as the share the i-th principal axis
has in the total variance.

◦ Sort the λi descendingly and find the smallest value k, such that

k
∑

i=1

λi
m

≥ α,

where α is a user-defined parameter (e.g. α = 0.9).

◦ Select the corresponding k directions (given by the eigenvectors).

• Transform the data to the new data space by multiplying the data points with a
matrix, the rows of which are the eigenvectors of the selected dimensions.



Principal Component Analysis: Example
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x 5 15 21 29 31 43 49 51 61 65

y 33 35 24 21 27 16 18 10 4 12

x

y

0 10 20 30 40 50 60

0

10

20

30

• Strongly correlated features ⇒ Reduction to one dimension possible.



Principal Component Analysis: Example
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Normalize to arithmetic mean 0 and standard deviation 1:

x̄ =
1

10

10
∑

i=1

xi =
370

10
= 37,

ȳ =
1

10

10
∑

i=1

yi =
200

10
= 20,

s2x =
1

9





10
∑

i=1

x2i − 10x̄2



 =
17290− 13690

9
= 400 ⇒ sx = 20,

s2y =
1

9





10
∑

i=1

y2i − 10ȳ2



 =
4900− 4000

9
= 100 ⇒ sy = 10.

x′ −1.6 −1.1 −0.8 −0.4 −0.3 0.3 0.6 0.7 1.2 1.4

y′ 1.3 1.5 0.4 0.1 0.7 −0.4 −0.2 −1.0 −1.6 −0.8



Principal Component Analysis: Example
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• Compute the correlation matrix (covariance matrix of normalized data).

Σ =
1

9

(

9 −8.28
−8.28 9

)

=

(

1 −23
25

−23
25 1

)

.

• Find the eigenvalues and eigenvectors, i.e., the values λi and vectors ~vi, i = 1, 2,
such that

Σ~vi = λi~vi or (Σ− λi1)~vi = ~0.

where 1 is the unit matrix.

• Here: Find the eigenvalues as the roots of the characteristic polynomial.

c(λ) = |Σ− λ1| = (1− λ)2 − 529

625
.

For more than 3 dimensions, this method is numerically unstable and should be
replaced by some other method (Jacobi-Transformation, Householder Transfor-
mation to tridiagonal form followed by the QR algorithm etc.).



Principal Component Analysis: Example
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• The roots of the characteristic polynomial c(λ) = (1− λ)2 − 529
625 are

λ1/2 = 1±
√

529

625
= 1± 23

25
, i.e. λ1 =

48

25
and λ2 =

2

25

• The corresponding eigenvectors are determined by solving for i = 1, 2 the (under-
determined) linear equation system

(Σ− λi1)~vi = ~0

• The resulting eigenvectors (normalized to length 1) are

~v1 =

(

1√
2
,− 1√

2

)

and ~v2 =

(

1√
2
,
1√
2

)

,

(Note that for two dimensions always these two vectors result.
Reminder: directions of the eigenvectors of a correlation matrix.)



Principal Component Analysis: Example
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• Therefore the transformation matrix for the principal axes transformation is

R =







1√
2

1√
2

− 1√
2

1√
2





 , for which it is R⊤ΣR =

(

λ1 0
0 λ2

)

• However, instead of R⊤ we use
√
2R⊤ to transform the data:

(

x′′

y′′

)

=
√
2 ·R⊤ ·

(

x′

y′

)

.

Resulting data set:

x′′ −2.9 −2.6 −1.2 −0.5 −1.0 0.7 0.8 1.7 2.8 2.2

y′′ −0.3 0.4 −0.4 −0.3 0.4 −0.1 0.4 −0.3 −0.4 0.6

• y′′ is discarded (s2y′′ = 2λ2 =
4
25) and only x′′ is kept (s2x′′ = 2λ1 =

96
25).



Scatter Plots 1
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• Iris data set (150 samples, 3 classes, 4 numerical attributes)

• Only sepal length and sepal width used to plot data

• Different colors have been used for the different classes



Scatter Plots 2
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• Different combinations of attributes may reveal correlations otherwise unseen

• petal length and petal width provide a better separation of the classes

• Iris setosa can already be clearly identified



Scatter Plots 3
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• Jitter can be added to the data points to make points visible that are otherwise
invisible

• Small random numbers are added to the coordinates before plotting

• Categorical attributes need to be jittered



Methods for higher-dimensional data 1
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• A display or plot is by definition two-dimensional, so that only two axes
(attributes) can be incorporated.

• 3D-techniques can be used to incorporate three axes (attributes)

• The number of possible scatter plots grows in a quadratic fashin with the number
of attributes. For m attributes there are

(

m
2

)

= m(m− 1) possible scatter plots.
For 50 attributes there are different 2450 scatter plots.



Methods for higher-dimensional data 2
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Principal approach for incorporating all attributes in a plot:

• Try to preserve as much of the structure of the high-dimensional data set when
plotting data in two or three dimensions.

• Define a measure that avaluates lower-dimensional representations of the data in
terms of how well a representation preserves the original structure of the high-
dimensional data set.

• Find the representation that gives the best value for the defined measure.

There is no unique measure for structure preservation.



Multidimensional Scaling (MDS)
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• Multidimensional scaling (MDS) is not restricted to mappings in the form
of simple projections. In contrast to PCA, MDS does not even construct an explicit
mapping from the high-dimensional space to the low-dimensional space. It only
positions the data points in the low-dimensional space.

• The representation of the data in the low-dimensional space constructed by MDS
aims at preserving the distances between the data points and not like PCA the
variance in the data set.



Multidimensional Scaling
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MDS requires a distance matrixD ∈ R
n×n where each dij, 1 ≤ i, j,≤ n is the distance

between data object i and data object j.

• The distance should be non-negative: dij ≥ 0,∀i, j.
• The distance should be symmetric: dij = dji,∀i, j.
• The entries on the principal diagonal should be zero: dii = 0, ∀i.
(Each data object has zero distance to itself.)

Usually, the distances are the Euclidean distances of the data objects (after normal-
ization) in the high-dimensional space.



Multidimensional Scaling
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• MDS must define a point pi ∈ R
q (usually q = 2, sometimes also q = 3) for each

data object xi.

• The distances d∗ij between the points pi and pj should be roughly the same as the
distances dij between the original data objects xi and xj.

• Usually d∗ij = ‖pi − pj‖.



Multidimensional Scaling: Objective Functions
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E0 =
n
∑

i=1

n
∑

j=i+1

(

d∗ij − dij
)2

(absolute squared error)

E1 =
1

n
∑

i=1

n
∑

j=i+1
(dij)

2

n
∑

i=1

n
∑

j=i+1

(

d∗ij − dij
)2

(normalised absolute squared error)

• The normalisation factor 1
n
∑

i=1

n
∑

j=i+1
(dij)

2
does not have an influence on the location

of the minimum of the objective function.

• In contrast to E0, the value of E1 does neither depend in the number of data
objects nor on the magnitude of the original distances.



Multidimensional Scaling: Objective Functions
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E2 =
n
∑

i=1

n
∑

j=i+1

(

d∗ij−dij
dij

)2
(relative squared error)

E3 =
1

n
∑

i=1

n
∑

j=i+1
(dij)

2

n
∑

i=1

n
∑

j=i+1

(

d∗ij−dij
dij

)2

(mixture between relative and absolute squared error)

MDS based on E3 is called Sammon mapping. The value of E3 is called stress.



Multidimensional Scaling
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• MDS represents a non-linear optimisation problem with q · n (2n for q = 2) pa-
rameters to be optimised.
Even for a small data set like the Iris data set, a two-dimensional MDS represen-
tation requires the optimisation of 300 parameters.

• Since the problem is non-linear, a gradient descent method is used to minimise
the objective function for MDS.



Multidimensional Scaling
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MDS (Sammon mapping) for the Iris data set, the Cube data, and MDS for the Cube
data set.



Parallel coordinates
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Parallel coordinates draw the coordinate axes parallel to each other, so that there
is no limitation for the number of attributes to be shown simultaneously.

For a data object a polyline is drawn connecting the values of the data attribute on
the corresponding axes.



Parallel coordinates
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Outlier Detection
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An outlier is a value or data object that is far away or very different from all or most
of the other data.
Causes for outliers:

• Data quality problems (erroneous data coming from wrong measurements or typing
mistakes)

• Exceptional or unusual situations/data objects.

• Outliers coming from erroneous data should be excluded from the analysis.

• Even if the outliers are correct (exceptional data), it is sometime useful to exclude
them from the analysis. For example, a single extremely large outlier can lead to
completely misleading values for the mean value.



Outlier Detection: Single Attributes
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Categorical attributes: An outlier is a value that occurs with a frequency ex-
tremely lower than the frequency of all other values.

In some cases, the outliers can even be the target objects of the analysis.

Example: Automatic quality control system

Goal: Train a classifier, classifying the parts as correct or with failures based on
measurements of the produced parts. The frequency of the correct parts will be so
high that the parts with failure might be considered as outliers.



Outlier Detection: Single Attributes
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Numerical attributes:
• Outliers in boxplots.
Problems: Asymmetric distribution, large data sets

• Statistical tests, for example Grubb’s test :

Define the statistic

G =
max{‖xi−x‖:1≤i≤n

s , where x1, . . . , xn is the sample, x its mean value and s its
empirical standard deviation. For a given significance level α, the null hypothesis that
the sample coming from a normal distribution does not contain outliers is rejected if

G > n−1√
n

√

√

√

√

t2
1−α/(2n),n−2

n−2+t2
1−α/(2n),n−2

where t1−α/(2n),n−2 denotes the (1− α/(2n))-quantile of the t-distribution with n−
degrees of freedom.
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Grubb’s test applied to the Iris data set:

attribute p-value
sepal length 0.92
sepal width 0.13
petal length 1.0
petal width 1.0

• The p-values do not indicate any outliers.

• Note that the assumption of normal distrbuted values is not correct. The attributes
from one species might follow a normal distribution, but not the values from all
species together.



Outlier Detection for Multidimensional Data

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis 97

• Scatter plots for (visually detecting) outliers w.r.t. two attributes.

• PCA or MDS plots for (visually detecting) outliers.

• Cluster analysis techniques: Outliers are those points which cannot be assigned
to any cluster.
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For some instances values of single attributes might be missing.
Causes for missing values:

• Broken sensors.

• Refusal to answer a question.

• Irrelevant attribute for the corresponding object (e.g. Pregnant (yes/no)? for
men).

Missing values might not necessarily be indicated as missing (instead: zero or default
values).
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Consider the attribute Xobs. A missing value is denoted by ?.
X is the true value of the considered attribute, i.e. we have

Xobs = X, if Xobs 6= ?

Let Y be the (multivariate) (random) variable denoting the other attributes apart fromX .
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Missing completely at random (MCAR): The probability that a value for X
is missing does neither depend on the true value of X nor on other variables.

P (Xobs = ?) = P (Xobs = ? |X, Y )

Example: The maintenance staff sometimes forgets to change the batteries of a sensor,
so that the sensor sometimes does not provide any measurements.

MCAR is also called Observed at random (OAR).
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Missing at random (MAR): The probability that a value for X is missing does
not depend on the true value of X .

P (Xobs =?|Y ) = P (Xobs =?|X)

Example: The maintenance staff does not change the batteries of a sensor when it is
raining, so that the sensor does not always provide measurements when it is raining.
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Nonignorable: The probability that a value for X is missing depends on the true
value of X .

Example: A sensor for the temperature will not work when there is frost.
In the cases of MCAR and MAR, the missing values can be estimated - at least in
principle, when the data set is large enough - based on the values of the other attributes.
(The cause for the missing values is ignorable.) In the extreme case of the sensor for
the temperature, it is impossible to provide any statement concerning temperatures
below 0◦C.
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• In the case of MCAR, it can be assumed that the missing values follow the same
distribution as the observed values of X .

• In the case of MAR, the missing values might not follow the distribution of X .
But by taking the other attributes into account, it is possible to derive reasonable
imputations for the missing values.

• In the case of nonignorable missing values it is impossible to provide sensible
estimations for the missing values.
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If it is not known based on domain knowledge which kind of missing values can be
expected, the following strategy can be applied.

1. Turn the considered attribute X into a binary attribute, replacing all measured
values by the values yes and all missing values by the value no.

2. Build a classifier with now binary attribute X as the target attribute and use all
other attributes for the prediction of the class values yes and no.

3. Determine the misclassification rate. The misclassification rate is the proportion
of data objects that are not it assigned to the correct class by the classifier.
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• In the case of OAR, the other attributes should not provide any information,
whether X has a missing value or not. Therefore, the misclassification rate of
the classifier should not differ significantly from pure guessing, i.e. if there 10%
missing values for the attributeX , the misclassification rate of the classifier should
not be much smaller than 10%.

• If, however, the misclassification rate of the classifier is significantly better than
pure guessing, this is an indicator that there is a correlation between missing values
for X and the values of the other attributes. The missing values are not OAR.

• MAR and nonignorable cannot be distinguished in this way.
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• Get an idea of the data quality. Standard problems like syntactic accuracy can be
easily checked.

• Outliers can be a problem for data analysis. There are various methods for finding
outliers. Visualisation methods like boxplots, scatter plots, projections based on
PCA or MDS may be useful.

• Simple correlations between attributes can be easily detected by scatter plots as
well.

• Specific assumptions made by some methods (e.g. normal distribution) should be
checked during data understanding.
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• Missing values can be a problem. Depending on the reason why they are missing
(OAR, MAR, nonignorable) the missing values can be estimated. OAR can be
detected by checking the misclassification rate of a classifier that tries to predict
whether a value is missing or not.

• Missing values might not be explicitly marked as missing! Be aware of default
values. (E.g. DATE in mySQL databases has a default of January, 1st 1970.)


