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Bayes Classifiers

e Probabilistic Classification and Bayes’ Rule

e Naive Bayes Classifiers
o Derivation of the classification formula
o Probability estimation and Laplace correction
o Simple examples of naive Bayes classifiers
o A naive Bayes classifier for the Iris data
e Full Bayes Classifiers
o Derivation of the classification formula
o Comparison to naive Bayes classifiers
o A simple example of a full Bayes classifier

o A full Bayes classifier for the Iris data

¢ Summary
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Probabilistic Classification

e A classifier is an algorithm that assigns a class from a predefined set to a case or
object, based on the values of descriptive attributes.

e An optimal classifier maximizes the probability of a correct class assignment.

o Let C be a class attribute with dom(C) = {c1,...,eng .
which occur with probabilities p;; 1 <1 < ng.

o Let g; be the probability with which a classifier assigns class c;.
(q; € {0, 1} for a deterministic classifier)

o The probability of a correct assignment is

ng
P(correct assignment) = Y~ p;g;.
1=1
o Therefore the best choice for the g; is

. n
o= 1L ifp=max, S py,
! 0, otherwise.
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Probabilistic Classification

e Consequence: An optimal classifier should assign the most probable class.

e This argument does not change if we take descriptive attributes into account.

o Let U={Aq,...,Amn} be aset of descriptive attributes
with domains dom(Az), 1 < k < m.

o Let Ay =aq,..., A = apy be an instantiation of the descriptive attributes.

o An optimal classifier should assign the class ¢; for which

P(C=ci|A1=a1,...,Am =ap) =

max?gl P(C=cj|Ar=a1,...,Am = am)

e Problem: We cannot store a class (or the class probabilities) for every
possible instantiation Ay = aq, ..., Ay = an of the descriptive attributes.
(The table size grows exponentially with the number of attributes.)

e Therefore: Simplifying assumptions are necessary.
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Bayes’ Rule and Bayes’ Classifiers

e Bayes’ rule is a formula that can be used to “invert” conditional probabilities:
Let X and Y be events, P(X) > 0. Then

PX|Y) - P(Y)
PY | X)= :
v x) =S5
e Bayes’ rule follows directly from the definition of conditional probability:
P(XNY) P(XNY)
PY | X)= d PX|Y)= :

e Bayes’ classifiers: Compute the class probabilities as
P(O:Ci | Alzal,...,Am:am):

P(A1=ay,...,Ap=an | C=¢) P(C=c)
P(A1=aq,...,Am = ap) '

e Looks unreasonable at first sight: Even more probabilities to store.
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Naive Bayes Classifiers

Naive Assumption:
The descriptive attributes are conditionally independent given the class.

Bayes’ Rule:
P(Ay=ay,...,Ap=ap | C=c¢)  P(C=¢)

P(Alzal,...,Am:am) < Do
abbrev. for the
normalizing constant

P(C=c¢i|w)=

Chain Rule of Probability:

P(C=¢) I
=) piay =g | = A =10 =
k=1

P(C=c¢|w)=

Conditional Independence Assumption:

P(C=¢) ™
© CZ)'HP(Akzak|C=Cz)
PO k=1

P(C=c¢i|w)=

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Reminder: Chain Rule of Probability

e Based on the product rule of probability:

P(ANB)=P(A|B)-P(B)
(Multiply definition of conditional probability with P(B).)

e Multiple application of the product rule yields:
P(Ay,...,An) = P(Ay A, o A1) - P(A, - A1)

= P(A, | Al Api)
P(Ay 1| Aty Apys) - P(Aq,. .., Apyo)

‘m
= || P(Ax | A1, ..., Ap_q)
b1

e The scheme works also if there is already a condition in the original expression:

m
P(Ar,.. ., Am | C) =[] P(Ag | A1, Ap1, O)
i=1
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Conditional Independence

e Reminder: stochastic independence (unconditional)
P(ANB)=P(A)- P(B)

(Joint probability is the product of the individual probabilities.)

e Comparison to the product rule
P(ANB)=P(A|B)- P(B)
shows that this is equivalent to
P(A| B) = P(A)
e The same formulae hold conditionally, i.e.
P(ANB|C) = PA|C)-P(B|C) and
PA| B,C) = PA|C).

e Conditional independence allows us to cancel some conditions.

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Conditional Independence: An Example

o« o o4 * e Group 1

e ® o ® 0...0\ o‘.’.‘. ®
)

R Group 2

¢ X

(Weak) Dependence in the entire dataset: X and Y dependent.
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Conditional Independence: An Example

A T Group 1

X

No Dependence in Group 1: X and Y conditionally independent given Group 1.
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Conditional Independence: An Example

Y

. e o % ° *
° . ° °
°
.o%o .°: *
o °® 4 ° o0 o o °
f’o o o
.oo ('Y O'.‘ '...
° o o ¢ o °
) .:... 0.. g.....0: ‘.‘ *
° % o ol oo
o [ ) ... .. [ J [}
CTT el d L Group 2
$ o o,
°
°

¢ X

No Dependence in Group 2: X and Y conditionally independent given Group 2.
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Marginal & Conditional Independence

e The next table shows four 3-dimensional probability distributions (one per row).
e The (in)dependencies are always w.r.t. A and B.

e The condition variable is C.

al a2
by by by by
marginal | conditional | ¢y c9 c1 co c1 &) c1 cH
indep. indep. 0.03 | 0.01 | 0.27 | 0.09 | 0.006 | 0.054 | 0.054 | 0.486
dep. dep. 0.01 | 0.03 | 0.126 | 0.234 | 0.1275 | 0.3825 | 0.0315 | 0.0585
dep. indep. 0.12 [ 0.085 | 0.18 | 0.015 | 0.024 | 0.459 | 0.036 | 0.081
indep. dep. 0.008 | 0.032 | 0.144 | 0.216 | 0.018 | 0.042 | 0.054 | 0.486

Prof. R. Kruse, Chr. Braune

e All combinations are possible.
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Naive Bayes Classifiers

e Consequence: Manageable amount of data to store.
Store distributions P(C' = ¢;) and V1 < k <m: P(Ar =a; | C = ¢;).

e [t is not necessary to compute pg explicitely, because it can be computed implicitly
by normalizing the computed values to sum 1.

Estimation of Probabilities:
e Nominal/Symbolic Attributes

#(Ap = ap, C =c¢;) +7
#(C = c;) +ny,y

v is called Laplace correction: Assume for every class ¢; some number of
hypothetical samples for every value of A; to prevent the estimate to be 0 if

#(A/f = af, C = Ci) = 0.

~v = 0: Maximum likelihood estimation.

Common choices: v =1 or v = %

P(Ap=a;|C=c¢)=

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Naive Bayes Classifiers

Estimation of Probabilities:

e Metric/Numeric Attributes: Assume a normal distribution.

. o (ag — ()
P(Ak = Q. \ C = Cz) = \/%Uk(cz) exp <_ 20]%(07) )

e Listimate of mean value

e [stimate of variance
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Naive Bayes Classifiers: Simple Example 1

No || Sex Age | Blood pr. || Drug
1| male |20 |normal A
2 || female | 73 | normal B
3 || female | 37 | high A
4| male |33 |low B
5 || female | 48 | high A
6 || male |29 |normal A
7 || female | 52 | normal B
8l male |42 |low B
9| male |61 |normal B
10 || female | 30 | normal A
11 || female | 26 | low B
12 || male |54 | high A

P(Drug) A B
0.5 0.5
P(Sex | Drug) A B
male 0.5 0.5
female 0.5 0.5
P(Age | Drug) A B
7] 36.3 | 47.8
o2 161.9 | 311.0
P(Blood Pr. | Drug) | A B
low 0 0.5
normal 0.5 0.5
high 0.5 0

A simple database and estimated (conditional) probability distributions.

Prof. R. Kruse, Chr. Braune
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Naive Bayes Classifiers: Simple Example 1

P(Drug A | male, 61, normal)
c1 - P(Drug A) - P(male | Drug A) - P(61 | Drug A) - P(normal | Drug A)
~ ¢1-0.5-0.5-0.004787-0.5 = ¢;-5.984-107% = 0.219
P(Drug B | male, 61, normal)
= ¢ - P(Drug B) - P(male | Drug B) - P(61 | Drug B) - P(normal | Drug B)
c1-0.5-0.5-0.017120-0.5 = ¢1-2.140-1073 = 0.781

Q

P(Drug A | female, 30, normal)
co - P(Drug A) - P(female | Drug A) - P(30 | Drug A) - P(normal | Drug A)
~ c9-0.5-0.5-0.027703-0.5 = c¢9-3.471- 107° = 0.671
P(Drug B | female, 30, normal)
= ¢y - P(Drug B) - P(female | Drug B) - P(30 | Drug B) - P(normal | Drug B)
co-0.5-0.5-0.013567-0.5 = c9-1.696 - 107° = 0.329

Q

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis 17



Naive Bayes Classifiers: Simple Example 2

e 100 data points, 2 classes
e Small squares: mean values

e Inner ellipses:
one standard deviation

e Quter ellipses:
two standard deviations

e (lasses overlap:
classification is not perfect

Prof. R. Kruse, Chr. Braune

Naive Bayes Classifier
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Naive Bayes Classifiers: Simple Example 3

e 20 data points, 2 classes
e Small squares: mean values

e Inner ellipses:
one standard deviation

e Quter ellipses:
two standard deviations

e Attributes are not conditionally
independent given the class

Naive Bayes Classifier

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Naive Bayes Classifiers: Iris Data

e 150 data points, 3 classes

[ris setosa (red)
[ris versicolor (green)
[ris virginica  (blue)

e Shown: 2 out of 4 attributes

sepal length
sepal width
petal length  (horizontal)
petal width  (vertical) .

e ( misclassifications '-@ i

on the training data
(with all 4 attributes) Naive Bayes Classifier

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis



Full Bayes Classifiers

e Restricted to metric/numeric attributes (only the class is nominal /symbolic).

e Simplifying Assumption:
Each class can be described by a multivariate normal distribution.

f(Ar=a1,...,Apn=an | C=¢)

(;: mean value vector for class c;

3J;: covariance matrix for class ¢;
e Intuitively: Each class has a bell-shaped probability density.

e Naive Bayes classifiers: Covariance matrices are diagonal matrices.
(Details about this relation are given below.)

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Full Bayes Classifiers

Estimation of Probabilities:

e [stimate of mean value vector

e [stimate of covariance matrix

R 1 #(C=c;) A T
Yi=g Z (i) — i) () — i)
£ =#(C =¢) - Maximum likelihood estimation

£ = #(C = ¢;) — 1: Unbiased estimation

Z!1 denotes the transpose of the vector Z.

ZZ " is the so-called outer product or matrix product of Z with itself.

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis

2o



Comparison of Naive and Full Bayes Classifiers

Naive Bayes classifiers for metric/numeric data are equivalent
to full Bayes classifiers with diagonal covariance matrices:

f(Ay=ay,...,Am=an | C=¢)

1 L Te-1/~ -
- exp(—(@ - i) =7 - i)
yem)m | S
1 L., . _ SN
— — - exp (——(a — )" d1ag(0i’12, . ,07;’7727) (@ — ,uz))

1 & (ag, — Ni,k)Q)

2
k=1 95 k

I
jTS
DO
)
Q
S0 I
>~
CED -
o
i ®)
|
DO |

m 1 (ag — i 1) m

— —— .expl = ’ = Apr=ap | C = ¢),
kl_ll w/27T0-2 p( 202/{ 1:[ f< g g | Z>
— Z,k (2 k=1

where f(A;. = ap. | C = ¢;) are the density functions used by a naive Bayes classifier.
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Comparison of Naive and Full Bayes Classifiers

Naive Bayes Classifier Full Bayes Classifier

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Full Bayes Classifiers: Iris Data

e 150 data points, 3 classes

[ris setosa (red)
[ris versicolor (green)
[ris virginica  (blue)

e Shown: 2 out of 4 attributes

sepal length

sepal width

petal length  (horizontal)
petal width  (vertical)

e 2 misclassifications
on the training data
(with all 4 attributes)

Prof. R. Kruse, Chr. Braune
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Summary Bayes Classifiers

¢ Probabilistic Classification: Assign the most probable class.
e Bayes’ Rule: “Invert” the conditional class probabilities.

e Naive Bayes Classifiers

o Simplifying Assumption:
Attributes are conditionally independent given the class.

o Can handle nominal /symbolic as well as metric/numeric attributes.

e Full Bayes Classifiers

o Simplifying Assumption:
Each class can be described by a multivariate normal distribution.

o Can handle only metric/numeric attributes.

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Decision Trees

e (lassification with a Decision Tree

e Top-down Induction of Decision Trees
o A simple example
o The general algorithm
o Attribute selection measures

o Treatment of numeric attributes and missing values

¢ Pruning Decision Trees
o General approaches

o A simple example

¢ Summary
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A Very Simple Decision Tree

Assignment of a drug to a patient:

Blood pressure

y low
normal
y
Drug A Age
< V Xﬂ)

Drug A Drug B

Drug B
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Classification with a Decision Tree

Recursive Descent:
e Start at the root node.

e [f the current node is an leaf node:

o Return the class assigned to the node.

e [f the current node is an inner node:
o Test the attribute associated with the node.

o Follow the branch labeled with the outcome of the test.
o Apply the algorithm recursively.

Intuitively: Follow the path corresponding to the case to be classified.

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Classification in the Example

Assignment of a drug to a patient:

Blood pressure

high

Drug A

Drug A

Prof. R. Kruse, Chr. Braune

low
normal

> 40

Drug B

Intelligent Data Analysis
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Classification in the Example

Assignment of a drug to a patient:

Blood pressure

high low

Drug A Age

<40 > 40

Drug A Drug B

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Classification in the Example

Assignment of a drug to a patient:

high

Drug A

Blood pressure

normal

Age

Drug A

Prof. R. Kruse, Chr. Braune
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Drug B
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Induction of Decision Trees

e Top-down approach

o Build the decision tree from top to bottom
(from the root to the leaves).

e Greedy Selection of a Test Attribute
o Compute an evaluation measure for all attributes.

o Select the attribute with the best evaluation.

¢ Divide and Conquer / Recursive Descent

o Divide the example cases according to the values of the test attribute.

o Apply the procedure recursively to the subsets.
o Terminate the recursion if — all cases belong to the same class

— no more test attributes are available

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Induction of a Decision Tree: Example

Patient database

e 12 example cases
e 3 descriptive attributes

e |1 class attribute

Assignment of drug

(without patient attributes)

always drug A or always drug B:

50% correct (in 6 of 12 cases)

Prof. R. Kruse, Chr. Braune

No || Sex Age | Blood pr. || Drug
1| male |20 |normal A
2 || female | 73 | normal B
3 || female | 37 | high A
4 || male |33 |low B
5 || female | 48 | high A
6 || male |29 |normal A
7 || female | 52 | normal B
8l male |42 |low B
9| male |61 |normal B

10 || female | 30 | normal A
11 || female | 26 | low B
12 || male |54 | high A

Intelligent Data Analysis
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Induction of a Decision Tree: Example

Sex of the patient No || Sex Drug
e Division w.r.t. male/female. 1 || male | A
6 || male A
12 || male A
4 || male B
8 || male B
9 || male B
Assignment of drug ? ﬁgrmnii ﬁ
male:  50% correct (in 3 of 6 cases) 10 || female | A
female:  50% correct (in 3 of 6 cases) 2 || female || B
7 || female | B
total: ~ 50% correct (in 6 of 12 cases) 11 || female | B
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Induction of a Decision Tree: Example

Age of the patient

e Sort according to age.

e Find best age split.
here: ca. 40 years

Assignment of drug

<40: A 67% correct (in 4 of 6 cases)
> 40: B 67% correct (in 4 of 6 cases)

total: 67% correct (in 8 of 12 cases)

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis

No || Age || Drug
1| 20 A
11 || 26 B
6 || 29 A
10 || 30 A
41 33 B
337 || A
8 || 42 B
5| 48 A
7| 52 B
1254 || A
9 | 61 B
2| 73 B




Induction of a Decision Tree: Example

Blood pressure of the patient No || Blood pr. || Drug
e Division w.r.t. high/normal /low. 3 || high A
5 || high A
12 || high A
1 || normal A
6 || normal A
Assignment of drug 12 ESEEZ} g
high: A 100% correct  (in 3 of 3 cases) 7 || normal B
normal: 50% correct  (in 3 of 6 cases) 9 || normal B
low: B 100% correct  (in 3 of 3 cases) 4 | low B
8 || low B
total: 75% correct (in 9 of 12 cases) 11 || low B

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis



Induction of a Decision Tree: Example

Current Decision Tree:

Blood pressure

high

normal

Drug A ?

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Induction of a Decision Tree:

Blood pressure and sex

e Only patients
with normal blood pressure.

e Division w.r.t. male/female.

Assignment of drug

male: A 67% correct (2 of 3)
female: B 67% correct (2 of 3)
total: 67% correct (4 of 6)

Prof. R. Kruse, Chr. Braune

Example

No || Blood pr. | Sex Drug
3 || high A
5 || high A

12 || high A
1 || normal male || A
6 || normal male || A
9 || normal male || B
2 || normal temale || B
7 || normal temale || B

10 || normal female || A
4 1| low B
8 || low B

11 || low B

Intelligent Data Analysis



Induction of a Decision Tree

Blood pressure and age

e Only patients
with normal blood pressure.

e Sort according to age.

e Find best age split.
here: ca. 40 years

Assignment of drug

<40: A 100% correct (3 of 3)
> 40: B 100% correct (3 of 3)

total: 100% correct (6 of 6)

Prof. R. Kruse, Chr. Braune

: Example

No || Blood pr. | Age || Drug
3 || high A
5 || high A

12 || high A
1 || normal 20 A
6 || normal 29 A

10 || normal 30 A
7 || normal 52 B
9 || normal 61 B
2 || normal 73 B

11 || low B
4 | low B
8 || low B

Intelligent Data Analysis
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Result of Decision Tree Induction

Assignment of a drug to a patient:

Blood pressure

y low
normal
y
Drug A Age
< V Xﬂ)

Drug B

Drug A Drug B

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Decision Tree Induction: Notation

S a set of case or object descriptions
C the class attribute
AWM A other attributes (index dropped in the following)

dom(C) ={c1,...,cn.} nec: number of classes

dom(A) ={ay,...,a,,}, n4: number of attribute values

N. total number of case or object descriptions i.e. N = |S|

N; absolute frequency of the class ¢;

N ; absolute frequency of the attribute value a;

Nij absolute frequency of the combination of the class ¢; and the attribute value a;.
It is Nz = Z;’Lil Nz‘j and N_j = ZZTL:cl Nzy

Di. relative frequency of the class ¢;, p;, = %

D relative frequency of the attribute value a;, p ; = %

Dij relative frequency of the combination of class ¢; and attribute value a;, p;; = %

il relative frequency of the class ¢; in cases having attribute value a;, p;; = 7+ = %
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Decision Tree Induction: General Algorithm

function grow tree (S : set of cases) : node;
begin
best_v := WORTHLESS;
for all untested attributes A do
compute frequencies Nyj, N; , N jfor 1 < <ngand 1 < j < ngy;
compute value v of an evaluation measure using N;;, V; , N j;
if v > best_v then best_v = v; best_A := A; end;
end
if best_v = WORTHLESS
then create leaf node z;
assign majority class of S to x;
else create test node x:
assign test on attribute best_A to x:
for all a € dom(best_A) do x.child[a] := grow _tree(S|pesr 4—y); €Nd;
end;
return x;
end;

)

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Evaluation Measures

e Lvaluation measure used in the above example:
rate of correctly classified example cases.

o Advantage: simple to compute, easy to understand.

o Disadvantage: works well only for two classes.

e [fthere are more than two classes, the rate of misclassified example cases neglects
a lot of the available information.

o Only the majority class—that is, the class occurring most often in (a subset
of ) the example cases—is really considered.

o The distribution of the other classes has no influence. However, a good choice
here can be important for deeper levels of the decision tree.

e Therefore: Study also other evaluation measures. Here:
o Information gain and its various normalizations.

o x* measure (well-known in statistics).

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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An Information-theoretic Evaluation Measure

Information Gain (Kullback and Leibler 1951, Quinlan 1986)

n
Based on Shannon Entropy H = — Z p; logo p; (Shannon 1948)

1=1
Igain<ca A) — H<C> - H(C|A)
. ne ) rn A ne )
= - sz'. logop;.  — Zp.j ( ZP@U 10%2]%;‘)
i=1 j=1 i=1
H(C) Entropy of the class distribution (C" class attribute)
H(C|A) FEzpected entropy of the class distribution

if the value of the attribute A becomes known
H(C)— H(C|A) Expected entropy reduction or information gain

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Inducing the Decision Tree with Information (Gain

e Information gain for drug and sex:

1 I 1 1
H(D = —(=zloggy=4+ <logy =] =1
(Drug) (2 087 5 + 5 log 2)
Ly 1 I 1 1 Ly 1 I 1 1
H(D S :—<——1 — — =1 —) —(——1 - — =1 —):1
(Drug | Sex) 2\ 52y gty ) ol 5oy gl
H (Drug|Sex=male) H (Drug|Sex=female)

Loqin(Drug, Sex) =1 —1=0

e No gain at all since the initial the uniform distribution of drug is splitted into two
(still) uniform distributions.
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Inducing the Decision Tree with Information (Gain

e Information gain for drug and age:

1 1 1 1
H(Drue) = — =logo = + —1ogo = | = 1
(Drug) (2 08y 5, + 5 logy 2)
1/ 2 2 1 N 1/ 1 1 2 9
H(D A :—(——1 ] —) —(——1 - —)z0.9183
(Drug | Age) 2\30g23v30g231 +2\30g23v 30825
H (Drug|Age<40) H(Drug|Age>40)

Ioqin(Drug, Age) = 1 — 0.9183 = 0.0817

e Splitting w.r.t. age can reduce the overall entropy.
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Inducing the Decision Tree with Information (Gain

e [nformation gain for drug and blood pressure:

1 I 1 1
H(Drug) = — (5 logs 5 + 5 logs 5) =1

1 1 2 2 1 1
H (Drug | Blood _pr) :Z-O%—é( _510g2§_§10g2§ )—1——-():0.5

H (Drug]BIO(;a_pr:normal)

A

Ig4in(Drug, Blood pr) =1 —0.5=0.5

o Largest information gain, so we first split w.r.t. blood pressure (as in the example
with misclassification rate).
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Inducing the Decision Tree with Information (Gain

e Next level: Subtree blood pressure is normal.

e [nformation gain for drug and sex:

11 1. 1
H(Drug) = —( =logy = + =logy = ) =1
(Drug) (2 083 5 + 5 logy 2)
1/ 2 2 1. 1y 171 1 2 2
H(Drug | S :—(——1 Z_ ) —) —(——1 —_ 2 —) — 0.9183
(Drug | Sex) 2\30g23v30g23/ +2\30g23V30g23/
H (Drug|Sex=male) H (Drug|Sex=female)

Loqin(Drug, Sex) = 0.0817

e [ntropy can be decreased.
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Inducing the Decision Tree with Information (Gain

e Next level: Subtree blood pressure is normal.

e Information gain for drug and age:

1 1 1 1
H(D = —(=logy =+ =logs - | =1
(Drug) (2 0g22+20g22)
1 1
H(Drug|Age):§-O+§-O:O

Igain(Druga Age) =1

e Maximal information gain, that is we result in a perfect classification (again, as in
the case of using misclassification rate).

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis
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Interpretation of Shannon Entropy

o Let S ={s1,...,sn} be a finite set of alternatives having positive probabilities
P(s;), 1 =1,...,n, satisfying 3>I* | P(s;) = 1.

e Shannon Entropy:

n

H(S)=—)_ P(s;)logy P(s;)
=1

e [ntuitively: Expected number of yes/no questions that have to be
asked in order to determine the obtaining alternative.

o Suppose there is an oracle, which knows the obtaining alternative,
but responds only if the question can be answered with “yes” or “no”.

o A better question scheme than asking for one alternative after the other can
easily be found: Divide the set into two subsets of about equal size.

o Ask for containment in an arbitrarily chosen subset.

o Apply this scheme recursively — number of questions bounded by [logs n].
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Question/Coding Schemes

P(s1) = 0.10, P(sy) =0.15, P(s3) =016, P(sy)=0.19, P(s5)=0.40
Shannon entropy:  — >; P(s;)logy P(s;) = 2.15 bit/symbol

Linear Traversal

517327ﬂ3734735

|
82783784785
|
|
53, 54, S5
|
|
54, S5
|
0.10 015 [0.16 [0.19 0.40]|
S1 59 S3 S S5
1 2 3 4 4

Code length: 3.24 bit/symbol
Code efficiency: 0.664
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Equal Size Subsets

S1, 52, 53, 54, 55

10.25 0.75 |
S1, 52 53, 54, S5
| |
0.59 |
S4, S5
|
0.10  0.15 0.16 |0.19  0.40 |
S1 §2 83 54 S5
2 2 2 3 3

Code length: 2.59 bit/symbol
Code efficiency: 0.830

Intelligent Data Analysis 53



Question/Coding Schemes

e Splitting into subsets of about equal size can lead to a bad arrangement of the
alternatives into subsets — high expected number of questions.

e (Good question schemes take the probability of the alternatives into account.

e Shannon-Fano Coding (1948)
o Build the question/coding scheme top-down.
o Sort the alternatives w.r.t. their probabilities.

o Split the set so that the subsets have about equal probability
(splits must respect the probability order of the alternatives).

¢ Huffman Coding (1952)
o Build the question/coding scheme bottom-up.
o Start with one element sets.

o Always combine those two sets that have the smallest probabilities.
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Question/Coding Schemes

P(s1) = 0.10,

Shannon entropy:

P(sy) = 0.15,

Shannon—Fano Coding (1948)
S1, 52,53, 54, S5

10.41 0.59 |
1,52, 53 S4, S5

10.25
S1, 52

10.10  0.15] 0.16 0.19  0.40
51 §2 83 54 S5
3 3 2 2 2

Code length: 2.25 bit/symbol
Code efficiency: 0.955
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P(s3) = 0.16,
— > P(s;)1ogs P(s;) = 2.15 bit/symbol

P(s4) =0.19, P(s5) = 0.40

Huffman Coding (1952)

S1, 52, 53,54, 55

10.60
51, 52,53, 54
|
10.25 0.35 |
S1, 52 53, 54

10.10  0.15 | 10.16 0.19] 0.40
S1 §2 83 S4 S5
3 3 3 3 1

Code length: 2.20 bit/symbol
Code efficiency: 0.977
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Question/Coding Schemes

e [t can be shown that Huffman coding is optimal if we have to determine the
obtaining alternative in a single instance.
(No question/coding scheme has a smaller expected number of questions.)

e Only if the obtaining alternative has to be determined in a sequence of (indepen-
dent) situations, this scheme can be improved upon.

e [dea: Process the sequence not instance by instance, but combine two, three
or more consecutive instances and ask directly for the obtaining combination of
alternatives.

e Although this enlarges the question/coding scheme, the expected number of ques-
tions per identification is reduced (because each interrogation identifies the ob-
taining alternative for several situations).

e However, the expected number of questions per identification cannot be made ar-
bitrarily small. Shannon showed that there is a lower bound, namely the Shannon
entropy.
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Interpretation of Shannon Entropy

P(s) =3, Plsp)=1 Plss)=3% Plsg)=15 Plss)=15
Shannon entropy: — — Y_; P(s;)logs P(s;) = 1.875 bit/symbol

If the probability distribution allows for a Perfect Question Scheme
perfect Huffman code (code efficiency 1),

the Shannon entropy can easily be inter- 15 925 8‘3’ 45 95

preted as follows:

827 837 847 85
|
|
— ) P(s;)logy P(s;) 53, 545 55
1 | |
1 S4, S
— Z P<SZ) ) 1Og2 . 4| 0
- P(si) : 1 5 1 16 |
Z “ NV st S S S S S
occurrence path length 1 2 3 4 5
probability  in tree 1 2 3 4 4
In other words, it is the expected number Code length: 1.875 bit/symbol
of needed yes/no questions. Code efficiency: 1
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Other Information-theoretic Evaluation Measures

Normalized Information Gain

e [nformation gain is biased towards many-valued attributes.

e Normalization removes / reduces this bias.

Information Gain Ratio (Quinlan 1986 / 1993)

Ioain(C) A Ioain(C, A
Iy (C, A) = gh(, ) ganl - | _
A — ijl D.j logo D.j

Symmetric Information Gain Ratio (Lépez de Méantaras 1991)

e, 4) = Lgain(C A) or 12, 4) =
Hyc

Igain<ca A)
HA + HC’
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Bias of Information Gain

¢ Information gain is biased towards many-valued attributes,
i.e., of two attributes having about the same information content it tends to select
the one having more values.

e The reasons are quantization effects caused by the finite number of example cases
(due to which only a finite number of different probabilities can result in estima-
tions) in connection with the following theorem:

e Theorem: Let A, B, and C be three attributes with finite domains and let
their joint probability distribution be strictly positive, i.e., Va € dom(A) : Vb €
dom(B) : Ve € dom(C) : P(A=a,B=0,C =c¢) > 0. Then

Igain<ca AB) > ]gain<07 B)a

with equality obtaining only if the attributes C' and A are conditionally indepen-
dent given B, ie, if P(C=c|A=a,B=b)=P(C=c|B=M).

(A detailed proof of this theorem can be found, for example, in [Borgelt and Kruse 2002], p. 311ff.)
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A Statistical Evaluation Measure

v2 Measure

e Compares the actual joint distribution
with a hypothetical independent distribution.

e Uses absolute comparison.

e Can be interpreted as a difference measure.

n T
ifN pip.j — Pij)?
1=19=1 PiD.j

e Side remark: Information gain can also be interpreted as a difference measure.

ne nA

Di
gam(c A) = Z Z Pij logy -
i=1j=1 Pi.D.j
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Treatment of Numeric Attributes

General Approach: Discretization

e Preprocessing I

o Form equally sized or equally populated intervals.

¢ During the tree construction
o Sort the example cases according to the attribute’s values.

o Construct a binary symbolic attribute for every possible split
(values: “< threshold” and “> threshold”).

o Compute the evaluation measure for these binary attributes.

o Possible improvements: Add a penalty depending on the number of splits.

e Preprocessing II / Multisplits during tree construction
o Build a decision tree using only the numeric attribute.

o Flatten the tree to obtain a multi-interval discretization.
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Treatment of Missing Values

Induction
e Weight the evaluation measure with the fraction of cases with known values.
o Idea: The attribute provides information only if it is known.

e Try to find a surrogate test attribute with similar properties
(CART, Breiman et al. 1984)

e Assign the case to all branches, weighted in each branch with the relative frequency
of the corresponding attribute value (C4.5, Quinlan 1993).

Classification

e Use the surrogate test attribute found during induction.

e bollow all branches of the test attribute, weighted with their relative number
of cases, aggregate the class distributions of all leaves reached, and assign the
majority class of the aggregated class distribution.
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Pruning Decision Trees

Pruning serves the purpose
e to simplify the tree (improve interpretability),

e to avoid overfitting (improve generalization).

Basic ideas:
e Replace “bad” branches (subtrees) by leaves.

e Replace a subtree by its largest branch if it is better.

Common approaches:
e Reduced error pruning
® Pessimistic pruning
e (Confidence level pruning

e Minimum description length pruning
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Reduced Error Pruning

e (lassify a set of new example cases with the decision tree.
(These cases must not have been used for the induction!)

e Determine the number of errors for all leaves.
e The number of errors of a subtree is the sum of the errors of all of its leaves.
e Determine the number of errors for leaves that replace subtrees.

e [f such a leaf leads to the same or fewer errors than the subtree,
replace the subtree by the leaf.

e If a subtree has been replaced,
recompute the number of errors of the subtrees it is part of.

Advantage: Very good pruning, effective avoidance of overfitting.

Disadvantage: Additional example cases needed.

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis 64



Pessimistic Pruning

e (lassify a set of example cases with the decision tree.
(These cases may or may not have been used for the induction.)

e Determine the number of errors for all leaves and
increase this number by a fixed, user-specified amount 7.

e The number of errors of a subtree is the sum of the errors of all of its leaves.

e Determine the number of errors for leaves that replace subtrees
(also increased by 7).

e [f such a leaf leads to the same or fewer errors than the subtree,
replace the subtree by the leaf and recompute subtree errors.

Advantage: No additional example cases needed.

Disadvantage: Number of cases in a leaf has no influence.
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Confidence Level Pruning

e [ike pessimistic pruning, but the number of errors is computed as follows:
o See classification in a leaf as a Bernoulli experiment (error / no error).

o Estimate an interval for the error probability based on a user-specified confi-
dence level .
(use approximation of the binomial distribution by a normal distribution)

o Increase error number to the upper level of the confidence interval
times the number of cases assigned to the leaf.

o Formal problem: Classification is not a random experiment.

Advantage: No additional example cases needed, good pruning.

Disadvantage: Statistically dubious foundation.
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Pruning a Decision Tree: A Simple Example

Pessimistic Pruning with r» = 0.8 and r = 0.4:

leaf: 7.0 errors
c1: 13, ¢co: 7 r = 0.8: 7.8 errors (prune subtree)
r = 0.4: 7.4 errors (keep subtree)

aj a as
Y
C1: 9, €9 2 | | c1: 0, co: 2 | | C1: 2, ¢c90 3 | total: 6.0 errors
2.8 errors 2.8 errors 2.8 errors r = 0.8: 84 errors
2.4 errors 2.4 errors 2.4 errors r = 0.4: 7.2 errors
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Decision Trees: An Example

A decision tree for the Iris data
(induced with information gain ratio, unpruned)

iris_type

[
petal_length

<245

Iris-setosa

Iris-virginica

petal_length

<5.35 [>5.35

petal_length

=<4.95 =4.93
|
Iris-versicolor petal_width
=1.23
Iris—versicolor
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Decision Trees: An Example

A decision tree for the Iris data
(pruned with confidence level pruning, o = 0.8, and pessimistic pruning, r = 2)

iris_type

|
petal_length

iris_type

]
petal_length

<245

]
petal_width

. . <1.75 =1.75
petal_length Iris-versicolor |
!{535 ||:=-5.35
Iris-versicolor

o Left: 7 instead of 11 nodes, 4 instead of 2 misclassifications.

e Right: 5 instead of 11 nodes, 6 instead of 2 misclassifications.

e The right tree is “minimal” for the three classes.

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis 69



Summary Decision Trees

e Decision Trees are Classifiers with Tree Structure
o Inner node: Test of a descriptive attribute

o Leaf node: Assignment of a class

e Induction of Decision Trees from Data
(Top-Down Induction of Decision Trees, TDIDT)

o Divide and conquer approach / recursive descent
o Greedy selection of the test attributes

o Attributes are selected based on an evaluation measure,
e.g. information gain, X2 measure

o Recommended: Pruning of the decision tree
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Classification Evaluation: Cross Validation

e General method to evaluate / predict the performance of classifiers.
e Serves the purpose to estimate the error rate on new example cases.

e Procedure of cross validation:

o Split the given data set into n so-called folds of equal size
(n-fold cross validation).

o Combine n — 1 folds into a training data set,
build a classifier, and test it on the n-th fold.

o Do this for all n possible selections of n — 1 folds
and average the error rates.

e Special case: Leave-1-out cross validation.
(use as many folds as there are example cases)

e [inal classifier is learned from the full data set.
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Support Vector Machines




Supervised Learning, Diagnosis System for Diseases

Training data: Expression profiles of patients with known diagnosis

The known diagnosis gives us a structure within the data, which we want to generalize
for future data.

Learning/Training: Derive a decision rule from the training data which separates
the two classes.

Ability for generalization: How useful is the decision rule when it comes to
diagnosing patients in the future?

Aim: Find a decision rule with high ability for generalization!
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Learning from Examples

Given: X = {z;,y;}}", training data of patients with known diagnosis

consists of:
r; € RY (points, expression profiles)

y; € {+1, —1} (classes, 2 kinds of cancer)

Decision function:
fx RYI = {+1,—1}

diagnosis = fy (new patient)
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Underfitting / Overfitting

®
® o
@
®
o @
® ®
] ® ® @
too simple too complex
o
® O
®
@
®

@ negative example
| positive example ® @
(?) new patient

tradeoff
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Linear Separation of Training Data

Begin with linear separation and increase the complexity in a second
step with a kernel function.

A separating hyperplane is defined by

e a5 normal vector w and
e an offset b:

Hyperplane H = {z|(w,x) + b= 0}

(-, ) is called the inner product
or scalar product.
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Predicting the class of a new point

Training: Choose w and b in such a way that the hyperplane
separates the training data.

Prediction: Which side of the hyperplane
is the new point located on?

Points on the side that the normal vector
points at are diagnosed as POSITTVE.

Points on the other side are diagnosed
as NEGATIVE.
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Motivation

Origin in Statistical Learning Theory; class of optimal classifiers

Core problem of Statistical Learning Theory: Ability for generalization.
When does a low training error lead to a low real error?

Binary Class Problem:

Classification = mapping function f(x,u): * —y € {+1,—1}
x: sample from one of the two classes

u: parameter vector of the classifier

Learning sample with [ observations z1, x9, ..., 7]
along with their class affiliation y1, 49, ...,1;
— the empirical risk (error rate) for a given training dataset:

Remp = Z lyi — flx;,u)| €10,1]

A lot of classifiers do minimize the empirioal risk, e.g. Neural Networks.
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Motivation

Expected value of classification error (expected risk):

R(u) = E{Riea(w)} = E{ly— flewl} = [ Sy fa.w)lp(r.y) dedy

p(x,y): Distribution density of all possible samples z along with their class affiliation
y (Can’t evaluate this expression directly as p(x,y) is not available.)

Optimal sample classification:
Search for deterministic mapping function f(x,u) : * — y € {+1, —1} that minimizes
the expected risk.

Core question of sample classification:

How close do we get to the real error after we saw [ training samples? How
well can we estimate the real risk R(u) from the empirical risk Repmp(u)?
(Structural Risk Minimization instead of Empirical Risk Minimization)

The answer is given by Learning Theory of Vapnik-Chervonenkis — SV Ms
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SV Ms for linear separable classes

Previous solution:
e General hyperplane: wx + b =0

o (lassification: sgn(wzx + b)

e Training, e.g. by perceptron-algorithm
(iterative learning, correction after every misclassification; no unique solution)
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Reminder: Function Optimization

Task: Find values ¥ = (z1, ..., xy) such that f(Z) = f(z1,...,Ty) is optimal.

Often feasible approach:

e A necessary condition for a (local) optimum (maximum or minimum) is
that the partial derivatives w.r.t. the parameters vanish (Pierre Fermat).

e Therefore: (Try to) solve the equation system that results from setting
all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize f(x,y) = x? + % + zy — 4z — by,
Solution procedure:

1. Take the partial derivatives of the objective function and set them to zero:

0 0
ox oy
2. Solve the resulting (here: linear) equation system: r=1  y=2
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Function Optimization with Constraints

Often a function has to be optimized subject to certain constraints.

Here: restriction to k equality constraints C;(¥) =0,i=1,... k.

Note: the equality constraints describe a subspace of the domain of the function.
Problem of optimization with constraints:

e The gradient of the objective function f may vanish outside the constrained sub-
space, leading to an unacceptable solution (violating the constraints).

e At an optimum wn the constrained subspace the derivatives need not vanish.
One way to handle this problem are generalized coordinates:

e Exploit the dependence between the parameters specified in the constraints to
express some parameters in terms of the others and thus reduce the set ¥ to a set
7' of independent parameters (generalized coordinates).

e Problem: Can be clumsy and cumbersome, if possible at all, because the form of
the constraints may not allow for expressing some parameters as proper functions
of the others.
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Contour Lines

Contour Lines:

Example:

Prof. R. Kruse, Chr. Braune

of a Function

Given a function f : R? — R, the contour plot is obtained
by drawing the contour sets for equidistant levels, i.e., plot
the following sets of points:

Mo = {(w1,22) € R* | f(z1,22) = kc}
for k € N and fixed ¢ € R>

fz1, m9) = % + 23
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Gradient Field of a Function

e The gradient of a function f: R — R consists of the vector of its partial deriva-
tives w.1.t. the arguments:

w.p_ (25 ory
g B (93317’(95671

e The gradient evaluated at a point ™, written as

of
Vi fle = (6—551

points into the direction of largest increase of f.

of

7 e o o ’ -
* 65[37’[/
T

.
).
7

e Formally, the gradient of a function with domain R has n dimensions although
it is often depicted as an n + 1-dimensional vector.
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Gradient Field of a Function: Examples
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S ST
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S SAS S S S S
e /( 1 5
S SAS S S S S
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S S AS S S S S
S S S S S
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Function Optimization with Constraints

Problem: If the global optimum of f lies outside the feasible region
the gradient does not vanish at the constrained optimum ™.

Which criteria do hold at the constrained optimum?

e Assume we move T throughout the feasible region to find the optimum “manu-
ally”. It we cross a contour line of f, the crossing point cannot be an optimum:
because crossing a contour line means descending or ascending.

e However, if we touch a contour line we have found an optimum because stepping
backward or forward will increase (or decrease) the value.

e At the “touching point” ™ the gradient of f and the gradient of g are parallel.

Vf=AVg

e We only need both gradients to be parallel. Since they can have opposite directions
and different lengths A is used to rescale Vg.
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Example

Task: Minimize f(xq,x9) = :B% + ZB% subject to ¢g:x+y = 1.

0.8 e Crossing a contour line: Point 1 cannot
be a constrained minimum because Vf has
a non-zero component in the constrained
space. Walking in opposite direction to this
component can further decrease f.

e Touching a contour line: Point 2 is a
constrained minimum: both gradients are
parallel, hence there is no component of Vf
in the constrained space that might lead us
to a lower value of f.
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Function Optimization with Constraints

e Therefore, at the constrained optimum Z* we require:

V(@) =AVg(Z*) and  g(&*) =0

e More compact representation:

L(Z,\) = f(Z) — X g() and VL=0
e Taking the partial derivatives reveals the initial conditions:

9 L(#A) = VF(F) — AVg(i) = 0

0
V(&) = AVy(T)
%

L(E ) = g(F) = 0

e The negative sign in the Lagrange function L can be incorporated into A, i.e. we
will from now on replace it by a positive sign.
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Lagrange Theory: Example 1

Example task: Minimize f(x,y) = 2 +1y% subjectto z4+y=1.

Solution procedure:
1. Rewrite the constraint, so that one side gets zero: z +y — 1 = 0.

2. Construct the Lagrange function by incorporating the constraint
into the objective function with a Lagrange multiplier A:

Lz, y,\) =2° +° + Mz +y — 1).

3. Take the partial derivatives of the Lagrange function and set them to zero
(necessary conditions for a minimum):

0L 0L 0L

4. Solve the resulting (here: linear) equation system:

DO —

A= —1, r=y =

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis 89



Summary: Function Optimization with Constraints

Let £* be a (local) optimum of f(Z) in the constrained subspace. Then:

e The gradient Vzf(Z™), if it does not vanish, must be perpendicular to the
constrained subspace. (If Vzf(Z*) had a component in the constrained subspace,
* would not be a (local) optimum in this subspace.)

e The gradients Vz g]( *), 1 <7 <k, must all be perpendicular to the
constrained subspace, because they are constant, namely 0, in this subspace.
Together they span the subspace perpendicular to the constrained subspace.

® Therefore it must be possible to find values A;, 1 < j < k, such that

Vif(@ +Z)\ Vzgi(Z) = 0.
J=1
If the constraints (and thus their gradients) are linearly independent, the values
Aj are uniquely determined. This equation can be used to compensate the
gradient of f(Z™) so that it vanishes at £*.
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General Principle: Lagrange Theory

As a consequence of these insights we obtain the

Method of Lagrange Multipliers:

Given: o a function f(), which is to be optimized,
o k equality constraints g;(Z) =0,1 <7 < k.

Procedure:

1. Construct the so-called Lagrange function by incorporating the equality con-

straints g;, ¢ = 1, ..., k, with (unknown) Lagrange multipliers )\;:
k
L(Z, A1, Ap) = F(2) + ) Nigi(@).
1=1

2. Set the partial derivatives of the Lagrange function equal to zero:

oL _ oL _
or| o\

3. (Try to) solve the resulting equation system.

L
0, . Ly
Oxm,

oL

0, ..., ——=
J Y aAk,

0.
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Lagrange Theory: Revisited Example 1

Example task: Minimize f(x,y) = 2 +1y% subjectto z4+y=1.

minimum in the
constrained subspace

— 1 1
P1 = (o
constrained
subspace
| r+y=1
unconstrained
minimum
po = (0,0)

The unconstrained minimum is not in the constrained subspace, and
at the minimum in the constrained subspace the gradient does not vanish.
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Lagrange Theory: Revisited Example 1

subject to x4y =1.

L(CE,y, _1) — $2+y2—<$—|—y—1)

The gradient of the constraint is perpendicular to the constrained subspace.
The (unconstrained) minimum of the Lagrange function L(z,y, A)
is the minimum of the objective function f(x,y) in the constrained subspace.
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Lagrange Theory: Example 2

Example task: Find the side lengths z, y, z of a box with maximum volume
for a given area S of the surface.

Formally: Maximize  f(z,y,2) = zyz
subject to  2xy + 2xz +2yz = S5.

Solution procedure:
1. The constraint is C(z,y, 2) = 2xy + 22z + 2yz — S = 0.

2. The Lagrange function is

L(x,y,z,\) = xyz + A\2xy + 222 + 2yz — S).
3. Taking the partial derivatives yields (in addition to the constraint):

g—i = yz+2\(y+2) =0, 2—5 = xz+2\(x+2) =0, 2—5 = zy+2Xz+y) = 0.

4. The solution is: A\ = —% %, rT=yY=2z= % (i.e., the box is a cube).
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Function Optimization: Lagrange Theory

Observations:

e Due to the representation of the gradient of f(Z) at a local optimum Z* in the
constrained subspace (see above) the gradient of L w.r.t. & vanishes at £*.

— The standard approach works again!

e [f the constraints are satisfied, the additional terms have no influence.

— The original task is not modified (same objective function).

e Taking the partial derivative w.r.t. a Lagrange multiplier
reproduces the corresponding equality constraint:

0
1<j<k:  ——L(ZM,... = C;(Z
\V/], >7 > k 8)\] (LC,)\L 7)\16) Cb(ﬂf),

— Constraints enter the equation system to solve in a natural way:.

Remark:

e Inequality constraints can be handled with the Kuhn—Tucker theory.
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Which hyperplane is the best - and why?
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No exact cut, but a ...

(&
B
| Samples

with positive
label

Samples

with negative
® e ®
O O
O
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Separate the training data with maximal separation margin
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Separate the training data with maximal separation margin

Try linear separation, but accept errors:
e

Penalty for errors: Distance to hyperplane times error weight C
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SV Ms for linearly separable classes

e With SVMs we are searching for a separating hyperplane with maximal margin.

Optimum: The hyperplane with the highest 20 of all possible separating hyper-
planes.

e This is intuitively meaningful
(At constant intra-class scattering, the confidence of right classification is growing
with increasing inter-class distance)

e SVMs are theoretically justified by Statistical Learning Theory.
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SV Ms for linearly separable classes

Large-Margin Classifier: Separation line 2 is better than 1
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SV Ms for linearly separable classes

wr + b; +1 wr+b=-1 Training samples are classified
D

o ° correctly, if:
o 02 o yi(wx; +b) >0
o | ® Invariance of this expression to-
O ° wards a positive scaling leads
) to:
O yi(wr; +0) > 1
o with canonical hyperplanes:
O ® { wx; + b = +1; (class with y; = +1)

wxr+b=20

The distance between the canonical hyperplanes results from projecting x1 — x9 to the
unit length normal vector WwU—H:

2% =~ dh§ =

[lwl| [Jwl]
— maximizing ¢ = minimizing ||w]||?
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SV Ms for linearly separable classes

Optimal separating plane by minimizing a quadratic function to linear constraints:

Primal Optimization Problem:
minimize: J(w,b) = %||w||2
to the constraints Vi |y;(wx; +b) > 1], i =1,2,...,1

Introducing a Lagrange-Function:

1 [
Liw,b.0) =l ~ Y ailyi(wr; +5) ~ 1) a; >0
=1
leads to the dual problem: Z

maximize L(w,b, ) with respect to a, under the constraints:

[
OL(w,b,«
(aw l20 = w= Zl%'ym
1=
[
OL(w,b,«
((% ) = 0 = Z()diy@' = ()

1=1
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SV Ms for linearly separable classes

[nsert this terms in L(w, b, a):

' z
L(w,b,a) = §||w||2 — > ojlyi(wz; +b) — 1]

1=1
1 ! ! !
= §w-w—w-Z&iyixi—b-Zaiyﬁ—Zai
1=1 1=1 1=1
1 !
= iw-w—w-w—FZOzi
1=1
1 l
= —éw-erZozi
1=1
1 L
= —522%%&1&3%%4—20@
1=17=1
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SV Ms for linearly separable classes

Dual Optimization Problem

[

1=

maximize: L'(a Z o — = Z Z Yil OGO TGT

21]1

to the constraints a; > 0 and ) y;a; =

1

This optimization problem can be solved numerically with the help of standard quadratic

programming techniques.
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SV Ms for linearly separable classes

Solution of the optimization problem:

[
w* = Z QY Ly = Z QiYL
1=1 x, €SV
1
bt = —§-w* (zp + )

for arbitrary xp € SV, yp = +1, und xp, € SV, ym = —1

where
SV = {CUZ'|C¥Z'>O, iZl,Q,...,l}

is the set of all support vectors.

Classification rule:

sgn(w*z +0%) = sgn[( Y oy + 0]
x; €SV

The classification only depends on the support vectors!
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SV Ms for linearly separable classes

Example: Support Vectors
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SV Ms for linearly separable classes

Example: class +1 contains 1 = (0,0) and z9 = (1, 0);
class -1 contains z3 = (2,0) and x4 = (0, 2)
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SV Ms for linearly separable classes

The Dual Optimization Problem is:

to the constraints a; > 0 and a1 + a9 —ag —ay =0

maximize: L'(a)) = (a1 + a9 + a3+ ay) — %(OK% —danasz + 404% + 4ag)

Solution:

a1 =0, ay=1, 043:%, 044:%
SV = {(1,0), (2,0), (0,2)}

w* =1 (1,0)—%(2,0)—5(0,2)
bt = —3 (=3 -3) (L) +(2,0) =

Optimal separation line: x +y =

DOl QO
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SV Ms for linearly separable classes

Observations:
e For the Support Vectors holds: a; > 0
e For all training samples outside the margin holds: a; =0
e Support Vectors form a sparse representation of the sample; They are sufficient
for classification.
e The solution is the global optima and unique
® The optimization procedure only requires scalar products z;x;
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SV Ms for non-linearly separable classes

[n this example there is no separating line such as Vi [y;(wz; + b) > 1]

y=—1
y=20

) Three possible cases:
y =

A) Vectors beyond the margin, which
are correctly classified, i.e.
yilwz; +b) > 1
B) Vectors within the margin, which are
correctly classified, i.e.
0 < yi(wr;+b) < 1
All three cases can be interpreted C) Vectors that are not correctly classi-
as: y;(wzr; +b) > 1—=¢; fied, i.e.
A) & =0 yi(wz; +b) < 0
B) 0<§ <1
C) & >1
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SV Ms for non-linearly separable classes

Motivation for generalization:
e Previous approach gives no solution for classes that are non-lin. separable.
e [mprovement of the generalization on outliers within the margin

Soft-Margin SVM: Introduce “slack”-Variables

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis 112



SV Ms for non-linearly separable classes

Penalty for outliers via “slack”-Variables

Primale Optimization Problem:

[
minimize: J(w,b, &) = %Hw”? +0Y ¢
1=1
to the constraints Vi |y;(wx; +b) > 1 —=&;, & > 0]

Dual Optimization Problem

maximize: L'(c Z o — = Z Z Yl j OGO TG
z 19=1
[
to the constraints 0 < a; < C' and Z y;o =0
1=1
(Neither slack-Variables nor Lagrange-Multiplier occur in the
dual optimization problem.)

The only difference compared to the linear separable case: Constant C' in the constraints.
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SV Ms for non-linearly separable classes

Solution of the optimization problem:

[
wh = Z&zyzxz - Z QYT
1=1 x;eSV

b = yp(l—¢&) —w'ry; k=argmaxa;
1
where

SV = {CBZ'|C¥Z'>O, i:1,2,...,l}

describes the set of all Support Vectors.
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SV Ms for non-linearly separable classes

Example: non-linearly
separable classes
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Non-linear SVMs

Non-linear class boundaries — low precision

Example: Transformation U(z) = (z, 2%) — Cy and Cy linearly separable

Idea:
Transformation of attributes £ € R in a higher dimensional space R, m > n by
v: R — R

and search for an optimal linear separating hyperplane in this space.
Transformation ¥ increases linear separability:.

Separating hyperplane in 1" = non-linear separating plane in 1"
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Non-linear SVMs

Problem: High dimensionality of the attribute space R
E.g. Polynomes of p-th degree over R — R m = O(nP)

Trick with kernel function:

Originally in R": only scalar products x;z; required
new in " only scalar products W(z;)¥(x;) required

Solution
No need to compute W(z;)¥(z;), but express them at reduced complexity with the
kernel function

Kz xj) = () ¥(zy)

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis



Non-linear SVMs

Example: For the transformation ¥ : R®2 — RO

U((y1,90)) = (Wi, 3, V2y1, V2y, V2y11, 1)

the kernel function computes

= ((3/21 yzQ) (3/]1 yjo) +1)7
(yzlyjl + Yioyjo + 1)
(

y221 9227f9217f9227fyzly227 1)

(W51, 5o, V2yi1, V2452, V2u1952, 1)
= W(z;)V(z)
the scalar product in the new attribute space 19
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Non-linear SVMs

Example: ¥ : 2 — 3

U((y1,y2)) = (v, V2190, ¥3)

L] ;' S B
* o N e ©
H'R \
@ m S L
L N N,
o O . e
B E ® ™ ~
: ® . '
= * S EEEEN g
*x. 7
® > 9 = separating
= . _hyperplane

The kernel function

2
Kz, x5) = (viwy)” = W(z)V(z;)
computes the scalar product in the new attribute space R°. It is possible to compute
the scalar product of W(x;) and V(z,) without applying the function W.
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Nonlinear SVMs

Commonly used kernel functions:

Polynomial-Kernel: K (xz;,z;) = (azixj)d
i1
Gauss-Kernel: K(zj,xj) = e~ -

Sigmoid-Kernel: K(zj,x;) = tanh(Biz;2; + 52)
Linear combination of valid kernels — new kernel functions

We do not need to know what the new attribute space R'* looks like. The only thing
we need is the kernel function as a measure for similarity:.
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Non-linear SVMs
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Non-linear SVMs

Example: Gauss-Kernel (¢ = 1) for Soft-Margin SVM.
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Final Remarks

Advantages of SVMs:
e According to current knowledge SVMs yield very good classification results; in
some tasks they are considered to be the top-performer.
e Sparse representation of the solution by Support Vectors
e Hasily practicable: few parameters, no need for a-priori-knowledge
e Geometrically intuitive operation
e Theoretical statements about results: global optima, ability for generalization

Disadvantages of SVMs
e [earning process is slow and in need of intense memory

e “Tuning SVMs remains a black art: selecting a specific kernel and parameters is
usually done in a try-and-see manner”
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Final Remarks

e List of SVM-implementations at
http://www.kernel-machines.org/software

e The most common one is LIBSVM:
http://www.csie.ntu.edu.tw/"cjlin/libsvm/

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis 124



