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Motivation

A Crisp relation represents presence or absence of association,
interaction or interconnection between elements of ≥ 2 sets.

This concept can be generalized to various degrees or strengths of
association or interaction between elements.

A fuzzy relation generalizes these degrees to membership grades.

So, a crisp relation is a restricted case of a fuzzy relation.
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Definition of Relation

A relation among crisp sets X1, . . . , Xn is a subset of X1 × . . . × Xn

denoted as R(X1, . . . , Xn) or R(Xi | 1 ≤ i ≤ n).

So, the relation R(X1, . . . , Xn) ⊆ X1 × . . . × Xn is set, too.

The basic concept of sets can be also applied to relations:

• containment, subset, union, intersection, complement

Each crisp relation can be defined by its characteristic function

R(x1, . . . , xn) =

{

1, if and only if (x1, . . . , xn) ∈ R,

0, otherwise.

The membership of (x1, . . . , xn) in R signifies that the elements of
(x1, . . . , xn) are related to each other.
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Relation as Ordered Set of Tuples

A relation can be written as a set of ordered tuples.

Thus R(X1, . . . , Xn) represents n-dim. membership array R = [ri1,...,in ].

• Each element of i1 of R corresponds to exactly one member of X1.

• Each element of i2 of R corresponds to exactly one member of X2.

• And so on...

If (x1, . . . , xn) ∈ X1 × . . . × Xn corresponds to ri1,...,in ∈ R, then

ri1,...,in =

{

1, if and only if (x1, . . . , xn) ∈ R,

0, otherwise.
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Fuzzy Relations

The characteristic function of a crisp relation can be generalized to
allow tuples to have degrees of membership.

• Recall the generalization of the characteristic function of a crisp
set!

Then a fuzzy relation is a fuzzy set defined on tuples (x1, . . . , xn)
that may have varying degrees of membership within the relation.

The membership grade indicates strength of the present relation
between elements of the tuple.

The fuzzy relation can also be represented by an n-dimensional
membership array.
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Example

Let R be a fuzzy relation between two sets X = {New York City, Paris}
and Y = {Beijing, New York City, London}.

R shall represent relational concept “very far”.

It can be represented as two-dimensional membership array:

NYC Paris
Beijing 1 0.9
NYC 0 0.7

London 0.6 0.3
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Cartesian Product of Fuzzy Sets: n Dimensions

Let n ≥ 2 fuzzy sets A1, . . . , An be defined in the universes of
discourse X1, . . . , Xn, respectively.

The Cartesian product of A1, . . . , An denoted by A1 × . . . × An is a
fuzzy relation in the product space X1 × . . . × Xn.

It is defined by its membership function

µA1×...×An
(x1, . . . , xn) = ⊤ (µA1(x1), . . . , µAn

(xn))

whereas xi ∈ Xi , 1 ≤ i ≤ n.

Usually ⊤ is the minimum (sometimes also the product).
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Cartesian Product of Fuzzy Sets: 2 Dimensions

A special case of the Cartesian product is when n = 2.

Then the Cartesian product of fuzzy sets A ∈ F(X ) and B ∈ F(Y ) is
a fuzzy relation A × B ∈ F(X × Y ) defined by

µA×B(x , y) = ⊤ [µA(x), µB(y)] , ∀x ∈ X , ∀y ∈ Y .
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Example: Cartesian Product in F(X × Y ) with
t-norm = min
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Subsequences

Consider the Cartesian product of all sets in the family

X = {Xi | i ∈ INn = {1, 2, . . . , n}} .

For each sequence (n-tuple) x = (x1, . . . , xn) ∈ ×i∈INnXi

and each sequence (r -tuple, r ≤ n) y = (y1, . . . , yr ) ∈ ×j∈JXj

where J ⊆ INn and |J | = r

y is called subsequence of x if and only if yj = xj , ∀j ∈ J .

y ≺ x denotes that y is subsequence of x.
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Projection

Given a relation R(x1, . . . , xn).

Let [R ↓ Y] denote the projection of R on Y.

It disregards all sets in X except those in the family

Y = {Xj | j ∈ J ⊆ INn} .

Then [R ↓ Y] is a fuzzy relation whose membership function is defined
on the Cartesian product of the sets in Y

[R ↓ Y](y) = max
x≻y

R(x).

Under special circumstances, this projection can be generalized by
replacing the max operator by another t-conorm.
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Example

Consider the sets X1 = {0, 1}, X2 = {0, 1}, X3 = {0, 1, 2} and the
ternary fuzzy relation on X1 × X2 × X3 defined as follows:

Let Rij = [R ↓ {Xi , Xj}] and Ri = [R ↓ {Xi}] for all i , j ∈ {1, 2, 3}.

Using this notation, all possible projections of R are given below.

(x1, x2, x3) R(x1, x2, x3) R12(x1, x2) R13(x1, x3) R23(x2, x3) R1(x1) R2(x2) R3(x3)
0 0 0 0.4 0.9 1.0 0.5 1.0 0.9 1.0
0 0 1 0.9 0.9 0.9 0.9 1.0 0.9 0.9
0 0 2 0.2 0.9 0.8 0.2 1.0 0.9 1.0
0 1 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0 1 1 0.0 1.0 0.9 0.5 1.0 1.0 0.9
0 1 2 0.8 1.0 0.8 1.0 1.0 1.0 1.0
1 0 0 0.5 0.5 0.5 0.5 1.0 0.9 1.0
1 0 1 0.3 0.5 0.5 0.9 1.0 0.9 0.9
1 0 2 0.1 0.5 1.0 0.2 1.0 0.9 1.0
1 1 0 0.0 1.0 0.5 1.0 1.0 1.0 1.0
1 1 1 0.5 1.0 0.5 0.5 1.0 1.0 0.9
1 1 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0

R. Kruse, C. Doell FS – Fuzzy Relations Lecture 5 12 / 31

mailto:kruse@ovgu.de
mailto:doell@ovgu.de


Example: Detailed Calculation

Here, only consider the projection R12:

(x1, x2, x3) R(x1, x2, x3) R12(x1, x2)
0 0 0 0.4
0 0 1 0.9 max[R(0, 0, 0), R(0, 0, 1), R(0, 0, 2)] = 0.9
0 0 2 0.2
0 1 0 1.0
0 1 1 0.0 max[R(0, 1, 0), R(0, 1, 1), R(0, 1, 2)] = 1.0
0 1 2 0.8
1 0 0 0.5
1 0 1 0.3 max[R(1, 0, 0), R(1, 0, 1), R(1, 0, 2)] = 0.5
1 0 2 0.1
1 1 0 0.0
1 1 1 0.5 max[R(1, 1, 0), R(1, 1, 1), R(1, 1, 2)] = 1.0
1 1 2 1.0
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Cylindric Extension

Another operation on relations is called cylindric extension.

Let X and Y denote the same families of sets as used for projection.

Let R be a relation defined on Cartesian product of sets in family Y.

Let [R ↑ X \ Y] denote the cylindric extension of R into sets
X1, (i ∈ INn) which are in X but not in Y.

It follows that for each x with x ≻ y

[R ↑ X \ Y](x) = R(y).

The cylindric extension

• produces largest fuzzy relation that is compatible with projection,

• is the least specific of all relations compatible with projection,

• guarantees that no information not included in projection is used
to determine extended relation.
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Example

Consider again the example for the projection.

The membership functions of the cylindric extensions of all projections
are already shown in the table under the assumption that their
arguments are extended to (x1, x2, x3) e.g.

[R23 ↑ {X1}](0, 0, 2) = [R23 ↑ {X1}](1, 0, 2) = R23(0, 2) = 0.2.

In this example none of the cylindric extensions are equal to the
original fuzzy relation.

This is identical with the respective projections.

Some information was lost when the given relation was replaced by
any one of its projections.
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Cylindric Closure

Relations that can be reconstructed from one of their projections by
cylindric extension exist.

However, they are rather rare.

It is more common that relation can be exactly reconstructed

• from several of its projections (max),

• by taking set intersection of their cylindric extensions (min).

The resulting relation is usually called cylindric closure.

Let the set of projections {Pi | i ∈ I} of a relation on X be given.

Then the cylindric closure cyl{Pi} is defined for each x ∈ X as

cyl{Pi}(x) = min
i∈I

[Pi ↑ X \ Yi ](x).

Yi denotes the family of sets on which Pi is defined.
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Example

Consider again the example for the projection.
The cylindric closures of three families of the projections are shown
below:

(x1, x2, x3) R(x1, x2, x3) cyl(R12, R13, R23) cyl(R1, R2, R3) cyl(R12, R3)
0 0 0 0.4 0.5 0.9 0.9
0 0 1 0.9 0.9 0.9 0.9
0 0 2 0.2 0.2 0.9 0.9
0 1 0 1.0 1.0 1.0 1.0
0 1 1 0.0 0.5 0.9 0.9
0 1 2 0.8 0.8 1.0 1.0
1 0 0 0.5 0.5 0.9 0.5
1 0 1 0.3 0.5 0.9 0.5
1 0 2 0.1 0.2 0.9 0.5
1 1 0 0.0 0.5 1.0 1.0
1 1 1 0.5 0.5 0.9 0.9
1 1 2 1.0 1.0 1.0 1.0

None of them is the same as the original relation R.

So the relation R is not fully reconstructable from its projections.
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Motivation and Domain

Binary relations are significant among n-dimensional relations.

They are (in some sense) generalized mathematical functions.

On the contrary to functions from X to Y , binary relations R(X , Y )
may assign to each element of X two or more elements of Y .

Some basic operations on functions, e.g. inverse and composition, are
applicable to binary relations as well.

Given a fuzzy relation R(X , Y ).

Its domain dom R is the fuzzy set on X whose membership function is
defined for each x ∈ X as

dom R(x) = max
y∈Y

{R(x , y)},

i.e. each element of X belongs to the domain of R to a degree equal
to the strength of its strongest relation to any y ∈ Y .
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Range and Height

The range ran of R(X , Y ) is a fuzzy relation on Y whose membership
function is defined for each y ∈ Y as

ran R(y) = max
x∈X

{R(x , y)},

i.e. the strength of the strongest relation which each y ∈ Y has to an
x ∈ X equals to the degree of membership of y in the range of R.

The height h of R(X , Y ) is a number defined by

h(R) = max
y∈Y

max
x∈X

{R(x , y)}.

h(R) is the largest membership grade obtained by any pair (x , y) ∈ R.
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Representation and Inverse

Consider e.g. the membership matrix R = [rxy ] with rxy = R(x , y).

Its inverse R−1(Y , X ) of R(X , Y ) is a relation on Y × X defined by

R−1(y , x) = R(x , y), ∀x ∈ X , ∀y ∈ Y .

R−1 = [r−1
xy ] representing R−1(y , x) is the transpose of R for R(X , Y )

(R−1)−1 = R, ∀R.
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Standard Composition

Consider the binary relations P(X , Y ), Q(Y , Z ) with common set Y .

The standard composition of P and Q is defined as

(x , z) ∈ P ◦ Q ⇐⇒ ∃y ∈ Y : {(x , y) ∈ P ∧ (y , z) ∈ Q}.

In the fuzzy case this is generalized by

[P ◦ Q](x , z) = sup
y∈Y

min{P(x , y), Q(y , z)}, ∀x ∈ X , ∀z ∈ Z .

If Y is finite, sup operator is replaced by max.

Then the standard composition is also called max-min composition.
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Inverse of Standard Composition

The inverse of the max-min composition follows from its definition:

[P(X , Y ) ◦ Q(Y , Z )]−1 = Q−1(Z , Y ) ◦ P−1(Y , X ).

Its associativity also comes directly from its definition:

[P(X , Y )] ◦ Q(Y , Z )] ◦ R(Z , W ) = P(X , Y ) ◦ [Q(Y , Z ) ◦ R(Z , W )].

Note that the standard composition is not commutative.

Matrix notation: [rij ] = [pik ] ◦ [qkj ] with rij = maxk min(pik , qkj).
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Example

P ◦ Q = R






.3 .5 .8
0 .7 1
.4 .6 .5






◦







.9 .5 .7 .7

.3 .2 0 .9
1 0 .5 .5






=







.8 .3 .5 .5
1 .2 5 .7
.5 .4 .5 .5







For instance:

r11 = max{min(p11, q11), min(p12, q21), min(p13, q31)}

= max{min(.3, .9), min(.5, .3), min(.8, 1)}

= .8

r32 = max{min(p31, q12), min(p32, q22), min(p33, q32)}

= max{min(.4, .5), min(.6, .2), min(.5, 0)}

= .4
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Example: Types of Airplanes (Speed, Height,
Type)

Consider the following fuzzy relations for airplanes:

• relation A between maximal speed and maximal height,

• relation B between maximal height and the type.

A h1 h2 h3

s1 1 .2 0
s2 .1 1 0
s3 0 1 1
s4 0 .3 1

B t1 t2

h1 1 0
h2 .9 1
h3 0 .9
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Example (cont.)

matrix multiplication scheme

1 0
A ◦ B .9 1

0 .9

1 .2 0 1 .2
.1 1 0 .9 1
0 1 1 .9 1
0 .3 1 .3 .9

A ◦ B speed-type relation

flow scheme

s1 s2 s3 s4

h1 h2 h3

t1 t2

.3 1

1 .9

(A ◦ B)(s4, t2) = max{min{.3, 1}, min{1, .9}}

= .9
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Relational Join

A similar operation on two binary relations is the relational join.

It yields triples (whereas composition returned pairs).

For P(X , Y ) and Q(Y , Z ), the relational join P ∗ Q is defined by

[P ∗ Q](x , y , z) = min{P(x , y), Q(y , z)}, ∀x ∈ X , ∀y ∈ Y , ∀z ∈ Z .

Then the max-min composition is obtained by aggregating the join by
the maximum:

[P ◦ Q](x , z) = max
y∈Y

[P ∗ Q](x , y , z), ∀x ∈ X , ∀z ∈ Z .
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Example

The join S = P ∗ Q of the relations P and Q has the following
membership function (shown below on left-hand side).

To convert this join into its corresponding composition R = P ◦ Q

(shown on right-hand side),
The two indicated pairs of S(x , y , z) are aggregated using max.

x y z µSx , y , z

1 a α .6
1 a β .7*
1 b β .5*
2 a α .6
2 a β .8
3 b β 1
4 b β .4*
4 c β .3*

x z µR(x , z)
1 α .6
1 β .7
2 α .6
2 β .8
3 β .1
4 β .4

For instance,
R(1, β) = max{S(1, a, β), S(1, b, β)}

= max{.7, .5} = .7
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Binary Relations on a Single Set

It is also possible to define crisp or fuzzy binary relations among
elements of a single set X .

Such a binary relation can be denoted by R(X , X ) or R(X 2) which is a
subset of X × X = X 2.

These relations are often referred to as directed graphs which is also
an representation of them.

• Each element of X is represented as node.

• Directed connections between nodes indicate pairs of x ∈ X for
which the grade of the membership is nonzero.

• Each connection is labeled by its actual membership grade of the
corresponding pair in R.
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Example

An example of R(X , X ) defined on X = {1, 2, 3, 4}.

Two different representation are shown below.

1 2 3 4

1 .7 0 .3 0
2 0 .7 1 0
3 .9 0 0 1
3 0 0 .8 .5

1 2

3 4

.3
1

1

.9

.8

.7 .7

.5
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Properties of Crisp Relations

A crisp relation R(X , X ) is called

• reflexive if and only if ∀x ∈ X : (x , x) ∈ R,

• symmetric if and only if ∀x , y ∈ X : (x , y) ∈ R ↔ (y , x) ∈ R,

• transitive if and only if (x , z) ∈ R whenever both (x , y) ∈ R and
(y , z) ∈ R for at least one y ∈ X .

a a b

a c

b

reflexivity symmetry transitivity

All these properties are preserved under inversion of the relation.

R. Kruse, C. Doell FS – Fuzzy Relations Lecture 5 30 / 31

mailto:kruse@ovgu.de
mailto:doell@ovgu.de


Properties of Fuzzy Relations

These properties can be extended for fuzzy relations.

So one can define them in terms of the membership function of the
relation.

A fuzzy relation R(X , X ) is called

• reflexive if and only if ∀x ∈ X : R(x , x) = 1,

• symmetric if and only if ∀x , y ∈ X : R(x , y) = R(y , x),

• transitive if it satisfies

R(x , z) ≥ max
y∈Y

min{R(x , y), R(y , z)}, ∀(x , z) ∈ X 2.

Note that a fuzzy binary relation that is reflexive, symmetric and
transitive is called fuzzy equivalence relation.
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