Assignment Sheet 8

Assignment 28 Fuzzy Relational Equations

Let $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2, y_3, y_4\}$ be two sets and $\mu : X \to [0, 1]$ and $\nu : Y \to [0, 1]$ two fuzzy sets on X and Y, respectively, which are defined as follows:

 $\mu(x_1) = 0.1, \quad \mu(x_2) = 0.7, \quad \mu(x_3) = 1.0,$ $\nu(y_1) = 0.4, \quad \nu(y_2) = 1.0, \quad \nu(y_3) = 0.8, \quad \nu(y_4) = 0.3.$

- a) How can you find out whether the relational equation $\mu \circ \rho = \nu$ has a solution, *i.e.* whether there is a fuzzy relation ρ that satisfies this equation?
- b) If the relational equation $\mu \circ \rho = \nu$ has a solution, determine a solution. Are there other solutions than the one you found?

Assignment 29 Fuzzy Relational Equations

Let $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2\}$ be two sets. Consider the fuzzy sets μ_1, μ_2, μ_3 on X and ν_1, ν_2, ν_3 on Y which are defined as shown in the two tables below.

		x_2			y_1	
μ_1	1.0	0.6	0.2	ν_1	1.0	0.4
μ_2	0.0	0.8	1.0	ν_2	0.6	1.0
μ_3	0.9	$0.6 \\ 0.8 \\ 0.1$	0.0	ν_3	$1.0 \\ 0.6 \\ 0.9$	0.5

- a) Show that the system consisting of the two relational equations $\mu_1 \circ \varrho = \nu_1$ and $\mu_2 \circ \varrho = \nu_2$ has a solution. Find the greatest solution of this system.
- b) Is the fuzzy relation that can be computed as the union (maximum) of the two Cartesian products $\mu_1 \otimes \nu_1$ and $\mu_2 \otimes \nu_2$ also a solution of the system of relational equations considered in a)?
- c) Show that the system consisting of the three relational equations $\mu_i \circ \varrho = \nu_i$, i = 1, 2, 3, does not have any solution.

Fuzzy Systems

Prof. Dr. Rudolf Kruse, Christoph Doell

Assignment 30 Fuzzy Control based on Relational Equations

Let $X = \{1, 2, 3\}$ and $Y = \{10, 20, 30\}$ be two sets, μ_1, μ_2 fuzzy sets on X, and ν_1, ν_2 fuzzy sets on Y, which are defined as shown in the two tables below.

		2				20	
μ_1	0.0	0.5	1.0	 ν_1	0.0	$\begin{array}{c} 0.6 \\ 0.3 \end{array}$	1.0
μ_2	1.0	$\begin{array}{c} 0.5 \\ 0.4 \end{array}$	0.0	ν_2	1.0	0.3	0.0

Consider a fuzzy controller with the following rule base:

if x is μ_1 then y is ν_1 , if x is μ_2 then y is ν_2 .

Use the Gödel relation to determine the fuzzy output of this controller for the fuzzy input (1:0.1, 2:1, 3:0).