Fuzzy Systems

Prof. Dr. Rudolf Kruse, Christoph Doell

Assignment Sheet 3

Assignment 9 Lattices/Boolean Algebras

The transfer from logic to set theory is possible because both systems have basically the same structure. This structure is captured by the algebraic notion of a Boolean algebra. A Boolean algebra on a set B is defined as quadruple $\mathcal{B}=\left(B,+, \cdot,{ }^{\top}\right)$ where B has at least two elements (bounds), i.e. 0,1 , and $+, \cdot: B \times B \rightarrow B$ are binary operations on B, and ${ }^{-}: B \rightarrow B$ is a unary operation on B for which the following axioms hold for all $a, b, c \in B$:

$$
\begin{array}{lll}
\text { 1) }(a+b)+c=a+(b+c), & (a \cdot b) \cdot c=a \cdot(b \cdot c) & \text { (associativity) } \\
\text { 2) } a+b=b+a, & a \cdot b=b \cdot a & \text { (commutativity) } \\
\text { 3) } \quad(a+b) \cdot a=a, & (a \cdot b)+a=a & \text { (absorption) } \\
\text { 4) } a \cdot(b+c)=(a \cdot b)+(a \cdot c), & a+(b \cdot c)=(a+b) \cdot(a+c) & \text { (distributivity) } \\
\text { 5) } a+(b \cdot \bar{b})=a, & a \cdot(b+\bar{b})=a &
\end{array}
$$

-

If only the first three axioms are satisfied, the structure is called a lattice. If the first four are satisfied, it is called a distributive lattice.
Show that the set of fuzzy truth values (the real interval $[0,1]$) together with the standard fuzzy operations $\top(a, b)=\min \{a, b\}$ (conjunction), $\perp(a, b)=\max \{a, b\}$ (disjunction) and $\sim a=1-a$ (negation) is a distributive lattice but not a Boolean algebra.

Assignment $10 \quad \alpha$-cuts

Compute the sets of α-cuts for both
a) the two fuzzy sets μ_{1} and μ_{2} given by their graphs as follows

and
b) the fuzzy set defined as follows

$$
\mu(x)= \begin{cases}1-(x-2)^{2}, & \text { if } 1 \leq x \leq 3 \\ 0, & \text { otherwise } .\end{cases}
$$

Fuzzy Systems

Prof. Dr. Rudolf Kruse, Christoph Doell

Assignment 11 Representation of Fuzzy Sets

Let $\left(A_{\alpha}\right)_{\alpha \in[0,1]}$ be the system of sets defined by

$$
A_{\alpha}= \begin{cases}{\left[1-\sqrt{\ln \frac{1}{\alpha}}, 1+\sqrt{\ln \frac{1}{\alpha}}\right],} & \text { if } \alpha>0 \\ \mathbb{R}, & \text { if } \alpha=0 .\end{cases}
$$

a) Show that this system of sets satisfies the conditions that are satisfied by the set of α-cuts of a fuzzy set (as stated in a theorem of the lecture), i.e.
(i) $[\mu]_{0}=U$, where $U=\mathbb{R}$ in this case,
(ii) $\forall \alpha, \beta: \quad \alpha \leq \beta \Rightarrow[\mu]_{\alpha} \supseteq[\mu]_{\beta}$,
(iii) $\forall \beta \in[0,1]: \quad \bigcap_{\alpha: \alpha<\beta}[\mu]_{\alpha}=[\mu]_{\beta}$.
b) Find the membership function μ of the fuzzy set that corresponds to this system of sets.

