Assignment Sheet 6

Assignment 20 Fuzzy Relations

Let the fuzzy relation \(R \) be defined on the sets \(X_1 = \{a, b, c\} \), \(X_2 = \{s, t\} \), \(X_3 = \{x, y\} \) and \(X_4 = \{i, j\} \). Furthermore, let \(R \) be different than 0 at the following positions:

\[
R(a, t, y, j) = 0.2, \\
R(b, s, x, j) = 0.5, \\
R(a, s, y, j) = 1.0, \\
R(a, s, y, i) = 0.9, \\
R(b, t, y, i) = 0.7, \\
R(c, s, y, j) = 0.3.
\]

a) Compute the following projections of \(R \):

\[
R_{1,2,4} = [R \downarrow \{X_1, X_2, X_4\}], \\
R_{1,3} = [R \downarrow \{X_1, X_3\}], \\
R_4 = [R \downarrow \{X_4\}].
\]

b) Compute the following cylindric extensions:

\[
[R_{1,2,4} \uparrow \{X_3\}], \\
[R_{1,3} \uparrow \{X_2, X_4\}], \\
[R_4 \uparrow \{X_1, X_2, X_3\}].
\]

Assignment 21 Fuzzy Relations

Prove that not every fuzzy relation \(R \) on \(X \times Y \) is the Cartesian product of two fuzzy sets \(A \) of \(X \) and \(B \) of \(Y \).

Assignment 22 Fuzzy Relations

Let \(R \) be a fuzzy relation on \(X \times Y \) and \(S, T \) fuzzy relations on \(Y \times Z \). Find an example where \(R \circ (S \cap T) \subset (R \circ S) \cap (R \circ T) \) holds.
The fuzzy binary relation R is defined on set $X = \{1, 2, \ldots, 100\}$ and $Y = \{50, 51, \ldots, 100\}$ and represents the relation “x is much smaller than y”. It is defined by its membership function

$$R(x, y) = \begin{cases} 1 - \frac{x}{y}, & \text{if } x \leq y \\ 0, & \text{otherwise} \end{cases},$$

whereas $x \in X$ and $y \in Y$.

a) What is the domain of R?

b) What is the range of R?

c) What is the height of R?

d) Calculate R^{-1}.