Fuzzy Systems

Fuzzy Rule Generation

Prof. Dr. Rudolf Kruse Christian Moewes

{kruse,cmoewes}@iws.cs.uni-magdeburg.de

Working Group on Computational Intelligence
Department of Knowledge and Language Processing
School of Computer Science
Otto-von-Guericke University of Magdeburg
Outline of Today’s Lecture

1. Motivation

2. Extracting Grid-Based Fuzzy Rules

3. Extracting Individual Fuzzy Rules

4. Rule Generation by Fuzzy Clustering

5. Different Approaches
How can fuzzy systems automatically be derived from example data?

- suppose, input space \mathcal{X} and output space \mathcal{Y}
- we observe n training patterns $(x_i, y_i) \in S \subseteq \mathcal{X} \times \mathcal{Y}$ where $1 \leq i \leq n$
- given numerical input, $\mathcal{X} = (X_1, \ldots, X_p) \subset \mathbb{R}^p$ and thus $x_i \mapsto x_i$
- fuzzy rule base shall approximate S

- classical two-step approach
 1. find fuzzy sets by
 - either predefining them on input and output variables
 - or constructing them throughout learning procedure
 2. find fuzzy rules
 - either directly
 - or iteratively
Outline of Today’s Lecture

1. Motivation

2. Extracting Grid-Based Fuzzy Rules
 - Wang & Mendel Algorithm
 - Higgins & Goodman Algorithm

3. Extracting Individual Fuzzy Rules

4. Rule Generation by Fuzzy Clustering

5. Different Approaches
Fixed Grid-Based Algorithms

- each input variable is partitioned into small set of linguistic variables
- resulting rule base uses all or subset of possible combinations of linguistic values

⇒ global granulation of \mathcal{X} into tiles

 $R_{1,\ldots,1} : \text{ if } x_1 \text{ is } \mu_{1,1} \text{ and } \ldots \text{ and } x_p \text{ is } \mu_{1,p} \text{ then } \ldots$

 \ldots

 $R_{l_1,\ldots,l_p} : \text{ if } x_1 \text{ is } \mu_{l_1,1} \text{ and } \ldots \text{ and } x_p \text{ is } \mu_{l_p,p} \text{ then } \ldots$

- $l_j (1 \leq j \leq p)$ indicates number of linguistic values for j-th variable

- problems
 - exponentially many rules in high-dimensional spaces
 - if grid is chosen fine enough, arbitrarily good approximation (but at very high computational costs)
 - wrong choice of grid may skip extrema
• basic fuzzy rule learning method for function approximation
• based on predefined global grid for both X and Y
• after definition of grid, it determines best possible output fuzzy set for each rule, i.e., each grid position in the input space

• one run through entire data set determines closest example to geometrical center of each rule
• closest output fuzzy value is assigned to corresponding fuzzy

• algorithm encounters problems
 1. when function extrema lie far from center point of grid positions
 2. and it generates huge number of rules for reasonable accuracy
Wang & Mendel Algorithm

1. Granulate X and Y

- divide each variable X_j into l_j equidistant triangular fuzzy sets
- similarly, Y is granulated into l_Y triangular fuzzy sets
Wang & Mendel Algorithm

2. Determine best consequence for each rule

- for each \((x, y) = (x_1, \ldots, x_p, y) \in S\) ...
- ... compute degree of membership to each of possible tiles by

\[
\min \left\{ \mu_{k_1,1}(x_1), \ldots, \mu_{k_p,p}(x_p), \mu_{k_y}(y) \right\}
\]

- \(1 \leq k_j \leq l_j\) and \(1 \leq k_y \leq l_y\)
- \(\mu_{k_j,j}\) indicates membership function of \(k_j\)-th linguistic value of \(X_j\)
- tile \((k_1, \ldots, k_p, k_y)\) with max. membership degree generates one rule

\[
R_{(k_1,\ldots,k_p)} : \text{if } x_1 \text{ is } \mu_{k_1,1} \text{ and } \ldots \text{ and } x_p \text{ is } \mu_{k_p,p} \text{ then } y \text{ is } \mu_{k_y}
\]

- degree of membership will be assigned to each rule as weight \(\beta_{(k_1,\ldots,k_p)}\)
Wang & Mendel Algorithm

Determining \hat{y} based on new x

- given an input x ...
- ... learned rule base can be used to compute crisp output \hat{y}
- first, degree of fulfillment for each rule is computed

$$
\mu(k_1,\ldots,k_p)(x) = \min \{ \mu_{k_1,1}(x_1), \ldots, \mu_{k_p,p}(x_p) \}
$$

- then, output \hat{y} is computed by some kind of COG defuzzification

$$
\hat{y} = \sum_{k_1=1,\ldots,k_p=1}^{l_1,\ldots,l_p} \frac{\beta(k_1,\ldots,k_p) \cdot \mu(k_1,\ldots,k_p)(x) \cdot \bar{y}(k_1,\ldots,k_p)}{\beta(k_1,\ldots,k_p) \cdot \mu(k_1,\ldots,k_p)(x)}
$$

- $\bar{y}(k_1,\ldots,k_p)$ denotes center of output region of corresponding $R(k_1,\ldots,k_p)$
Example: Wang & Mendel Algorithm

- example data set with one input and one output
- note that closest points to corresponding rules are red
Example: Wang & Mendel Algorithm (cont.)

- fuzzy rules are shown by their $\alpha = 0.5$-cuts
- learned model misses extrema far away from rule centers
Example: Wang & Mendel Algorithm (cont.)

Generated rule base

- intuitively, rule R_2 should probably be used to describe minimum

$$R'_2 : \text{if } x \text{ is small}_x \quad \text{then } y \text{ is small}_y$$
Wang & Mendel Algorithm

Summary

• only one pattern per rule is used to compute this rule’s outcome
• if function has high variance, resulting rule base will fail to model system’s behavior

• using predefined fixed grid yields to fuzzy model that
 • either does not fit underlying function very well
 • or consists of large number of rules

• therefore, we are interested in approaches that fine-tune or even automatically determine granulations of both input and output variables
Higgins & Goodman Algorithm

Overview

- approach that builds upon Wang & Mendel’s fixed-grid algorithm

- initially, only one membership function is used to describe each input variable and output variable

 ⇒ one large rule covering entire feature space

- then, new membership functions are introduced at points of maximum error

- this is repeated until
 - maximum number of divisions is reached or
 - approximation error remains below certain threshold
Higgins & Goodman Algorithm

1. Initialization

- create two membership functions for each X_j at their extremal data domain range positions
- create membership function for Y at corner points of input space
- at corner point, each X_j is at maximum or minimum of its domain range
- for each corner point, closest example from S is used to add membership function at its output value
Higgins & Goodman Algorithm

2. Add new membership functions into input space

- find point within S with maximum error according to currently predicted output value
- defuzzification for output is done same way as for Wang & Mendel algorithm
- for each input variable, add new membership function at corresponding value of "maximal error point"

\Rightarrow this point is described perfectly by generated model
Higgins & Goodman Algorithm

3. Create new cell-based rule set and insert new output fuzzy sets

- constructing new rules is done by associating output membership functions with newly created cells

⇒ so, taking point which is closest to all membership functions of \(\mathcal{X} \) (as done in Wang & Mendel)

- associated output membership function is closest one to output value of “closest point”

- if output value of this “closest point” is too far away from closest membership function, new output function is created
Higgins & Goodman Algorithm

4. Termination detection

- if detected error is below given threshold (or if certain number of iterations have been done)...
- ... then stop algorithm
- otherwise continue at step number 2
• obviously, this approach is able to model extrema much better than Wang & Mendel algorithm

• however, it has definite preference to favor extrema

⇒ strong tendency to concentrate on outliers

• interpretation is difficult since granulation is solely data driven

• grid is often suboptimal due to greedy algorithm

• it also contains method to simplify learned rule base

• done by rule ranking system and afterwards searching for best rules
Outline of Today’s Lecture

1. Motivation

2. Extracting Grid-Based Fuzzy Rules

3. Extracting Individual Fuzzy Rules
 Individual Membership Functions
 Berthold & Huber Algorithm

4. Rule Generation by Fuzzy Clustering

5. Different Approaches
Extracting Individual Fuzzy Rules
Extensions avoiding Global Grids

• in high-dimensional \mathcal{X}, global granulation leads to big number of rules
 ⇒ now, no global dependence on granulation
 • individual membership functions for each rule
 • better modeling of local properties

$R_1: \text{if } x_1 \text{ is } \mu_{1,1} \text{ and } \ldots \text{ and } x_p \text{ is } \mu_{1,p} \text{ then } \ldots$

... $R_r: \text{if } x_1 \text{ is } \mu_{r,1} \text{ and } \ldots \text{ and } x_p \text{ is } \mu_{r,p} \text{ then } \ldots$

• not all attributes will be used for all rules
 • individual choice of constraints on few attributes per rule
 • better interpretability in high dimensions
 • no exponential growth of number of rules with increasing dimensionality
Local Granulation

Individual membership functions for each rule

- example for three rules in two dimensions
- compare with global granulation à la Wang & Mendel
- possible disadvantage of individual fuzzy sets
 - potential loss of interpretation
 - projecting all fuzzy sets onto one variable will usually not lead to meaningful linguistic values
Berthold & Huber Algorithm

Overview

- algorithm that constructs rule base with individual fuzzy sets per rule
- parameters that must be specified
 - granulation of \(\mathcal{Y} \), i.e., number and shape of membership functions of \(\mathcal{Y} \)
 - \(c \) fuzzy sets are defined by \(\mu^k_y \) whereas \(1 \leq k \leq c \)

- algorithm iterates over examples \(S \) and fine-tunes evolving model
- resulting rule base consists of fuzzy rules \(R^k_d, 1 \leq d \leq r_k \)
- \(r_k \) represents number of rules for output region \(k \)
- output for \(k \)-th region and new \(x \) equals Mamdani controller output

\[
\mu^k(x) = \max_{1 \leq d \leq r_k} \left\{ \min_{1 \leq j \leq p} \{ \mu^k_{d,j}(x_j) \} \right\}
\]
Berthold & Huber Algorithm

Rules

- all rules rely on trapezoidal membership functions

⇒ each rule can be described by four parameters per dimension

\[
\text{if } x_1 \text{ is } \langle a_1, b_1, c_1, d_1 \rangle \text{ and } \ldots \text{ and } x_p \text{ is } \langle a_p, b_p, c_p, d_p \rangle \\
\text{then } y \text{ is } \mu^k_y
\]

- however, if some trapezoids cover entire domain of an X_j...
- ... then rule's degree of fulfillment is independent from of this X_j
Berthold & Huber Algorithm

Procedure

0. given $S = \{(x_i, c_i) \mid 1 \leq i \leq n\}$ with $x \in \mathbb{R}^p$ and $c \in \mathbb{N}$ class of x
1. for each training example $(x, c) \in S$ do
 1.1 if correct rule of class c exists, then COVER
 • increase weight by one
 • adjust core region of rule to cover x
 else COMMIT
 • insert new rule with core equals x
 • support equals ∞ (i.e., rule is not constrained)
 1.2 SHRINK
 • reduce support of all rules of conflicting class that cover x
2. repeat last step until no more changes occur

• COVER and COMMIT are easy to implement
• SHRINK is based on heuristics (e.g., volume-based)
• algorithm finds rule base that completely describes data (as long as S is conflict-free)

• each rule is partial hypothesis for subset of S
 • core = most specific hypothesis covering subset of S
 • support = (one of the) most general hypotheses covering subset of S
 \Rightarrow support is more general than core

• both core and support regions can be seen as
 • smallest area with highest degree of confidence (we have evidence)
 • largest area without conflict (we haven’t seen any counter-example)
Example: Berthold & Huber Algorithm

- given two-dimensional \(\mathcal{X} \) and training data \(\mathcal{S} \) where \(|\mathcal{Y}| = 2\)
- task is binary fuzzy classification
- first, start with empty rule base for each region/class
- Java applet is available that demonstrates algorithm
• insert general rule for first example pattern
• suppose, second pattern from different class

⇒ insert new rule for second example pattern

• also adjust first (conflicting) rule
• suppose, third pattern from same class as second one

⇒ adjust free feature to avoid conflict with third pattern

• and so on...
• in p-dimensional feature space, there are p choices

• algorithm uses heuristics
 • maximize remaining volume
 ⇒ low number of rules, good coverage
 • minimize number of constrained attributes
 ⇒ feature reduction
 • minimize number of constraints on free features
 ⇒ interpretability
 • use information theoretic measures
 ⇒ generalization, feature importance
Outline of Today’s Lecture

1. Motivation

2. Extracting Grid-Based Fuzzy Rules

3. Extracting Individual Fuzzy Rules

4. Rule Generation by Fuzzy Clustering

 Extend Membership Values to Continuous Membership Functions

 Example: Traffic Jam Detection System

 Information Loss from Projection

5. Different Approaches
1. apply fuzzy clustering to $\mathcal{X} \Rightarrow$ fuzzy partition matrix $U = [u_{ij}]$

2. use obtained $U = [u_{ij}]$ to define membership functions

- usually, \mathcal{X} is multidimensional

\Rightarrow how to specify meaningful labels for multidimensional membership functions?
Extend u_{ij} to Continuous Membership Functions

• assigning labels for one-dimensional domains is easier, thus
 1. project U down to X_1, \ldots, X_p axis, respectively
 2. linear interpolate membership values to obtain membership functions
 3. cylindrically extend membership functions to multidimensional arguments

• with labels for all attributes, original clusters can be interpreted as conjunction of cylindrical extensions
 • e.g., cylindrical extensions “x_1 is low”, “x_2 is high”
 \Rightarrow multidimensional cluster label “x_1 is low and x_2 is high”

• labeled clusters can be represented as classes characterized by labels
• every cluster thus symbolized one fuzzy rule
Example: Traffic Jam Detection System

- an induction loop in the road is used as metal detector
- serves as sensor for cars moving across or standing on it
- each passing car induces pulse from sensor
- frequency f of pulse equals number of cars per minute
- pulse width is inversely proportional to current velocity v of car

- after clustering
 - determine clusters for both classes, i.e., traffic jam and no traffic jam
 - output values of classifier are $\mu_r(f, v)$ with $1 \leq r \leq c$

 \[
 \begin{align*}
 \text{if } (f, v) \text{ is } &\mu_1 \quad \text{then “traffic jam”} \\
 \text{if } f \text{ is } &\mu_1^{(f)} \text{ and } v \text{ is } \mu_1^{(v)} \quad \text{then “traffic jam”}
 \end{align*}
 \]
Information Loss from Projection

- rule derived from fuzzy cluster represents approximation of cluster
- information gets lost by projection
 - ideal cluster shape of fuzzy \(c \)-means (FCM) is spherical
 - projecting an FCM cluster leads to hypercube that contains hypersphere
- loss of information can be kept small using axes-parallel clusters
Outline of Today’s Lecture

1. Motivation

2. Extracting Grid-Based Fuzzy Rules

3. Extracting Individual Fuzzy Rules

4. Rule Generation by Fuzzy Clustering

5. Different Approaches
Different Approaches

- **constructive**
 - find fuzzy rules by growing singletons

- **hierarchical**
 - merge grid cells if no points are covered or same class is predicted

- **adaptive**
 - initialize rules randomly (e.g., with expert knowledge) and iteratively optimize rule parameters (e.g., location, number of fuzzy sets)
 - based on, e.g., gradient descent, neural networks, ...

- **evolutionary (to be discussed)**
 - find good rules by mutation/crossover over many generations

- **neuro-fuzzy (to be discussed)**
 - inject fuzzy rules into neural network and use its learning algorithm
Literature about Fuzzy Rule Generation

Intelligent Data Analysis: An Introduction.

Vieweg, Wiesbaden, Germany, 3rd edition.

Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition.
John Wiley & Sons Ltd, New York, NY, USA.