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Contents of this lecture

1 Context, position of belief functions with respect to
classical theories of uncertainty.

2 Fundamental concepts: belief, plausibility, commonality,
Conditioning, basic combination rules.

3 Some more advanced concepts: least commitment
principle, cautious rule, multidimensional belief functions.
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Uncertain reasoning

In science and engineering we always need to reason with
partial knowledge and uncertain information (from sensors,
experts, models, etc.).
Different kinds of uncertainty:

Aleatory uncertainty induced by the variability of entities in
populations and outcomes of random (repeatable)
experiments. Example: drawing a ball from an urn. Cannot
be reduced;
Epistemic uncertainty, due to lack of knowledge. Example:
inability to distinguish the color of a ball because of color
blindness. Can be reduced.

Classical frameworks for reasoning with uncertainty:
1 Probability theory;
2 Set-membership approach.
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Probability theory
Interpretations

Probability theory can be used to represent:
Aleatory uncertainty: probabilities are considered as
objective quantities and interpreted as frequencies or limits
of frequencies;
Epistemic uncertainty: probabilities are subjective,
interpreted as degrees of belief.

Main objections against the use of probability theory as a
model epistemic uncertainty (Bayesian model):

Inability to represent ignorance;
Not a plausible model of how people make decisions based
on weak information.
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Inability to represent ignorance
The wine/water paradox

Principle of Indifference (PI): in the absence of information
about some quantity X , we should assign equal probability
to any possible value of X .
The wine/water paradox:
There is a certain quantity of liquid. All that we know about
the liquid is that it is composed entirely of wine and water,
and the ratio of wine to water is between 1/3 and 3. What
is the probability that the ratio of wine to water is less than

or equal to 2?
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Inability to represent ignorance
The wine/water paradox (continued)

Let X denote the ratio of wine to water. All we know is that
X ∈ [1/3,3]. According to the PI, X ∼ U[1/3,3].
Consequently:

P(X ≤ 2) = (2− 1/3)/(3− 1/3) = 5/8.

Now, let Y = 1/X denote the ratio of water to wine.
Similarly, we only know that Y ∈ [1/3,3]. According to the
PI, Y ∼ U[1/3,3]. Consequently:

P(X ≤ 2) = P(Y ≥ 1/2)

= (3− 1/2)/(3− 1/3) = 15/16.
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Decision making
Ellsberg’s paradox

Suppose you have an urn containing 30 red balls and 60
balls, either black or yellow. You are given a choice
between two gambles:

A: You receive 100 euros if you draw a red ball;
B: You receive 100 euros if you draw a black ball.

Also, you are given a choice between these two gambles
(about a different draw from the same urn):

C: You receive 100 euros if you draw a red or yellow ball;
D: You receive 100 euros if you draw a black or yellow ball.

Most people strictly prefer A to B, hence
P(red) > P(black), but they strictly prefer D to C, hence

P(black) + P(yellow) > P(red) + P(yellow)

⇒ P(black) > P(red).
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Set-membership approach

Partial knowledge about some variable X is described by a
set of possible values E (constraint).
Example:

Consider a system described by the equation

y = f (x1, . . . , xn; θ)

where y is the output, x1, . . . , xn are the inputs and θ is a
parameter.
Knowing that xi ∈ [x i , x i ], i = 1, . . . ,n and θ ∈ [θ, θ], find a
set X surely containing x .

Advantage: computationally simpler than the probabilistic
approach in many cases (interval analysis).
Drawback: no way to express doubt, conservative
approach.
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Theory of belief functions

Alternative theories of uncertainty:
Possibility theory (Zadeh, 1978; Dubois and Prade
1980’s-1990’s);
Imprecise probability theory (Walley, 1990’s);
Theory of belief functions (Dempster-Shafer theory,
Evidence theory, Transferable Belief Model) (Dempster,
1968; Shafer, 1976; Smets 1980’s-1990’s).

The theory of belief functions extends both the
Set-membership approach and Probability Theory:

A belief function may be viewed both as a generalized set
and as a non additive measure.
The theory includes extensions of probabilistic notions
(conditioning, marginalization) and set-theoretic notions
(intersection, union, inclusion, etc.)
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Belief representation
Information fusion
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Mass function
Definition

Let X be a variable taking values in a finite set Ω (frame of
discernment).
Mass function: m : 2Ω → [0,1] such that∑

A⊆Ω

m(A) = 1.

Every A of Ω such that m(A) > 0 is a focal set of m.
m is said to be normalized if m(∅) = 0. This condition may
be required or not.
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Belief representation
Information fusion
Decision making

Murder example

A murder has been committed. There are three suspects:
Ω = {Peter , John,Mary}.
A witness saw the murderer going away in the dark, and he
can only assert that it was man. How, we know that the
witness is drunk 20 % of the time.
This piece of evidence can be represented by

m({Peter , John}) = 0.8,

m(Ω) = 0.2

The mass 0.2 is not committed to {Mary}, because the
testimony does not accuse Mary at all!
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Belief representation
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Mass function
Multi-valued mapping interpretation

(Θ, P) Ω

Γ
drunk

not drunk

Peter

John
Mary

A mass function m on Ω may be viewed as arising from
A set Θ = {θ1, . . . , θr} of interpretations;
A probability measure P on Θ;
A multi-valued mapping Γ : Θ→ 2Ω.

Meaning: under interpretation θi , the evidence tells us that
X ∈ Γ(θi), and nothing more. The probability P({θi}) is
transferred to Ai = Γ(θi).
m(A) is the probability of knowing only that X ∈ A, given
the available evidence.
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Mass functions
Special cases

Only one focal set:

m(A) = 1 for some A ⊆ Ω

→ categorical (logical) mass function (∼ set). Special
case: A = Ω, vacuous mass function, represents total
ignorance.
All focal sets are singletons:

m(A) > 0⇒ |A| = 1

→ Bayesian mass function (∼ probability mass function).
A mass function can thus be seen as

a generalized set;
a generalized probability distribution.
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Belief and plausibility functions
Definitions

Ω

A

B1

B2

B3

B4

bel(A) =
∑
∅6=B⊆A

,m(B)

pl(A) =
∑

B∩A6=∅

m(B),

pl(A) ≥ bel(A), ∀A ⊆ Ω.
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Belief and plausibility functions
Interpretation and special cases

Interpretations:
bel(A) = degree to which the evidence supports A.
pl(A) = upper bound on the degree of support that could be
assigned to A if more specific information became available.

Special case: if m is Bayesian, bel = pl (probability
measure).

Thierry Denœux Introduction to belief functions 17/ 70



Basics
Selected advanced topics

Belief representation
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Murder example

A ∅ {P} {J} {P, J} {M} {P,M} {J,M} Ω
m(A) 0 0 0 0.8 0 0 0 0.2

bel(A) 0 0 0 0.8 0 0 0 1
pl(A) 0 1 1 1 0.2 1 1 1

We observe that

bel(A ∪ B) ≥ bel(A) + bel(B)− bel(A ∩ B)

pl(A ∪ B) ≤ pl(A) + pl(B)− bel(A ∩ B)

bel and pl are non additive measures.
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Belief representation
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Wine/water paradox revisited

Let X denote the ratio of wine to water. All we know is that
X ∈ [1/3,3]. This is modeled by the categorical mass
function mX such that mX ([1/3,3]) = 1. Consequently:

belX ([2,3]) = 0, plX ([2,3]) = 1.

Now, let Y = 1/X denote the ratio of water to wine. All we
know is that Y ∈ [1/3,3]. This is modeled by the
categorical mass function mY such that mY ([1/3,3]) = 1.
Consequently:

belY ([1/3,1/2]) = 0, plY ([1/3,1/2]) = 1.
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Relations between m, bel et pl

Relations:

bel(A) = pl(Ω)− pl(A), ∀A ⊆ Ω

m(A) =

{∑
∅6=B⊆A(−1)|A|−|B|bel(B), A 6= ∅

1− bel(Ω) A = ∅

m, bel et pl are thus three equivalent representations of
a piece of evidence or, equivalently,
a state of belief induced by this evidence.
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Relationship with Possibility theory

Assume that the focal sets of m are nested:
A1 ⊂ A2 ⊂ . . . ⊂ Ar → m is said to be consonant.
The following relations hold:

pl(A ∪ B) = max (pl(A),pl(B)) , ∀A,B ⊆ Ω.

pl is this a possibility measure, and bel is the dual
necessity measure.
The possibility distribution is the contour function:

π(x) = pl({x}), ∀x ∈ Ω.

The theory of belief function can thus be considered as
more expressive than possibility theory.
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Conjunctive combination
Definitions

Let m1 and m2 be two mass functions on Ω induced by two
independent items of evidence.

m1(B1) m1(B2) m1(B3) m1(B4)

m
2(

C 1)
m

2(
C 2)

m
2(

C 3)

m1(B3) x m2(C2)

1 Unnormalized Dempster’s rule

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)m2(C)

2 Normalized Dempster’s rule

(m1⊕m2)(A) =

{
(m1 ∩©m2)(A)

1−K12
if A 6= ∅

0 if A = ∅

K12 = (m1 ∩©m2)(∅): degree of
conflict.
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Dempster’s rule
Example

We have m1({Peter , John}) = 0.8, m1(Ω) = 0.2.
New piece of evidence: a blond hair has been found.
There is a probability 0.6 that the room has been cleaned
before the crime→ m2({John,Mary}) = 0.6, m2(Ω) = 0.4.

{Peter , John} Ω
0.8 0.2

{John,Mary} {John} {John,Mary}
0.6 0.48 0.12
Ω {Peter , John} Ω

0.4 0.32 0.08
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Dempster’s rule
Justification

(Θ1, P1)

ΩΓ1

drunk

not drunk Peter

John

Mary

(Θ2, P2)

Γ2

cleaned

not cleaned

Let (Θ1,P1, Γ1) and (Θ2,P2, Γ2) be
the multi-valued mappings
associated to m1 and m2.
If θ1 ∈ Θ1 and θ2 ∈ Θ2 both hold,
then X ∈ Γ1(θ1) ∩ Γ2(θ2).
If the two pieces of evidence are
independent, then this happens with
probability P1({θ1})P2({θ2}).
The normalized rule is obtained
after conditioning on the event
{(θ1, θ2)|Γ1(θ1) ∩ Γ2(θ2) 6= ∅}.
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Dempster’s rule
Properties

Commutativity, associativity. Neutral element: mΩ.
Generalization of intersection: if mA and mB are
categorical mass functions, then

mA ∩©mB = mA∩B

Generalization of probabilistic conditioning: if m is a
Bayesian mass function and mA is a categorical mass
function, then m ⊕mA is a Bayesian mass function that
corresponding to the conditioning of m by A.
Notations for conditioning (special case):

m ∩©mA = m(·|A), m ⊕mA = m∗(·|A).
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Dempster’s rule
Expression using commonalities

Commonality function: let q : 2Ω → [0,1] be defined as

q(A) =
∑
B⊇A

m(B), ∀A ⊆ Ω.

Conversely,

m(A) =
∑
B⊇A

(−1)|B\A|q(B), ∀A ⊆ Ω.

Interpretation: q(A) = m(A|A), for any A ⊆ Ω.
Expression of the unnormalized Dempster’s rule using
commonalities:

(q1 ∩©q2)(A) = q1(A) · q2(A), ∀A ⊆ Ω.
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TBM disjunctive rule
Definition and justification

Let (Θ1,P1, Γ1) and (Θ2,P2, Γ2) be the multi-valued
mapping frameworks associated to two pieces of evidence.
If interpretation θk ∈ Θk holds and piece of evidence k is
reliable, then we can conclude that X ∈ Γk (θk ).
If interpretation θ1 ∈ Θ1 and θ2 ∈ Θ2 both hold and we
assume that at least one of the two pieces of evidence is
reliable, then we can conclude that X ∈ Γ1(θ1) ∪ Γ2(θ2).
This leads to the TBM disjunctive rule:

(m1 ∪©m2)(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Ω
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TBM disjunctive rule
Properties

Commutativity, associativity.
Neutral element: m∅
Let b = bel + m(∅) (implicability function). We have:

(b1 ∪©b2) = b1 · b2

De Morgan laws for ∩© and ∪©:

m1 ∪©m2 = m1 ∩©m2,

m1 ∩©m2 = m1 ∪©m2,

where m denotes the complement of m defined by
m(A) = m(A) for all A ⊆ Ω.
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Selecting a combination rule

All three rules ∩©, ⊕ and ∪© assume the pieces of evidence
to be independent.
The conjunctive rules ∩© and ⊕ further assume that the
pieces of evidence are both reliable;
The TBM disjunctive rule ∪© only assumes that at least one
of the items of evidence combined is reliable (weaker
assumption).
∩© vs. ⊕:

∩© keeps track of the conflict between items of evidence:
very useful in some applications.
∩© also makes sense under the open-world assumption.
The conflict increases with the number of combined mass
functions: normalization is often necessary at some point.

What to do with dependent items of evidence? → Cautious
rule
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Decision making
Problem formulation

A decision problem can be formalized by defining:
A set of acts A = {a1, . . . ,as};
A set of states of the world Ω;
A loss function L : A× Ω→ R, such that L(a, ω) is the loss
incurred if we select act a and the true state is ω.

Bayesian framework
Uncertainty on Ω is described by a probability measure P;
Define the risk of each act a as the expected loss if a is
selected:

R(a) = EP [L(a, ·)] =
∑
ω∈Ω

L(a, ω)P({ω}).

Select an act with minimal risk.

Extension to the belief function framework?
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Decision making
Compatible probabilities

Let m be a normalized mass function, and P(m) the set of
compatible probability measures on Ω, i.e., the set of P
verifying

bel(A) ≤ P(A) ≤ pl(A), ∀A ⊆ Ω.

The lower and upper expected risk of each act a are
defined, respectively, as:

R(a) = Em[L(a, ·)] = inf
P∈P(m)

RP(a) =
∑
A⊆Ω

m(A) min
ω∈A

L(a, ω)

R(a) = Em[L(a, ·)] = sup
P∈P(m)

RP(a) =
∑
A⊆Ω

m(A) max
ω∈A

L(a, ω)
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Decision making
Strategies

For each act a we have a risk interval [R(a),R(a)]. How to
compare these intervals?
Three strategies:

1 a is preferred to a′ iff R(a) ≤ R(a′);
2 a is preferred to a′ iff R(a) ≤ R(a′) (optimistic strategy);
3 a is preferred to a′ iff R(a) ≤ R(a′) (pessimistic strategy).

Strategy 1 yields only a partial preorder: a and a′ are not
comparable if R(a) > R(a′) and R(a′) > R(a).
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Decision making
Special case

Let Ω = {ω1, . . . , ωK}, A = {a1, . . . ,aK}, where ai is the act
of selecting ωi .
Let

L(ai , ωj) =

{
0 if i = j (the true state has been selected),
1 otherwise .

Then R(ai) = 1− pl(ωi) and R(ai) = 1− bel(ωi).
The lower (resp., upper) risk is minimized by selecting the
hypothesis with the largest plausibility (resp., degree of
belief).
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Decision making
Coming back to Ellsberg’s paradox

We have m({r}) = 1/3, m({b, y}) = 2/3.

r b y R R
A -100 0 0 -100/3 -100/3
B 0 -100 0 -200/3 0
C -100 0 -100 -100 -100/3
D 0 -100 -100 -200/3 -200/3

The observed behavior (preferring A to B and D to C) is
explained by the pessimistic strategy.
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Decision making
Other decision strategies

How to find a compromise between the pessimistic
strategy (minimizing the upper expected risk) and the
optimistic one (minimizing the lower expected risk)?
Two approaches:

Hurwicz criterion: a is preferred to a′ iff Rρ(a) ≤ Rρ(a′) with

Rρ(a) = (1− ρ)R(a) + ρR(a).

and ρ ∈ [0,1] is a pessimism index describing the attitude
of the decision maker in the face of ambiguity.
Pignistic transformation (Transferable Belief Model).
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Decision making
TBM approach

The “Dutch book” argument: in order to avoid Dutch books
(sequences of bets resulting in sure loss), we have to base
our decisions on a probability distribution on Ω.
The TBM postulates that uncertain reasoning and decision
making are two fundamentally different operations
occurring at two different levels:

Uncertain reasoning is performed at the credal level using
the formalism of belief functions.
Decision making is performed at the pignistic level, after the
m on Ω has been transformed into a probability measure.
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Decision making
Pignistic transformation

The pignistic transformation Bet transforms a normalized
mass function m into a probability measure Pm = Bet(m)
as follows:

Pm(A) =
∑
∅6=B⊆Ω

m(B)
|A ∩ B|
|B|

, ∀A ⊆ Ω.

It can be shown that bel(A) ≤ Pm(A) ≤ pl(A), hence
Pm ∈ P(m). Consequently,

R(a) ≤ RPm (a) ≤ R(a), ∀a ∈ A.
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Decision making
Example

Let m({John}) = 0.48, m({John,Mary}) = 0.12,
m({Peter , John}) = 0.32, m(Ω) = 0.08.
We have

Pm({John}) = 0.48 +
0.12

2
+

0.32
2

+
0.08

3
≈ 0.73,

Pm({Peter}) =
0.32

2
+

0.08
3
≈ 0.19

Pm({Mary}) =
0.12

2
+

0.08
3
≈ 0.09
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Informational comparison of belief functions

Let m1 et m2 be two mass functions on Ω.
In what sense can we say that m1 is more informative
(committed) than m2?
Special case:

Let mA and mB be two categorical mass functions.
mA is more committed than mB iff A ⊆ B.

Extension to arbitrary mass functions?

Thierry Denœux Introduction to belief functions 42/ 70



Basics
Selected advanced topics

Informational orderings
Cautious rule
Multidimensional belief functions

Plausibility and commonality orderings

m1 is pl-more committed than m2 (noted m1 vpl m2) if

pl1(A) ≤ pl2(A), ∀A ⊆ Ω.

m1 is q-more committed than m2 (noted m1 vq m2) if

q1(A) ≤ q2(A), ∀A ⊆ Ω.

Properties:
Extension of set inclusion:

mA vpl mB ⇔ mA vq mB ⇔ A ⊆ B.

Greatest element: vacuous mass function mΩ.
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Strong (specialization) ordering

m1 is a specialization of m2 (noted m1 vs m2) if m1 can be
obtained from m2 by distributing each mass m2(B) to
subsets of B:

m1(A) =
∑
B⊆Ω

S(A,B)m2(B), ∀A ⊆ Ω,

where S(A,B) = proportion of m2(B) transferred to A ⊆ B.
S: specialization matrix.
Properties:

Extension of set inclusion;
Greatest element: mΩ;
m1 vs m2 ⇒ m1 vpl m2 and m1 vq m2.

Thierry Denœux Introduction to belief functions 44/ 70



Basics
Selected advanced topics

Informational orderings
Cautious rule
Multidimensional belief functions

Least Commitment Principle
Definition

Definition (Least Commitment Principle)
When several belief functions are compatible with a set of
constraints, the least informative according to some
informational ordering (if it exists) should be selected.

A very powerful method for constructing belief functions!
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Cautious rule
Motivations

The standard rules ∩©, ⊕ and ∪© assume the sources of
information to be independent, e.g.

experts with non overlapping experience/knowledge;
non overlapping datasets.

What to do in case of non independent evidence?
Describe the nature of the interaction between sources
(difficult, requires a lot of information);
Use a combination rule that tolerates redundancy in the
combined information.

Such rules can be derived from the LCP using suitable
informational orderings.
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Cautious rule
Principle

Two sources provide mass functions m1 and m2, and the
sources are both considered to be reliable.
After receiving these m1 and m2, the agent’s state of belief
should be represented by a mass function m12 more
committed than m1, and more committed than m2.
Let Sx (m) be the set of mass functions m′ such that
m′ vx m, for some x ∈ {pl ,q, s, · · · }. We thus impose that
m12 ∈ Sx (m1) ∩ Sx (m2).
According to the LCP, we should select the x-least
committed element in Sx (m1) ∩ Sx (m2), if it exists.
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Cautious rule
Problem

The above approach works for special cases.
Example (Dubois, Prade, Smets 2001): if m1 and m2 are
consonant, then the q-least committed element in
Sq(m1) ∩ Sq(m2) exists and it is unique: it is the consonant
mass function with commonality function q12 = q1 ∧ q2.
In general, neither existence nor uniqueness of a solution
can be guaranteed with any of the x-orderings,
x ∈ {pl ,q, s}.
We need to define a new ordering relation.
This ordering will be based on the (conjunctive) canonical
decomposition of belief functions.
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Canonical decomposition
Simple and separable mass functions

Definition: m is simple mass function if it has the following
form

m(A) = 1− wA

m(Ω) = wA,

with A ⊂ Ω and wA ∈ [0,1].
Notation: AwA .
Property: Aw1 ∩©Aw2 = Aw1w2 .
A mass function is separable if it can be written as the
combination of simple mass functions:

m = ∩©A⊂ΩAw(A)

with 0 ≤ w(A) ≤ 1 for all A ⊂ Ω.
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Canonical decomposition
Subtracting evidence

Let m12 = m1 ∩©m2. We have q12 = q1 · q2.
Assume we no longer trust m2 and we wish to subtract it
from m12.
If m2 is non dogmatic (i.e. m2(Ω) > 0 or, equivalently,
q2(A) > 0, ∀A), m1 can be retrieved as

q1 = q12/q2.

We note m1 = m12 6∩©m2.
Remark: m1 6∩©m2 may not be a valid mass function!
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Canonical decomposition

Theorem (Smets, 1995)

Any non dogmatic mass function (m(Ω) > 0) can be canonically
decomposed as:

m =
(
∩©A⊂ΩAwC(A)

)
6∩©
(
∩©A⊂ΩAwD(A)

)
with wC(A) ∈ (0,1], wD(A) ∈ (0,1] and max(wC(A),wD(A)) = 1
for all A ⊂ Ω.

Let w = wC/wD.
Function w : 2Ω \Ω→ R∗+ is called the (conjunctive) weight
function.
It is a new equivalent representation of a non dogmatic
mass function (together with bel , pl , q, b).
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Properties of w

Function w is directly available when m is built by
accumulating simple mass functions (common situation).
Calculation of w from q:

ln w(A) = −
∑
B⊇A

(−1)|B|−|A| ln q(B), ∀A ⊂ Ω.

Conversely,

ln q(A) = −
∑

Ω⊃B 6⊇A

ln w(B), ∀A ⊆ Ω

TBM conjunctive rule:

w1 ∩©w2 = w1 · w2.
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w-ordering

Let m1 and m2 be two non dogmatic mass functions. We
say that m1 is w-more committed than m2 (denoted as
m1 vw m2) if w1 ≤ w2.
Interpretation: m1 = m2 ∩©m with m separable.
Properties:

m1 vw m2 ⇒ m1 vs m2 ⇒
{

m1 vpl m2
m1 vq m2,

mΩ is the only maximal element of vw :

mΩ vw m⇒ m = mΩ.
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Cautious rule
Definition

Theorem
Let m1 and m2 be two nondogmatic BBAs. The w-least
committed element in Sw (m1) ∩ Sw (m2) exists and is unique. It
is defined by the following weight function:

w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω.

Definition (cautious conjunctive rule)

m1 ∧©m2 = ∩©A⊂ΩAw1(A)∧w2(A).
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Cautious rule
Computation

Cautious rule computation

m-space w-space
m1 −→ w1
m2 −→ w2

m1 ∧©m2 ←− w1 ∧ w2
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Cautious rule
Properties

Commutative, associative
Idempotent : ∀m, m ∧©m = m
Distributivity of ∩© with respect to ∧©:

(m1 ∩©m2) ∧©(m1 ∩©m3) = m1 ∩©(m2 ∧©m3),∀m1,m2,m3.

The same item of evidence m1 is not counted twice!
No neutral element, but mΩ ∧©m = m iff m is separable.
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Related rules

Normalized cautious rule:

(m1 ∧©∗m2)(A) =

{
(m1 ∧©m2)(A)

1−(m1 ∧©m2)(∅) if A 6= ∅
0 if A = ∅.

Bold disjunctive rule:

m1 ∨©m2 = m1 ∧©m2.

Both ∧©∗ and ∨© are commutative, associative and
idempotent.
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Global picture

Six basic rules:

Sources independent dependent

All reliable
open world ∩© ∧©

closed world ⊕ ∧©∗
At least one reliable ∪© ∨©
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Multidimensional belief functions
Motivations

B

E
E
E

C

M

F G

E C

D X4 X5

X3 X2X1

A

X4

X3

In many applications, we need to
express uncertain information about
several variables taking values in
different domains.
Example: fault tree (logical relations
between Boolean variables and
probabilistic or evidential information
about elementary events).
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Fault tree example
(Dempster & Kong, 1988)
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Multidimensional belief functions
Marginalization, vacuous extension

Let X and Y be two variables defined on frames ΩX and
ΩY .
Let ΩXY = ΩX × ΩY be the product frame.
A mass function mΩXY on ΩXY can be seen as an uncertain
relation between variables X and Y .
Two basic operations on product frames:

1 Express a joint mass function mΩXY in the coarser frame ΩX
or ΩY (marginalization);

2 Express a marginal mass function mΩX on ΩX in the finer
frame ΩXY (vacuous extension).
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Marginalization

Problem: express mΩXY in ΩX .
Solution: transfer each mass
mΩXY (A) to the projection of A on
ΩX :

Marginal mass function

mΩXY ↓ΩX (B) =
∑

{A⊆ΩXY ,A↓ΩX =B}

mΩXY (A), ∀B ⊆ ΩX .

Generalizes both set projection and probabilistic
marginalization.
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Vacuous extension

Problem: express mΩX in ΩXY .
Solution: transfer each mass
mΩX (B) to the cylindrical extension
of B: B × ΩY .

Vacuous extension:

mΩX↑ΩXY (A) =

{
mΩX (B) if A = B × ΩY

0 otherwise.
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Operations in product frames
Application to approximate reasoning

Assume that we have:
Partial knowledge of X formalized as a mass function mΩX ;
A joint mass function mΩXY representing an uncertain
relation between X and Y .

What can we say about Y?
Solution:

mΩY =
(

mΩX↑ΩXY ∩©mΩXY
)↓ΩY

.

Infeasible with many variables and large frames of
discernment, but efficient algorithms exist to carry out the
operations in frames of minimal dimensions.
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Fault tree example

B

E
E
E
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D X4 X5

X3 X2X1

A

X4

X3

Cause m({1}) m({0}) m({0,1})
X1 0.05 0.90 0.05
X2 0.05 0.90 0.05
X3 0.005 0.99 0.005
X4 0.01 0.985 0.005
X5 0.002 0.995 0.003
G 0.001 0.99 0.009
M 0.02 0.951 0.029
F 0.019 0.961 0.02
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Summary

The theory of belief function: a very general formalism for
representing imprecision and uncertainty that extends both
probabilistic and set-theoretic frameworks:

Belief functions can be seen both as generalized sets and
as generalized probability measures;
Reasoning mechanisms extend both set-theoretic notions
(intersection, union, cylindrical extension, inclusion
relations, etc.) and probabilistic notions (conditioning,
marginalization, Bayes theorem, stochastic ordering, etc.).

The theory of belief function can also be seen as more
general than Possibility theory (possibility measures are
particular plausibility functions).
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