Introduction to belief functions

Thierry Denœux¹

¹Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599) http://www.hds.utc.fr/~tdenoeux

Spring School BFTA 2011 Autrans, April 4-8, 2011

Contents of this lecture

- Context, position of belief functions with respect to classical theories of uncertainty.
- Fundamental concepts: belief, plausibility, commonality, Conditioning, basic combination rules.
- Some more advanced concepts: least commitment principle, cautious rule, multidimensional belief functions.

Uncertain reasoning

- In science and engineering we always need to reason with partial knowledge and uncertain information (from sensors, experts, models, etc.).
- Different kinds of uncertainty:
 - Aleatory uncertainty induced by the variability of entities in populations and outcomes of random (repeatable) experiments. Example: drawing a ball from an urn. Cannot be reduced;
 - Epistemic uncertainty, due to lack of knowledge. Example: inability to distinguish the color of a ball because of color blindness. Can be reduced.
- Classical frameworks for reasoning with uncertainty:
 - Probability theory;
 - Set-membership approach.

Probability theory Interpretations

- Probability theory can be used to represent:
 - Aleatory uncertainty: probabilities are considered as objective quantities and interpreted as frequencies or limits of frequencies;
 - Epistemic uncertainty: probabilities are subjective, interpreted as degrees of belief.
- Main objections against the use of probability theory as a model epistemic uncertainty (Bayesian model):
 - Inability to represent ignorance;
 - Not a plausible model of how people make decisions based on weak information.

Inability to represent ignorance The wine/water paradox

- Principle of Indifference (PI): in the absence of information about some quantity *X*, we should assign equal probability to any possible value of *X*.
- The wine/water paradox:

There is a certain quantity of liquid. All that we know about the liquid is that it is composed entirely of wine and water, and the ratio of wine to water is between 1/3 and 3. What is the probability that the ratio of wine to water is less than or equal to 2?

Inability to represent ignorance The wine/water paradox (continued)

• Let X denote the ratio of wine to water. All we know is that $X \in [1/3, 3]$. According to the PI, $X \sim U_{[1/3,3]}$. Consequently:

$$P(X \le 2) = (2 - 1/3)/(3 - 1/3) = 5/8.$$

• Now, let Y = 1/X denote the ratio of water to wine. Similarly, we only know that $Y \in [1/3, 3]$. According to the PI, $Y \sim U_{[1/3,3]}$. Consequently:

$$P(X \le 2) = P(Y \ge 1/2)$$

= $(3-1/2)/(3-1/3) = 15/16.$

Decision making Ellsberg's paradox

D

- Suppose you have an urn containing 30 red balls and 60 balls, either black or yellow. You are given a choice between two gambles:
 - A: You receive 100 euros if you draw a red ball;
 - *B*: You receive 100 euros if you draw a black ball.
- Also, you are given a choice between these two gambles (about a different draw from the same urn):
 - C: You receive 100 euros if you draw a red or yellow ball;
 - D: You receive 100 euros if you draw a black or yellow ball.
- Most people strictly prefer A to B, hence

P(red) > P(black), but they strictly prefer *D* to *C*, hence

$$(black) + P(yellow) > P(red) + P(yellow)$$

 $\Rightarrow P(black) > P(red)$

Set-membership approach

- Partial knowledge about some variable *X* is described by a set of possible values *E* (constraint).
- Example:
 - Consider a system described by the equation

$$y = f(x_1,\ldots,x_n;\theta)$$

where *y* is the output, x_1, \ldots, x_n are the inputs and θ is a parameter.

- Knowing that x_i ∈ [x_i, x̄_i], i = 1,..., n and θ ∈ [θ, θ], find a set X surely containing x.
- Advantage: computationally simpler than the probabilistic approach in many cases (interval analysis).
- Drawback: no way to express doubt, conservative approach.

Theory of belief functions

- Alternative theories of uncertainty:
 - Possibility theory (Zadeh, 1978; Dubois and Prade 1980's-1990's);
 - Imprecise probability theory (Walley, 1990's);
 - Theory of belief functions (Dempster-Shafer theory, Evidence theory, Transferable Belief Model) (Dempster, 1968; Shafer, 1976; Smets 1980's-1990's).
- The theory of belief functions extends both the Set-membership approach and Probability Theory:
 - A belief function may be viewed both as a generalized set and as a non additive measure.
 - The theory includes extensions of probabilistic notions (conditioning, marginalization) and set-theoretic notions (intersection, union, inclusion, etc.)

Outline

Basics

- Belief representation
- Information fusion
- Decision making ۰

Selected advanced topics 2

- Informational orderings
- Cautious rule
- Multidimensional belief functions

Belief representation Information fusion Decision making

Outline

- Belief representation
- Information fusion
- Decision making
- 2 Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Multidimensional belief functions

▶ < Ξ ▶</p>

Belief representation Information fusion Decision making

Mass function

- Let X be a variable taking values in a finite set Ω (frame of discernment).
- Mass function: $m: 2^{\Omega} \rightarrow [0, 1]$ such that

$$\sum_{A\subseteq\Omega}m(A)=1.$$

- Every A of Ω such that m(A) > 0 is a focal set of m.
- *m* is said to be normalized if *m*(∅) = 0. This condition may be required or not.

11 9 9 9 C

- ∢ ⊒ →

Belief representation Information fusion Decision making

Murder example

- A murder has been committed. There are three suspects: $\Omega = \{Peter, John, Mary\}.$
- A witness saw the murderer going away in the dark, and he can only assert that it was man. How, we know that the witness is drunk 20 % of the time.
- This piece of evidence can be represented by

 $m(\{Peter, John\}) = 0.8,$

$$m(\Omega) = 0.2$$

• The mass 0.2 is not committed to {*Mary*}, because the testimony does not accuse Mary at all!

Belief representation Information fusion Decision making

Mass function Multi-valued mapping interpretation

- A mass function m on Ω may be viewed as arising from
 - A set $\Theta = \{\theta_1, \dots, \theta_r\}$ of interpretations;
 - A probability measure P on Θ ;
 - A multi-valued mapping $\Gamma: \Theta \to 2^{\Omega}$.
- Meaning: under interpretation θ_i, the evidence tells us that X ∈ Γ(θ_i), and nothing more. The probability P({θ_i}) is transferred to A_i = Γ(θ_i).

Belief representation Information fusion Decision making

Mass functions Special cases

• Only one focal set:

$$m(A) = 1$$
 for some $A \subseteq \Omega$

 \rightarrow categorical (logical) mass function (\sim set). Special case: $A = \Omega$, vacuous mass function, represents total ignorance.

• All focal sets are singletons:

$$m(A) > 0 \Rightarrow |A| = 1$$

 \rightarrow Bayesian mass function (\sim probability mass function).

- A mass function can thus be seen as
 - a generalized set;
 - a generalized probability distribution.

Belief representation Information fusion Decision making

Belief and plausibility functions

$$egin{aligned} & bel(A) = \sum_{\emptyset
eq B \subseteq A}, m(B) \ & pl(A) = \sum_{B \cap A
eq \emptyset} m(B), \ & pl(A) \geq bel(A), \quad orall A \subseteq \Omega. \end{aligned}$$

< 글 ▶ < 글 ▶ 글|글 ⁄ ♀ <

utc

Belief representation Information fusion Decision making

Belief and plausibility functions Interpretation and special cases

- Interpretations:
 - *bel*(*A*) = degree to which the evidence supports *A*.
 - pl(A) = upper bound on the degree of support that could be assigned to A if more specific information became available.
- Special case: if *m* is Bayesian, *bel* = *pl* (probability measure).

Belief representation Information fusion Decision making

Murder example

Α	Ø	{ P }	$\{J\}$	$\{P, J\}$	{ M }	{ P , M }	$\{J, M\}$	Ω
m(A)	0	0	0	0.8	0	0	0	0.2
bel(A)	0	0	0	0.8	0	0	0	1
pl(A)	0	1	1	1	0.2	1	1	1

We observe that

 $bel(A \cup B) \ge bel(A) + bel(B) - bel(A \cap B)$

 $pl(A \cup B) \leq pl(A) + pl(B) - bel(A \cap B)$

• *bel* and *pl* are non additive measures.

Belief representation Information fusion Decision making

Wine/water paradox revisited

• Let X denote the ratio of wine to water. All we know is that $X \in [1/3, 3]$. This is modeled by the categorical mass function m_X such that $m_X([1/3, 3]) = 1$. Consequently:

$$bel_X([2,3]) = 0$$
, $pl_X([2,3]) = 1$.

Now, let Y = 1/X denote the ratio of water to wine. All we know is that Y ∈ [1/3,3]. This is modeled by the categorical mass function m_Y such that m_Y([1/3,3]) = 1. Consequently:

$$bel_Y([1/3, 1/2]) = 0, \quad pl_Y([1/3, 1/2]) = 1.$$

Belief representation Information fusion Decision making

Relations between *m*, *bel* et *pl*

Relations:

$$bel(A) = pl(\Omega) - pl(\overline{A}), \quad \forall A \subseteq \Omega$$

$$m(A) = \begin{cases} \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} bel(B), & A \neq \emptyset \\ 1 - bel(\Omega) & A = \emptyset \end{cases}$$

- m, bel et pl are thus three equivalent representations of
 - a piece of evidence or, equivalently,
 - a state of belief induced by this evidence.

Relationship with Possibility theory

- Assume that the focal sets of *m* are nested: $A_1 \subset A_2 \subset \ldots \subset A_r \to m$ is said to be consonant.
- The following relations hold:

 $pl(A \cup B) = \max(pl(A), pl(B)), \quad \forall A, B \subseteq \Omega.$

- *pl* is this a possibility measure, and *bel* is the dual necessity measure.
- The possibility distribution is the contour function:

$$\pi(\mathbf{x}) = \mathbf{pl}(\{\mathbf{x}\}), \quad \forall \mathbf{x} \in \Omega.$$

 The theory of belief function can thus be considered as more expressive than possibility theory.

Belief representation Information fusion Decision making

Outline

- Belief representation
- Information fusion
- Decision making
- 2 Selected advanced topics
 - Informational orderings
 - Cautious rule
 - Multidimensional belief functions

Belief representation Information fusion Decision making

Conjunctive combination

Let m_1 and m_2 be two mass functions on Ω induced by two independent items of evidence.

Unnormalized Dempster's rule

$$(m_1 \odot m_2)(A) = \sum_{B \cap C = A} m_1(B) m_2(C)$$

Normalized Dempster's rule

$$(m_1 \oplus m_2)(A) = \begin{cases} \frac{(m_1 \bigoplus m_2)(A)}{1 - K_{12}} & \text{if } A \neq \emptyset \\ 0 & \text{if } A \neq \emptyset \end{cases}$$
$$K_{12} = (m_1 \bigoplus m_2)(\emptyset): \text{ degree of conflict.}$$

⇒ < ⇒ >

Belief representation Information fusion Decision making

Dempster's rule

- We have $m_1(\{Peter, John\}) = 0.8, m_1(\Omega) = 0.2.$
- New piece of evidence: a blond hair has been found. There is a probability 0.6 that the room has been cleaned before the crime → m₂({John, Mary}) = 0.6, m₂(Ω) = 0.4.

	{ <i>Peter</i> , <i>John</i> }	Ω
	0.8	0.2
{John, Mary}	{John}	{John, Mary}
0.6	0.48	0.12
Ω	{ <i>Peter</i> , <i>John</i> }	Ω
0.4	0.32	0.08

< 17 ▶

Belief representation Information fusion Decision making

Dempster's rule

- Let (Θ₁, P₁, Γ₁) and (Θ₂, P₂, Γ₂) be the multi-valued mappings associated to m₁ and m₂.
- If θ₁ ∈ Θ₁ and θ₂ ∈ Θ₂ both hold, then X ∈ Γ₁(θ₁) ∩ Γ₂(θ₂).
- If the two pieces of evidence are independent, then this happens with probability P₁({θ₁})P₂({θ₂}).
- The normalized rule is obtained after conditioning on the event {(θ₁, θ₂)|Γ₁(θ₁) ∩ Γ₂(θ₂) ≠ Ø}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Belief representation Information fusion Decision making

Dempster's rule Properties

- Commutativity, associativity. Neutral element: m_{Ω} .
- Generalization of intersection: if *m_A* and *m_B* are categorical mass functions, then

 $m_A \odot m_B = m_{A \cap B}$

- Generalization of probabilistic conditioning: if *m* is a Bayesian mass function and m_A is a categorical mass function, then $m \oplus m_A$ is a Bayesian mass function that corresponding to the conditioning of *m* by *A*.
- Notations for conditioning (special case):

$$m \odot m_A = m(\cdot | A), \quad m \oplus m_A = m^*(\cdot | A).$$

Belief representation Information fusion Decision making

Dempster's rule Expression using commonalities

• Commonality function: let $q: 2^{\Omega} \rightarrow [0, 1]$ be defined as

$$q(A) = \sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega.$$

• Conversely,

$$m(A) = \sum_{B \supseteq A} (-1)^{|B \setminus A|} q(B), \quad \forall A \subseteq \Omega.$$

- Interpretation: q(A) = m(A|A), for any $A \subseteq \Omega$.
- Expression of the unnormalized Dempster's rule using commonalities:

$$(q_1 \odot q_2)(A) = q_1(A) \cdot q_2(A), \quad \forall A \subseteq \Omega.$$

< 🗇 🕨

Belief representation Information fusion Decision making

TBM disjunctive rule Definition and justification

- Let (Θ₁, P₁, Γ₁) and (Θ₂, P₂, Γ₂) be the multi-valued mapping frameworks associated to two pieces of evidence.
- If interpretation θ_k ∈ Θ_k holds and piece of evidence k is reliable, then we can conclude that X ∈ Γ_k(θ_k).
- If interpretation θ₁ ∈ Θ₁ and θ₂ ∈ Θ₂ both hold and we assume that at least one of the two pieces of evidence is reliable, then we can conclude that X ∈ Γ₁(θ₁) ∪ Γ₂(θ₂).
- This leads to the TBM disjunctive rule:

$$(m_1 \odot m_2)(A) = \sum_{B \cup C = A} m_1(B) m_2(C), \quad \forall A \subseteq \Omega$$

★ E ► ★ E ► E E < 2000</p>

Belief representation Information fusion Decision making

TBM disjunctive rule

- Commutativity, associativity.
- Neutral element: m₀
- Let $b = bel + m(\emptyset)$ (implicability function). We have:

$$(b_1 \bigcirc b_2) = b_1 \cdot b_2$$

• De Morgan laws for \bigcirc and \bigcirc :

$$\overline{m_1 \odot m_2} = \overline{m_1} \odot \overline{m_2},$$

$$\overline{m_1} \odot \overline{m_2} = \overline{m_1} \odot \overline{m_2},$$

where \overline{m} denotes the complement of *m* defined by $\overline{m}(A) = m(\overline{A})$ for all $A \subseteq \Omega$.

Selecting a combination rule

- All three rules ∩, ⊕ and assume the pieces of evidence to be independent.
- The conjunctive rules

 and ⊕ further assume that the pieces of evidence are both reliable;
- The TBM disjunctive rule () only assumes that at least one of the items of evidence combined is reliable (weaker assumption).
- - (in) keeps track of the conflict between items of evidence: very useful in some applications.
 - ① also makes sense under the open-world assumption.
 - The conflict increases with the number of combined mass functions: normalization is often necessary at some point.
- What to do with dependent items of evidence? → Cautiou rule

Belief representation Information fusion Decision making

Outline

- Belief representation
- Information fusion
- Decision making

2 Selected advanced topics

- Informational orderings
- Cautious rule
- Multidimensional belief functions

Belief representation Information fusion Decision making

Decision making Problem formulation

- A decision problem can be formalized by defining:
 - A set of acts $\mathcal{A} = \{a_1, \ldots, a_s\};$
 - A set of states of the world Ω;
 - A loss function L : A × Ω → ℝ, such that L(a, ω) is the loss incurred if we select act a and the true state is ω.
- Bayesian framework
 - Uncertainty on Ω is described by a probability measure P;
 - Define the risk of each act *a* as the expected loss if *a* is selected:

$$R(a) = \mathbb{E}_{P}[L(a, \cdot)] = \sum_{\omega \in \Omega} L(a, \omega) P(\{\omega\}).$$

- Select an act with minimal risk.
- Extension to the belief function framework?

Belief representation Information fusion Decision making

Decision making Compatible probabilities

 Let *m* be a normalized mass function, and *P*(*m*) the set of compatible probability measures on Ω, i.e., the set of *P* verifying

$$bel(A) \leq P(A) \leq pl(A), \quad \forall A \subseteq \Omega.$$

• The lower and upper expected risk of each act *a* are defined, respectively, as:

$$\underline{R}(a) = \underline{\mathbb{E}}_{m}[L(a, \cdot)] = \inf_{P \in \mathcal{P}(m)} R_{P}(a) = \sum_{A \subseteq \Omega} m(A) \min_{\omega \in A} L(a, \omega)$$
$$\overline{R}(a) = \overline{\mathbb{E}}_{m}[L(a, \cdot)] = \sup_{P \in \mathcal{P}(m)} R_{P}(a) = \sum_{A \subseteq \Omega} m(A) \max_{\omega \in A} L(a, \omega)$$

Belief representation Information fusion Decision making

Decision making Strategies

- For each act *a* we have a risk interval $[\underline{R}(a), \overline{R}(a)]$. How to compare these intervals?
- Three strategies:
 - *a* is preferred to a' iff $\overline{R}(a) \leq \underline{R}(a')$;
 - 2 *a* is preferred to *a*' iff $\underline{\underline{R}}(a) \leq \underline{\underline{R}}(a')$ (optimistic strategy);
 - 3 *a* is preferred to *a*' iff $\overline{R}(a) \leq \overline{R}(a')$ (pessimistic strategy).
- Strategy 1 yields only a partial preorder: a and a' are not comparable if R

 <u>R</u>(a') > <u>R</u>(a') and R
 <u>R</u>(a') > <u>R</u>(a).

Belief representation Information fusion Decision making

Decision making Special case

Let Ω = {ω₁,..., ω_K}, A = {a₁,..., a_K}, where a_i is the act of selecting ω_i.

Let

$$L(a_i, \omega_j) = \begin{cases} 0 & \text{if } i = j \text{ (the true state has been selected),} \\ 1 & \text{otherwise }. \end{cases}$$

- Then $\underline{R}(a_i) = 1 pl(\omega_i)$ and $\overline{R}(a_i) = 1 bel(\omega_i)$.
- The lower (resp., upper) risk is minimized by selecting the hypothesis with the largest plausibility (resp., degree of belief).

Belief representation Information fusion Decision making

Decision making Coming back to Ellsberg's paradox

We have $m(\{r\}) = 1/3$, $m(\{b, y\}) = 2/3$.

	r	b	У	<u>R</u>	\overline{R}
Α	-100	0	0	-100/3	-100/3
В	0	-100	0	-200/3	0
С	-100	0	-100	-100	-100/3
D	0	-100	-100	-200/3	-200/3

The observed behavior (preferring A to B and D to C) is explained by the pessimistic strategy.

ъ

Belief representation Information fusion Decision making

Decision making Other decision strategies

- How to find a compromise between the pessimistic strategy (minimizing the upper expected risk) and the optimistic one (minimizing the lower expected risk)?
- Two approaches:
 - Hurwicz criterion: *a* is preferred to *a'* iff $R_{\rho}(a) \leq R_{\rho}(a')$ with

$$R_{\rho}(a) = (1 - \rho)\underline{R}(a) + \rho \overline{R}(a).$$

and $\rho \in [0, 1]$ is a pessimism index describing the attitude of the decision maker in the face of ambiguity.

• Pignistic transformation (Transferable Belief Model).

Belief representation Information fusion Decision making

Decision making TBM approach

- The "Dutch book" argument: in order to avoid Dutch books (sequences of bets resulting in sure loss), we have to base our decisions on a probability distribution on Ω.
- The TBM postulates that uncertain reasoning and decision making are two fundamentally different operations occurring at two different levels:
 - Uncertain reasoning is performed at the credal level using the formalism of belief functions.
 - Decision making is performed at the pignistic level, after the m on Ω has been transformed into a probability measure.

▲ Ξ ► Ξ Ε · • • • • • •

Belief representation Information fusion Decision making

Decision making Pignistic transformation

• The pignistic transformation Bet transforms a normalized mass function *m* into a probability measure $P_m = Bet(m)$ as follows:

$$P_m(A) = \sum_{\emptyset \neq B \subseteq \Omega} m(B) \frac{|A \cap B|}{|B|}, \quad \forall A \subseteq \Omega.$$

• It can be shown that $bel(A) \leq P_m(A) \leq pl(A)$, hence $P_m \in \mathcal{P}(m)$. Consequently,

$$\underline{R}(a) \leq R_{P_m}(a) \leq \overline{R}(a), \quad \forall a \in \mathcal{A}.$$

Belief representation Information fusion Decision making

Decision making Example

- Let m({John}) = 0.48, m({John, Mary}) = 0.12, m({Peter, John}) = 0.32, m(Ω) = 0.08.
- We have

F

$$P_m(\{John\}) = 0.48 + \frac{0.12}{2} + \frac{0.32}{2} + \frac{0.08}{3} \approx 0.73,$$

 $P_m(\{Peter\}) = \frac{0.32}{2} + \frac{0.08}{3} \approx 0.19$
 $P_m(\{Mary\}) = \frac{0.12}{2} + \frac{0.08}{3} \approx 0.09$

< < >> < </>

Informational orderings Cautious rule Multidimensional belief functions

Outline

Basics

- Belief representation
- Information fusion
- Decision making

2 Selected advanced topics

- Informational orderings
- Cautious rule
- Multidimensional belief functions

3

Informational comparison of belief functions

- Let m_1 et m_2 be two mass functions on Ω .
- In what sense can we say that m₁ is more informative (committed) than m₂?
- Special case:
 - Let m_A and m_B be two categorical mass functions.
 - m_A is more committed than m_B iff $A \subseteq B$.
- Extension to arbitrary mass functions?

Plausibility and commonality orderings

• m_1 is pl-more committed than m_2 (noted $m_1 \sqsubseteq_{pl} m_2$) if

$$pl_1(A) \leq pl_2(A), \quad \forall A \subseteq \Omega.$$

• m_1 is q-more committed than m_2 (noted $m_1 \sqsubseteq_q m_2$) if

$$q_1(A) \leq q_2(A), \quad \forall A \subseteq \Omega.$$

Properties:

• Extension of set inclusion:

$$m_A \sqsubseteq_{pl} m_B \Leftrightarrow m_A \sqsubseteq_q m_B \Leftrightarrow A \subseteq B.$$

Greatest element: vacuous mass function m_Ω.

Informational orderings Cautious rule Multidimensional belief functions

Strong (specialization) ordering

*m*₁ is a specialization of *m*₂ (noted *m*₁ ⊑_s *m*₂) if *m*₁ can be obtained from *m*₂ by distributing each mass *m*₂(*B*) to subsets of *B*:

$$m_1(A) = \sum_{B \subseteq \Omega} S(A, B) m_2(B), \quad \forall A \subseteq \Omega,$$

where S(A, B) = proportion of $m_2(B)$ transferred to $A \subseteq B$.

- S: specialization matrix.
- Properties:
 - Extension of set inclusion;
 - Greatest element: m_Ω;
 - $m_1 \sqsubseteq_s m_2 \Rightarrow m_1 \sqsubseteq_{pl} m_2$ and $m_1 \sqsubseteq_q m_2$.

Informational orderings Cautious rule Multidimensional belief functions

Least Commitment Principle

Definition (Least Commitment Principle)

When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected.

A very powerful method for constructing belief functions!

Informational orderings Cautious rule Multidimensional belief functions

Outline

Basics

- Belief representation
- Information fusion
- Decision making

2 Selected advanced topics

- Informational orderings
- Cautious rule
- Multidimensional belief functions

< Ξ

Informational orderings Cautious rule Multidimensional belief functions

Cautious rule

- The standard rules ∩, ⊕ and assume the sources of information to be independent, e.g.
 - experts with non overlapping experience/knowledge;
 - non overlapping datasets.
- What to do in case of non independent evidence?
 - Describe the nature of the interaction between sources (difficult, requires a lot of information);
 - Use a combination rule that tolerates redundancy in the combined information.
- Such rules can be derived from the LCP using suitable informational orderings.

< < >> < </>

Informational orderings Cautious rule Multidimensional belief functions

Cautious rule

- Two sources provide mass functions *m*₁ and *m*₂, and the sources are both considered to be reliable.
- After receiving these m_1 and m_2 , the agent's state of belief should be represented by a mass function m_{12} more committed than m_1 , and more committed than m_2 .
- Let $S_x(m)$ be the set of mass functions m' such that $m' \sqsubseteq_x m$, for some $x \in \{pl, q, s, \dots\}$. We thus impose that $m_{12} \in S_x(m_1) \cap S_x(m_2)$.
- According to the LCP, we should select the *x*-least committed element in S_x(m₁) ∩ S_x(m₂), if it exists.

Informational orderings Cautious rule Multidimensional belief functions

Cautious rule

- The above approach works for special cases.
- Example (Dubois, Prade, Smets 2001): if m₁ and m₂ are consonant, then the *q*-least committed element in S_q(m₁) ∩ S_q(m₂) exists and it is unique: it is the consonant mass function with commonality function q₁₂ = q₁ ∧ q₂.
- In general, neither existence nor uniqueness of a solution can be guaranteed with any of the *x*-orderings, *x* ∈ {*pl*, *q*, *s*}.
- We need to define a new ordering relation.
- This ordering will be based on the (conjunctive) canonical decomposition of belief functions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Informational orderings Cautious rule Multidimensional belief functions

Canonical decomposition Simple and separable mass functions

• Definition: *m* is simple mass function if it has the following form

$$m(A) = 1 - w_A$$

$$m(\Omega) = w_A,$$

with $A \subset \Omega$ and $w_A \in [0, 1]$.

- Notation: A^{w_A}.
- Property: $A^{w_1} \bigcirc A^{w_2} = A^{w_1 w_2}$.
- A mass function is separable if it can be written as the combination of simple mass functions:

$$m = \bigcap_{A \subset \Omega} A^{w(A)}$$

with $0 \le w(A) \le 1$ for all $A \subset \Omega$.

50/70

Informational orderings Cautious rule Multidimensional belief functions

Canonical decomposition Subtracting evidence

- Let $m_{12} = m_1 \bigcirc m_2$. We have $q_{12} = q_1 \cdot q_2$.
- Assume we no longer trust m₂ and we wish to subtract it from m₁₂.
- If m_2 is non dogmatic (i.e. $m_2(\Omega) > 0$ or, equivalently, $q_2(A) > 0, \forall A$), m_1 can be retrieved as

$$q_1 = q_{12}/q_2.$$

- We note $m_1 = m_{12} \textcircled{0} m_2$.
- Remark: m₁ m₂ may not be a valid mass function!

Informational orderings Cautious rule Multidimensional belief functions

Canonical decomposition

Theorem (Smets, 1995)

Any non dogmatic mass function ($m(\Omega) > 0$) can be canonically decomposed as:

$$m = \left(\bigcirc_{A \subset \Omega} A^{w_{\mathcal{C}}(A)} \right) \oslash \left(\bigcirc_{A \subset \Omega} A^{w_{\mathcal{D}}(A)} \right)$$

with $w_C(A) \in (0, 1]$, $w_D(A) \in (0, 1]$ and $\max(w_C(A), w_D(A)) = 1$ for all $A \subset \Omega$.

- Let $w = w_C/w_D$.
- Function w : 2^Ω \ Ω → ℝ^{*}₊ is called the (conjunctive) weight function.
- It is a new equivalent representation of a non dogmatic mass function (together with *bel*, *pl*, *q*, *b*).

Informational orderings Cautious rule Multidimensional belief functions

Properties of w

- Function w is directly available when m is built by accumulating simple mass functions (common situation).
- Calculation of *w* from *q*:

$$\ln w(A) = -\sum_{B \supseteq A} (-1)^{|B| - |A|} \ln q(B), \quad \forall A \subset \Omega.$$

Conversely,

$$\ln q(A) = -\sum_{\Omega \supset B \not\supseteq A} \ln w(B), \quad \forall A \subseteq \Omega$$

• TBM conjunctive rule:

$$w_1 \bigcirc w_2 = w_1 \cdot w_2.$$

w-ordering

- Let m₁ and m₂ be two non dogmatic mass functions. We say that m₁ is w-more committed than m₂ (denoted as m₁ ⊑_w m₂) if w₁ ≤ w₂.
- Interpretation: $m_1 = m_2 \bigcirc m$ with *m* separable.
- Properties:

•
$$m_1 \sqsubseteq_w m_2 \Rightarrow m_1 \sqsubseteq_s m_2 \Rightarrow \begin{cases} m_1 \sqsubseteq_{pl} m_2 \\ m_1 \sqsubset_q m_2 \end{cases}$$

• m_{Ω} is the only maximal element of \sqsubseteq_{w} :

$$m_{\Omega} \sqsubseteq_w m \Rightarrow m = m_{\Omega}$$

Informational orderings Cautious rule Multidimensional belief functions

Cautious rule

Theorem

Let m_1 and m_2 be two nondogmatic BBAs. The *w*-least committed element in $S_w(m_1) \cap S_w(m_2)$ exists and is unique. It is defined by the following weight function:

$$w_1 \otimes_2 (A) = w_1(A) \wedge w_2(A), \quad \forall A \subset \Omega.$$

Definition (cautious conjunctive rule)

$$m_1 \otimes m_2 = \bigcap_{A \subset \Omega} A^{w_1(A) \wedge w_2(A)}$$

∃ > < ∃ >

Informational orderings Cautious rule Multidimensional belief functions

Cautious rule

Theorem

Let m_1 and m_2 be two nondogmatic BBAs. The *w*-least committed element in $S_w(m_1) \cap S_w(m_2)$ exists and is unique. It is defined by the following weight function:

$$w_1 \otimes 2(A) = w_1(A) \wedge w_2(A), \quad \forall A \subset \Omega.$$

Definition (cautious conjunctive rule)

$$m_1 \otimes m_2 = \bigcap_{A \subset \Omega} A^{w_1(A) \wedge w_2(A)}$$

∃ → < ∃ →</p>

utc

Informational orderings Cautious rule Multidimensional belief functions

Cautious rule

Cautious rule computation

<i>m</i> -space		w-space
<i>m</i> 1	\longrightarrow	<i>W</i> ₁
<i>m</i> ₂	\longrightarrow	<i>W</i> ₂
$m_1 \otimes m_2$	←	$w_1 \wedge w_2$

(E)

A D > A P >

Informational orderings Cautious rule Multidimensional belief functions

Cautious rule Properties

- Commutative, associative
- Idempotent : $\forall m, m \otimes m = m$

 $(\underline{m_1} \oplus \underline{m_2}) \otimes (\underline{m_1} \oplus \underline{m_3}) = \underline{m_1} \oplus (\underline{m_2} \otimes \underline{m_3}), \forall \underline{m_1}, \underline{m_2}, \underline{m_3}.$

The same item of evidence m_1 is not counted twice!

• No neutral element, but $m_{\Omega} \bigotimes m = m$ iff *m* is separable.

Informational orderings Cautious rule Multidimensional belief functions

Related rules

• Normalized cautious rule:

$$(m_1 \otimes^* m_2)(A) = \begin{cases} \frac{(m_1 \otimes m_2)(A)}{1 - (m_1 \otimes m_2)(\emptyset)} & \text{if } A \neq \emptyset \\ 0 & \text{if } A = \emptyset. \end{cases}$$

Bold disjunctive rule:

$$m_1 \otimes m_2 = \overline{\overline{m}_1 \otimes \overline{m}_2}.$$

Both ⊘* and ⊘ are commutative, associative and idempotent.

Global picture

Informational orderings Cautious rule Multidimensional belief functions

• Six basic rules:

Sources		independent	dependent	
	open world	0	\Diamond	
All Tellable	closed world	\oplus	\bigcirc^*	
At least one reliable		\bigcirc	\bigotimes	

Informational orderings Cautious rule Multidimensional belief functions

Outline

Basics

- Belief representation
- Information fusion
- Decision making

2 Selected advanced topics

- Informational orderings
- Cautious rule
- Multidimensional belief functions

3

Informational orderings Cautious rule Multidimensional belief functions

Multidimensional belief functions

- In many applications, we need to express uncertain information about several variables taking values in different domains.
- Example: fault tree (logical relations between Boolean variables and probabilistic or evidential information about elementary events).

< ∃→

Multidimensional belief functions

Fault tree example (Dempster & Kong, 1988)

Thierry Denœux

utc

Informational orderings Cautious rule Multidimensional belief functions

Multidimensional belief functions

Marginalization, vacuous extension

- Let X and Y be two variables defined on frames Ω_X and Ω_Y .
- Let $\Omega_{XY} = \Omega_X \times \Omega_Y$ be the product frame.
- A mass function $m^{\Omega_{XY}}$ on Ω_{XY} can be seen as an uncertain relation between variables *X* and *Y*.
- Two basic operations on product frames:
 - Express a joint mass function $m^{\Omega_{XY}}$ in the coarser frame Ω_X or Ω_Y (marginalization);
 - **2** Express a marginal mass function m^{Ω_X} on Ω_X in the finer frame Ω_{XY} (vacuous extension).

Informational orderings Cautious rule Multidimensional belief functions

Marginalization

- Problem: express $m^{\Omega_{XY}}$ in Ω_X .
- Solution: transfer each mass $m^{\Omega_{XY}}(A)$ to the projection of A on Ω_X :
- Marginal mass function

$$m^{\Omega_{XY} \downarrow \Omega_X}(B) = \sum_{\{A \subseteq \Omega_{XY}, A \downarrow \Omega_X = B\}} m^{\Omega_{XY}}(A), \quad \forall B \subseteq \Omega_X.$$

 Generalizes both set projection and probabilistic marginalization.

Informational orderings Cautious rule Multidimensional belief functions

Vacuous extension

- Problem: express m^{Ω_X} in Ω_{XY} .
- Solution: transfer each mass m^{Ω_X}(B) to the cylindrical extension of B: B × Ω_Y.

Vacuous extension:

$$m^{\Omega_X \uparrow \Omega_{XY}}(A) = egin{cases} m^{\Omega_X}(B) & ext{if } A = B imes \Omega_Y \ 0 & ext{otherwise.} \end{cases}$$

э

Informational orderings Cautious rule Multidimensional belief functions

.

Operations in product frames Application to approximate reasoning

- Assume that we have:
 - Partial knowledge of X formalized as a mass function m^{Ω_X};
 - A joint mass function $m^{\Omega_{XY}}$ representing an uncertain relation between X and Y.
- What can we say about Y?
- Solution:

$$m^{\Omega_{Y}} = \left(m^{\Omega_{X} \uparrow \Omega_{XY}} \odot m^{\Omega_{XY}}\right)^{\downarrow \Omega_{Y}}$$

 Infeasible with many variables and large frames of discernment, but efficient algorithms exist to carry out the operations in frames of minimal dimensions.

★ E ► ★ E ► E E < 2000</p>

Informational orderings Cautious rule Multidimensional belief functions

Fault tree example

Cause	<i>m</i> ({1})	<i>m</i> ({0})	<i>m</i> ({0,1})
<i>X</i> ₁	0.05	0.90	0.05
<i>X</i> ₂	0.05	0.90	0.05
<i>X</i> ₃	0.005	0.99	0.005
<i>X</i> ₄	0.01	0.985	0.005
X_5	0.002	0.995	0.003
G	0.001	0.99	0.009
М	0.02	0.951	0.029
F	0.019	0.961	0.02
			Crist

EN K E M EH

Summary

- The theory of belief function: a very general formalism for representing imprecision and uncertainty that extends both probabilistic and set-theoretic frameworks:
 - Belief functions can be seen both as generalized sets and as generalized probability measures;
 - Reasoning mechanisms extend both set-theoretic notions (intersection, union, cylindrical extension, inclusion relations, etc.) and probabilistic notions (conditioning, marginalization, Bayes theorem, stochastic ordering, etc.).
- The theory of belief function can also be seen as more general than Possibility theory (possibility measures are particular plausibility functions).

References I

cf. http://www.hds.utc.fr/~tdenoeux

G. Shafer.

A mathematical theory of evidence. Princeton University Press, Princeton, N.J., 1976.

Ph. Smets and R. Kennes.

The Transferable Belief Model.

Artificial Intelligence, 66:191-243, 1994.

D. Dubois and H. Prade.

A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets.

International Journal of General Systems, 12(3):193-226, 1986

References II cf. http://www.hds.utc.fr/~tdenoeux

T. Denœux.

Analysis of evidence-theoretic decision rules for pattern classification.

Pattern Recognition, 30(7):1095-1107, 1997.

T. Denœux.

Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence.

Artificial Intelligence, Vol. 172, pages 234-264, 2008.

