Introduction to belief functions

Thierry Denœux ${ }^{1}$
${ }^{1}$ Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599)
http://www.hds.utc.fr/~tdenoeux
Spring School BFTA 2011
Autrans, April 4-8, 2011

Contents of this lecture

(1) Context, position of belief functions with respect to classical theories of uncertainty.
(2) Fundamental concepts: belief, plausibility, commonality, Conditioning, basic combination rules.
(3) Some more advanced concepts: least commitment principle, cautious rule, multidimensional belief functions.

Uncertain reasoning

- In science and engineering we always need to reason with partial knowledge and uncertain information (from sensors, experts, models, etc.).
- Different kinds of uncertainty:
- Aleatory uncertainty induced by the variability of entities in populations and outcomes of random (repeatable) experiments. Example: drawing a ball from an urn. Cannot be reduced;
- Epistemic uncertainty, due to lack of knowledge. Example: inability to distinguish the color of a ball because of color blindness. Can be reduced.
- Classical frameworks for reasoning with uncertainty:
(1) Probability theory;
(2) Set-membership approach.

Probability theory
 Interpretations

- Probability theory can be used to represent:
- Aleatory uncertainty: probabilities are considered as objective quantities and interpreted as frequencies or limits of frequencies;
- Epistemic uncertainty: probabilities are subjective, interpreted as degrees of belief.
- Main objections against the use of probability theory as a model epistemic uncertainty (Bayesian model):
- Inability to represent ignorance;
- Not a plausible model of how people make decisions based on weak information.

Inability to represent ignorance

The wine/water paradox

- Principle of Indifference (PI): in the absence of information about some quantity X, we should assign equal probability to any possible value of X.
- The wine/water paradox:

There is a certain quantity of liquid. All that we know about the liquid is that it is composed entirely of wine and water, and the ratio of wine to water is between $1 / 3$ and 3 . What is the probability that the ratio of wine to water is less than or equal to 2?

Inability to represent ignorance

The wine/water paradox (continued)

- Let X denote the ratio of wine to water. All we know is that $X \in[1 / 3,3]$. According to the PI, $X \sim \mathcal{U}_{[1 / 3,3]}$. Consequently:

$$
P(X \leq 2)=(2-1 / 3) /(3-1 / 3)=5 / 8
$$

- Now, let $Y=1 / X$ denote the ratio of water to wine. Similarly, we only know that $Y \in[1 / 3,3]$. According to the PI, $Y \sim \mathcal{U}_{[1 / 3,3]}$. Consequently:

$$
\begin{aligned}
P(X \leq 2) & =P(Y \geq 1 / 2) \\
& =(3-1 / 2) /(3-1 / 3)=15 / 16
\end{aligned}
$$

Decision making

Ellsberg's paradox

- Suppose you have an urn containing 30 red balls and 60 balls, either black or yellow. You are given a choice between two gambles:
- A: You receive 100 euros if you draw a red ball;
- B: You receive 100 euros if you draw a black ball.
- Also, you are given a choice between these two gambles (about a different draw from the same urn):
- C: You receive 100 euros if you draw a red or yellow ball;
- D: You receive 100 euros if you draw a black or yellow ball.
- Most people strictly prefer A to B, hence $P($ red $)>P($ black $)$, but they strictly prefer D to C, hence

$$
\begin{aligned}
P(\text { black })+P(\text { yellow })>P(\text { red }) & +P(\text { yellow }) \\
& \Rightarrow P(\text { black })>P(\text { red }) .
\end{aligned}
$$

Set-membership approach

- Partial knowledge about some variable X is described by a set of possible values E (constraint).
- Example:
- Consider a system described by the equation

$$
y=f\left(x_{1}, \ldots, x_{n} ; \theta\right)
$$

where y is the output, x_{1}, \ldots, x_{n} are the inputs and θ is a parameter.

- Knowing that $x_{i} \in\left[\underline{x}_{i}, \bar{x}_{i}\right], i=1, \ldots, n$ and $\theta \in[\underline{\theta}, \bar{\theta}]$, find a set \mathbb{X} surely containing x.
- Advantage: computationally simpler than the probabilistic approach in many cases (interval analysis).
- Drawback: no way to express doubt, conservative approach.

Theory of belief functions

- Alternative theories of uncertainty:
- Possibility theory (Zadeh, 1978; Dubois and Prade 1980's-1990's);
- Imprecise probability theory (Walley, 1990's);
- Theory of belief functions (Dempster-Shafer theory, Evidence theory, Transferable Belief Model) (Dempster, 1968; Shafer, 1976; Smets 1980's-1990's).
- The theory of belief functions extends both the Set-membership approach and Probability Theory:
- A belief function may be viewed both as a generalized set and as a non additive measure.
- The theory includes extensions of probabilistic notions (conditioning, marginalization) and set-theoretic notions (intersection, union, inclusion, etc.)

Outline

(9) Basics

- Belief representation
- Information fusion
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions

Outline

(1) Basics

- Belief representation
- Information fusion
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions

Mass function

Definition

- Let X be a variable taking values in a finite set Ω (frame of discernment).
- Mass function: $m: 2^{\Omega} \rightarrow[0,1]$ such that

$$
\sum_{A \subseteq \Omega} m(A)=1
$$

- Every A of Ω such that $m(A)>0$ is a focal set of m.
- m is said to be normalized if $m(\emptyset)=0$. This condition may be required or not.

Murder example

- A murder has been committed. There are three suspects: $\Omega=\{$ Peter, John, Mary $\}$.
- A witness saw the murderer going away in the dark, and he can only assert that it was man. How, we know that the witness is drunk 20% of the time.
- This piece of evidence can be represented by

$$
\begin{gathered}
m(\{\text { Peter }, \text { John }\})=0.8, \\
m(\Omega)=0.2
\end{gathered}
$$

- The mass 0.2 is not committed to $\{$ Mary $\}$, because the testimony does not accuse Mary at all!

Mass function

Multi-valued mapping interpretation

- A mass function m on Ω may be viewed as arising from
- A set $\Theta=\left\{\theta_{1}, \ldots, \theta_{r}\right\}$ of interpretations;
- A probability measure P on Θ;
- A multi-valued mapping $\Gamma: \Theta \rightarrow 2^{\Omega}$.
- Meaning: under interpretation θ_{i}, the evidence tells us that $X \in \Gamma\left(\theta_{i}\right)$, and nothing more. The probability $P\left(\left\{\theta_{i}\right\}\right)$ is transferred to $A_{i}=\Gamma\left(\theta_{i}\right)$.
- $m(A)$ is the probability of knowing only that $X \in A$, given the available evidence.

Mass functions

Special cases

- Only one focal set:

$$
m(A)=1 \text { for some } A \subseteq \Omega
$$

\rightarrow categorical (logical) mass function (\sim set). Special case: $A=\Omega$, vacuous mass function, represents total ignorance.

- All focal sets are singletons:

$$
m(A)>0 \Rightarrow|A|=1
$$

\rightarrow Bayesian mass function (\sim probability mass function).

- A mass function can thus be seen as
- a generalized set;
- a generalized probability distribution.

Belief and plausibility functions

Definitions

$$
\begin{aligned}
\operatorname{bel}(A) & =\sum_{\emptyset \neq B \subseteq A}, m(B) \\
p l(A) & =\sum_{B \cap A \neq \emptyset} m(B), \\
p l(A) & \geq \operatorname{bel}(A), \quad \forall A \subseteq \Omega
\end{aligned}
$$

Belief and plausibility functions

Interpretation and special cases

- Interpretations:
- $\operatorname{bel}(A)=$ degree to which the evidence supports A.
- $p l(A)=$ upper bound on the degree of support that could be assigned to A if more specific information became available.
- Special case: if m is Bayesian, bel $=p l$ (probability measure).

Murder example

A	\emptyset	$\{P\}$	$\{J\}$	$\{P, J\}$	$\{M\}$	$\{P, M\}$	$\{J, M\}$	Ω
$m(A)$	0	0	0	0.8	0	0	0	0.2
$\operatorname{bel}(A)$	0	0	0	0.8	0	0	0	1
$p l(A)$	0	1	1	1	0.2	1	1	1

- We observe that

$$
\begin{gathered}
\operatorname{bel}(A \cup B) \geq \operatorname{bel}(A)+\operatorname{bel}(B)-\operatorname{bel}(A \cap B) \\
p l(A \cup B) \leq p l(A)+p l(B)-\operatorname{bel}(A \cap B)
\end{gathered}
$$

- bel and pl are non additive measures.

Wine/water paradox revisited

- Let X denote the ratio of wine to water. All we know is that $X \in[1 / 3,3]$. This is modeled by the categorical mass function m_{X} such that $m_{X}([1 / 3,3])=1$. Consequently:

$$
\operatorname{bel}_{X}([2,3])=0, \quad p l_{X}([2,3])=1
$$

- Now, let $Y=1 / X$ denote the ratio of water to wine. All we know is that $Y \in[1 / 3,3]$. This is modeled by the categorical mass function m_{Y} such that $m_{Y}([1 / 3,3])=1$. Consequently:

$$
\operatorname{bel}_{Y}([1 / 3,1 / 2])=0, \quad p l_{Y}([1 / 3,1 / 2])=1
$$

Relations between m, bel et $p /$

- Relations:

$$
\begin{gathered}
\operatorname{bel}(A)=p l(\Omega)-p l(\bar{A}), \quad \forall A \subseteq \Omega \\
m(A)= \begin{cases}\sum_{\emptyset \neq B \subseteq A}(-1)^{|A|-|B|} \mid \operatorname{bel}(B), & A \neq \emptyset \\
1-\operatorname{bel}(\Omega) & A=\emptyset\end{cases}
\end{gathered}
$$

- m, bel et $p l$ are thus three equivalent representations of
- a piece of evidence or, equivalently,
- a state of belief induced by this evidence.

Relationship with Possibility theory

- Assume that the focal sets of m are nested: $A_{1} \subset A_{2} \subset \ldots \subset A_{r} \rightarrow m$ is said to be consonant.
- The following relations hold:

$$
p l(A \cup B)=\max (p l(A), p l(B)), \quad \forall A, B \subseteq \Omega
$$

- $p /$ is this a possibility measure, and bel is the dual necessity measure.
- The possibility distribution is the contour function:

$$
\pi(x)=p /(\{x\}), \quad \forall x \in \Omega
$$

- The theory of belief function can thus be considered as more expressive than possibility theory.

Outline

- Belief representation
- Information fusion
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions

Conjunctive combination Definitions

Let m_{1} and m_{2} be two mass functions on Ω induced by two independent items of evidence.
(1) Unnormalized Dempster's rule

$$
\left(m_{1} @ m_{2}\right)(A)=\sum_{B \cap C=A} m_{1}(B) m_{2}(C)
$$

(2) Normalized Dempster's rule
$\left(m_{1} \oplus m_{2}\right)(A)= \begin{cases}\frac{\left(m_{1} \cap m_{2}\right)(A)}{1-K_{12}} & \text { if } A \neq \emptyset \\ 0 & \text { if } A\end{cases}$
$K_{12}=\left(m_{1} \cap m_{2}\right)(\emptyset)$: degree of CMIS conflict.

Dempster's rule
 Example

- We have $m_{1}(\{$ Peter, John $\})=0.8, m_{1}(\Omega)=0.2$.
- New piece of evidence: a blond hair has been found. There is a probability 0.6 that the room has been cleaned before the crime $\rightarrow m_{2}(\{$ John, Mary $\})=0.6, m_{2}(\Omega)=0.4$.

	$\{$ Peter, John $\}$	Ω
	0.8	0.2
$\{$ John, Mary $\}$	$\{$ John $\}$	$\{$ John, Mary $\}$
0.6	0.48	0.12
Ω	$\{$ Peter, John $\}$	Ω
0.4	0.32	0.08

Dempster's rule Justification

- Let $\left(\Theta_{1}, P_{1}, \Gamma_{1}\right)$ and $\left(\Theta_{2}, P_{2}, \Gamma_{2}\right)$ be the multi-valued mappings associated to m_{1} and m_{2}.
- If $\theta_{1} \in \Theta_{1}$ and $\theta_{2} \in \Theta_{2}$ both hold, then $X \in \Gamma_{1}\left(\theta_{1}\right) \cap \Gamma_{2}\left(\theta_{2}\right)$.
- If the two pieces of evidence are independent, then this happens with probability $P_{1}\left(\left\{\theta_{1}\right\}\right) P_{2}\left(\left\{\theta_{2}\right\}\right)$.
- The normalized rule is obtained after conditioning on the event $\left\{\left(\theta_{1}, \theta_{2}\right) \mid \Gamma_{1}\left(\theta_{1}\right) \cap \Gamma_{2}\left(\theta_{2}\right) \neq \emptyset\right\}$. CחIS

Dempster's rule
 Properties

- Commutativity, associativity. Neutral element: m_{Ω}.
- Generalization of intersection: if m_{A} and m_{B} are categorical mass functions, then

$$
m_{A \cap} \cap m_{B}=m_{A \cap B}
$$

- Generalization of probabilistic conditioning: if m is a Bayesian mass function and m_{A} is a categorical mass function, then $m \oplus m_{A}$ is a Bayesian mass function that corresponding to the conditioning of m by A.
- Notations for conditioning (special case):

$$
m ® m_{A}=m(\cdot \mid A), \quad m \oplus m_{A}=m^{*}(\cdot \mid A) .
$$

Dempster's rule

Expression using commonalities

- Commonality function: let $q: 2^{\Omega} \rightarrow[0,1]$ be defined as

$$
q(A)=\sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega .
$$

- Conversely,

$$
m(A)=\sum_{B \supseteq A}(-1)^{|B \backslash A|} q(B), \quad \forall A \subseteq \Omega .
$$

- Interpretation: $q(A)=m(A \mid A)$, for any $A \subseteq \Omega$.
- Expression of the unnormalized Dempster's rule using commonalities:

$$
\left(q_{1} \odot q_{2}\right)(A)=q_{1}(A) \cdot q_{2}(A), \quad \forall A \subseteq \Omega
$$

TBM disjunctive rule Definition and justification

- Let $\left(\Theta_{1}, P_{1}, \Gamma_{1}\right)$ and $\left(\Theta_{2}, P_{2}, \Gamma_{2}\right)$ be the multi-valued mapping frameworks associated to two pieces of evidence.
- If interpretation $\theta_{k} \in \Theta_{k}$ holds and piece of evidence k is reliable, then we can conclude that $X \in \Gamma_{k}\left(\theta_{k}\right)$.
- If interpretation $\theta_{1} \in \Theta_{1}$ and $\theta_{2} \in \Theta_{2}$ both hold and we assume that at least one of the two pieces of evidence is reliable, then we can conclude that $X \in \Gamma_{1}\left(\theta_{1}\right) \cup \Gamma_{2}\left(\theta_{2}\right)$.
- This leads to the TBM disjunctive rule:

$$
\left(m_{1}\left(\cup m_{2}\right)(A)=\sum_{B \cup C=A} m_{1}(B) m_{2}(C), \quad \forall A \subseteq \Omega\right.
$$

TBM disjunctive rule

Properties

- Commutativity, associativity.
- Neutral element: m_{\emptyset}
- Let $b=b e l+m(\emptyset)$ (implicability function). We have:

$$
\left(b_{1}(\subseteq) b_{2}\right)=b_{1} \cdot b_{2}
$$

- De Morgan laws for © and (©):

$$
\begin{aligned}
& \overline{m_{1}() m_{2}}=\overline{m_{1}} @ \overline{m_{2}}, \\
& \overline{m_{1} @ m_{2}}=\overline{m_{1}}\left(\overline{m_{2}},\right.
\end{aligned}
$$

where \bar{m} denotes the complement of m defined by $\bar{m}(A)=m(\bar{A})$ for all $A \subseteq \Omega$.

Selecting a combination rule

- All three rules \cap, \oplus and () assume the pieces of evidence to be independent.
- The conjunctive rules $®$ and \oplus further assume that the pieces of evidence are both reliable;
- The TBM disjunctive rule (1) only assumes that at least one of the items of evidence combined is reliable (weaker assumption).
- © vs. \oplus :
- \cap keeps track of the conflict between items of evidence: very useful in some applications.
- © also makes sense under the open-world assumption.
- The conflict increases with the number of combined mass functions: normalization is often necessary at some point.
- What to do with dependent items of evidence? \rightarrow Cautiou Sirs rule

Outline

- Belief representation - Information fusion
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions

Decision making

Problem formulation

- A decision problem can be formalized by defining:
- A set of acts $\mathcal{A}=\left\{a_{1}, \ldots, a_{s}\right\}$;
- A set of states of the world Ω;
- A loss function $L: \mathcal{A} \times \Omega \rightarrow \mathbb{R}$, such that $L(a, \omega)$ is the loss incurred if we select act a and the true state is ω.
- Bayesian framework
- Uncertainty on Ω is described by a probability measure P;
- Define the risk of each act a as the expected loss if a is selected:

$$
R(a)=\mathbb{E}_{P}[L(a, \cdot)]=\sum_{\omega \in \Omega} L(a, \omega) P(\{\omega\}) .
$$

- Select an act with minimal risk.
- Extension to the belief function framework?

Decision making

Compatible probabilities

- Let m be a normalized mass function, and $\mathcal{P}(m)$ the set of compatible probability measures on Ω, i.e., the set of P verifying

$$
\operatorname{bel}(A) \leq P(A) \leq p l(A), \quad \forall A \subseteq \Omega
$$

- The lower and upper expected risk of each act a are defined, respectively, as:

$$
\begin{aligned}
& \underline{R}(a)=\underline{\mathbb{E}}_{m}[L(a, \cdot)]=\inf _{P \in \mathcal{P}(m)} R_{P}(a)=\sum_{A \subseteq \Omega} m(A) \min _{\omega \in A} L(a, \omega) \\
& \bar{R}(a)=\overline{\mathbb{E}}_{m}[L(a, \cdot)]=\sup _{P \in \mathcal{P}(m)} R_{P}(a)=\sum_{A \subseteq \Omega} m(A) \max _{\omega \in A} L(a, \omega \text { c®rs }
\end{aligned}
$$

Decision making
 Strategies

- For each act a we have a risk interval $[\underline{R}(a), \bar{R}(a)]$. How to compare these intervals?
- Three strategies:
(1) a is preferred to a^{\prime} iff $\bar{R}(a) \leq \underline{R}\left(a^{\prime}\right)$;
(2) a is preferred to a^{\prime} iff $\underline{R}(a) \leq \underline{R}\left(a^{\prime}\right)$ (optimistic strategy);
(3) a is preferred to a^{\prime} iff $\bar{R}(a) \leq \bar{R}\left(a^{\prime}\right)$ (pessimistic strategy).
- Strategy 1 yields only a partial preorder: a and a^{\prime} are not comparable if $\bar{R}(a)>\underline{R}\left(a^{\prime}\right)$ and $\bar{R}\left(a^{\prime}\right)>\underline{R}(a)$.

Decision making
 Special case

- Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{K}\right\}, \mathcal{A}=\left\{a_{1}, \ldots, a_{K}\right\}$, where a_{i} is the act of selecting ω_{i}.
- Let

$$
L\left(a_{i}, \omega_{j}\right)= \begin{cases}0 & \text { if } i=j \text { (the true state has been selected) } \\ 1 & \text { otherwise }\end{cases}
$$

- Then $\underline{R}\left(a_{i}\right)=1-p l\left(\omega_{i}\right)$ and $\bar{R}\left(a_{i}\right)=1-\operatorname{bel}\left(\omega_{i}\right)$.
- The lower (resp., upper) risk is minimized by selecting the hypothesis with the largest plausibility (resp., degree of belief).

Decision making

Coming back to Ellsberg's paradox

We have $m(\{r\})=1 / 3, m(\{b, y\})=2 / 3$.

	r	b	y	\underline{R}	\bar{R}
A	-100	0	0	$-100 / 3$	$-100 / 3$
B	0	-100	0	$-200 / 3$	0
C	-100	0	-100	-100	$-100 / 3$
D	0	-100	-100	$-200 / 3$	$-200 / 3$

The observed behavior (preferring A to B and D to C) is explained by the pessimistic strategy.

Decision making

Other decision strategies

- How to find a compromise between the pessimistic strategy (minimizing the upper expected risk) and the optimistic one (minimizing the lower expected risk)?
- Two approaches:
- Hurwicz criterion: a is preferred to a^{\prime} iff $R_{\rho}(a) \leq R_{\rho}\left(a^{\prime}\right)$ with

$$
R_{\rho}(a)=(1-\rho) \underline{R}(a)+\rho \bar{R}(a) .
$$

and $\rho \in[0,1]$ is a pessimism index describing the attitude of the decision maker in the face of ambiguity.

- Pignistic transformation (Transferable Belief Model).

Decision making
 TBM approach

- The "Dutch book" argument: in order to avoid Dutch books (sequences of bets resulting in sure loss), we have to base our decisions on a probability distribution on Ω.
- The TBM postulates that uncertain reasoning and decision making are two fundamentally different operations occurring at two different levels:
- Uncertain reasoning is performed at the credal level using the formalism of belief functions.
- Decision making is performed at the pignistic level, after the m on Ω has been transformed into a probability measure.

Decision making

Pignistic transformation

- The pignistic transformation Bet transforms a normalized mass function m into a probability measure $P_{m}=\operatorname{Bet}(m)$ as follows:

$$
P_{m}(A)=\sum_{\emptyset \neq B \subseteq \Omega} m(B) \frac{|A \cap B|}{|B|}, \quad \forall A \subseteq \Omega
$$

- It can be shown that $\operatorname{bel}(A) \leq P_{m}(A) \leq p l(A)$, hence $P_{m} \in \mathcal{P}(m)$. Consequently,

$$
\underline{R}(a) \leq R_{P_{m}}(a) \leq \bar{R}(a), \quad \forall a \in \mathcal{A} .
$$

Decision making

Example

- Let $m(\{$ John $\})=0.48, m(\{$ John, Mary $\})=0.12$, $m(\{$ Peter, John $\})=0.32, m(\Omega)=0.08$.
- We have

$$
\begin{gathered}
P_{m}(\{\text { John }\})=0.48+\frac{0.12}{2}+\frac{0.32}{2}+\frac{0.08}{3} \approx 0.73 \\
P_{m}(\{\text { Peter }\})=\frac{0.32}{2}+\frac{0.08}{3} \approx 0.19 \\
P_{m}(\{\text { Mary }\})=\frac{0.12}{2}+\frac{0.08}{3} \approx 0.09
\end{gathered}
$$

Outline

Basics

- Belief representation
- Information fusion
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions

Informational comparison of belief functions

- Let m_{1} et m_{2} be two mass functions on Ω.
- In what sense can we say that m_{1} is more informative (committed) than m_{2} ?
- Special case:
- Let m_{A} and m_{B} be two categorical mass functions.
- m_{A} is more committed than m_{B} iff $A \subseteq B$.
- Extension to arbitrary mass functions?

Plausibility and commonality orderings

- m_{1} is pl-more committed than $m_{2}\left(\right.$ noted $\left.m_{1} \sqsubseteq_{p \prime} m_{2}\right)$ if

$$
p l_{1}(A) \leq p l_{2}(A), \quad \forall A \subseteq \Omega
$$

- m_{1} is q-more committed than m_{2} (noted $m_{1} \sqsubseteq_{q} m_{2}$) if

$$
q_{1}(A) \leq q_{2}(A), \quad \forall A \subseteq \Omega
$$

- Properties:
- Extension of set inclusion:

$$
m_{A} \sqsubseteq_{p l} m_{B} \Leftrightarrow m_{A} \sqsubseteq_{q} m_{B} \Leftrightarrow A \subseteq B .
$$

- Greatest element: vacuous mass function m_{Ω}.

Strong (specialization) ordering

- m_{1} is a specialization of m_{2} (noted $m_{1} \sqsubseteq_{s} m_{2}$) if m_{1} can be obtained from m_{2} by distributing each mass $m_{2}(B)$ to subsets of B :

$$
m_{1}(A)=\sum_{B \subseteq \Omega} S(A, B) m_{2}(B), \quad \forall A \subseteq \Omega,
$$

where $S(A, B)=$ proportion of $m_{2}(B)$ transferred to $A \subseteq B$.

- S : specialization matrix.
- Properties:
- Extension of set inclusion;
- Greatest element: m_{Ω};
- $m_{1} \sqsubseteq_{s} m_{2} \Rightarrow m_{1} \sqsubseteq_{p l} m_{2}$ and $m_{1} \sqsubseteq_{q} m_{2}$.

Least Commitment Principle Definition

> Definition (Least Commitment Principle)
> When several belief functions are compatible with a set of constraints, the least informative according to some informational ordering (if it exists) should be selected.

A very powerful method for constructing belief functions!

Outline

Basics

- Belief representation
- Information fusion
- Decision making
(2) Selected advanced topics
- Informational orderings
- Cautious rule
- Multidimensional belief functions

Cautious rule

Motivations

- The standard rules (\square) and (1) assume the sources of information to be independent, e.g.
- experts with non overlapping experience/knowledge;
- non overlapping datasets.
- What to do in case of non independent evidence?
- Describe the nature of the interaction between sources (difficult, requires a lot of information);
- Use a combination rule that tolerates redundancy in the combined information.
- Such rules can be derived from the LCP using suitable informational orderings.

Cautious rule
 Principle

- Two sources provide mass functions m_{1} and m_{2}, and the sources are both considered to be reliable.
- After receiving these m_{1} and m_{2}, the agent's state of belief should be represented by a mass function m_{12} more committed than m_{1}, and more committed than m_{2}.
- Let $\mathcal{S}_{X}(m)$ be the set of mass functions m^{\prime} such that $m^{\prime} \sqsubseteq_{x} m$, for some $x \in\{p l, q, s, \cdots\}$. We thus impose that $m_{12} \in \mathcal{S}_{x}\left(m_{1}\right) \cap \mathcal{S}_{x}\left(m_{2}\right)$.
- According to the LCP, we should select the x-least committed element in $\mathcal{S}_{x}\left(m_{1}\right) \cap \mathcal{S}_{x}\left(m_{2}\right)$, if it exists.

Cautious rule

Problem

- The above approach works for special cases.
- Example (Dubois, Prade, Smets 2001): if m_{1} and m_{2} are consonant, then the q-least committed element in $\mathcal{S}_{q}\left(m_{1}\right) \cap \mathcal{S}_{q}\left(m_{2}\right)$ exists and it is unique: it is the consonant mass function with commonality function $q_{12}=q_{1} \wedge q_{2}$.
- In general, neither existence nor uniqueness of a solution can be guaranteed with any of the x-orderings, $x \in\{p l, q, s\}$.
- We need to define a new ordering relation.
- This ordering will be based on the (conjunctive) canonical decomposition of belief functions.

Canonical decomposition

Simple and separable mass functions

- Definition: m is simple mass function if it has the following form

$$
\begin{aligned}
& m(A)=1-w_{A} \\
& m(\Omega)=w_{A},
\end{aligned}
$$

with $A \subset \Omega$ and $w_{A} \in[0,1]$.

- Notation: $A^{w_{A}}$.
- Property: $A^{w_{1}} \cap A^{w_{2}}=A^{w_{1} w_{2}}$.
- A mass function is separable if it can be written as the combination of simple mass functions:

$$
m=\cap_{A \subset \Omega} A^{w(A)}
$$

with $0 \leq w(A) \leq 1$ for all $A \subset \Omega$.

Canonical decomposition

Subtracting evidence

- Let $m_{12}=m_{1} ® m_{2}$. We have $q_{12}=q_{1} \cdot q_{2}$.
- Assume we no longer trust m_{2} and we wish to subtract it from m_{12}.
- If m_{2} is non dogmatic (i.e. $m_{2}(\Omega)>0$ or, equivalently, $\left.q_{2}(A)>0, \forall A\right), m_{1}$ can be retrieved as

$$
q_{1}=q_{12} / q_{2} .
$$

- We note $m_{1}=m_{12} \oslash m_{2}$.
- Remark: $m_{1} \oslash m_{2}$ may not be a valid mass function!

Canonical decomposition

Theorem (Smets, 1995)

Any non dogmatic mass function $(m(\Omega)>0)$ can be canonically decomposed as:

$$
m=\left(\cap_{A \subset \Omega} A^{w_{C}(A)}\right) ®\left(\cap_{A \subset \Omega} A^{w_{D}(A)}\right)
$$

with $w_{C}(A) \in(0,1], w_{D}(A) \in(0,1]$ and $\max \left(w_{C}(A), w_{D}(A)\right)=1$ for all $A \subset \Omega$.

- Let $w=w_{C} / w_{D}$.
- Function $w: 2^{\Omega} \backslash \Omega \rightarrow \mathbb{R}_{+}^{*}$ is called the (conjunctive) weight function.
- It is a new equivalent representation of a non dogmatic mass function (together with bel, pl, q, b).

Properties of w

- Function w is directly available when m is built by accumulating simple mass functions (common situation).
- Calculation of w from q :

$$
\ln w(A)=-\sum_{B \supseteq A}(-1)^{|B|-|A|} \ln q(B), \quad \forall A \subset \Omega
$$

- Conversely,

$$
\ln q(A)=-\sum_{\Omega \supset B \nsupseteq A} \ln w(B), \quad \forall A \subseteq \Omega
$$

- TBM conjunctive rule:

$$
w_{1} @ w_{2}=w_{1} \cdot w_{2} .
$$

w-ordering

- Let m_{1} and m_{2} be two non dogmatic mass functions. We say that m_{1} is w-more committed than m_{2} (denoted as $m_{1} \sqsubseteq_{w} m_{2}$) if $w_{1} \leq w_{2}$.
- Interpretation: $m_{1}=m_{2} ® m$ with m separable.
- Properties:
- $m_{1} \sqsubseteq_{w} m_{2} \Rightarrow m_{1} \sqsubseteq_{s} m_{2} \Rightarrow\left\{\begin{array}{l}m_{1} \sqsubseteq_{p l} m_{2} \\ m_{1} \sqsubseteq_{q} m_{2},\end{array}\right.$
- m_{Ω} is the only maximal element of \sqsubseteq_{w} :

$$
m_{\Omega} \sqsubseteq_{w} m \Rightarrow m=m_{\Omega} .
$$

Cautious rule

Definition

Theorem

Let m_{1} and m_{2} be two nondogmatic BBAs. The w-least committed element in $\mathcal{S}_{w}\left(m_{1}\right) \cap \mathcal{S}_{w}\left(m_{2}\right)$ exists and is unique. It is defined by the following weight function:

$$
w_{1} \wedge_{2}(A)=w_{1}(A) \wedge w_{2}(A), \quad \forall A \subset \Omega
$$

Definition (cautious conjunctive rule)

Cautious rule

Definition

Theorem

Let m_{1} and m_{2} be two nondogmatic BBAs. The w-least committed element in $\mathcal{S}_{w}\left(m_{1}\right) \cap \mathcal{S}_{w}\left(m_{2}\right)$ exists and is unique. It is defined by the following weight function:

$$
w_{1} \wedge 2(A)=w_{1}(A) \wedge w_{2}(A), \quad \forall A \subset \Omega
$$

Definition (cautious conjunctive rule)

$$
m_{1} ® m_{2}=\bigcirc_{A \subset \Omega} A^{w_{1}(A) \wedge w_{2}(A)} .
$$

Cautious rule

Computation

Cautious rule computation

m-space		w-space
m_{1}	\longrightarrow	w_{1}
m_{2}	\longrightarrow	w_{2}
$m_{1} \wedge m_{2}$	\longleftrightarrow	$w_{1} \wedge w_{2}$

Cautious rule

Properties

- Commutative, associative
- Idempotent : $\forall m, m ® m=m$
- Distributivity of $₫$ with respect to $®$:

$$
\left(m_{1} \cap m_{2}\right) ®\left(m_{1} \cap m_{3}\right)=m_{1} @\left(m_{2} ® m_{3}\right), \forall m_{1}, m_{2}, m_{3} .
$$

The same item of evidence m_{1} is not counted twice!

- No neutral element, but $m_{\Omega} \boxtimes m=m$ iff m is separable.

Related rules

- Normalized cautious rule:

$$
\left.\left(m_{1} ®\right)^{*} m_{2}\right)(A)= \begin{cases}\frac{\left(m_{1} \triangle m_{2}\right)(A)}{1-\left(m_{1}\left(\triangle m_{2}\right)(\emptyset)\right.} & \text { if } A \neq \emptyset \\ 0 & \text { if } A=\emptyset\end{cases}
$$

- Bold disjunctive rule:

$$
m_{1} \boxtimes m_{2}=\overline{\bar{m}}_{1} \otimes \bar{m}_{2}
$$

- Both $®^{*}$ and \boxtimes are commutative, associative and idempotent.

Global picture

- Six basic rules:

Sources	independent	dependent
All reliable open world	\oplus	\star
At least one reliable world	\oplus	$®^{*}$

Outline

(1) Basics
 - Belief representation
 - Information fusion
 - Decision making

(2) Selected advanced topics

- Informational orderings
- Cautious rule
- Multidimensional belief functions

Multidimensional belief functions

Motivations

- In many applications, we need to express uncertain information about several variables taking values in different domains.
- Example: fault tree (logical relations between Boolean variables and probabilistic or evidential information about elementary events).

Fault tree example

(Dempster \& Kong, 1988)

Multidimensional belief functions

Marginalization, vacuous extension

- Let X and Y be two variables defined on frames Ω_{X} and Ω_{Y}.
- Let $\Omega_{X Y}=\Omega_{X} \times \Omega_{Y}$ be the product frame.
- A mass function $m^{\Omega_{X Y}}$ on $\Omega_{X Y}$ can be seen as an uncertain relation between variables X and Y.
- Two basic operations on product frames:
(1) Express a joint mass function $m^{\Omega_{X Y}}$ in the coarser frame Ω_{X} or Ω_{Y} (marginalization);
(2) Express a marginal mass function $m^{\Omega_{X}}$ on Ω_{X} in the finer frame $\Omega_{X Y}$ (vacuous extension).

Marginalization

- Problem: express $m^{\Omega_{X Y}}$ in Ω_{X}.
- Solution: transfer each mass $m^{\Omega X Y}(A)$ to the projection of A on Ω_{X} :
- Marginal mass function

$$
m^{\Omega_{X Y} \downarrow \Omega_{X}}(B)=\sum_{\left\{A \subseteq \Omega_{X Y}, A \downarrow \Omega_{X}=B\right\}} m^{\Omega_{X Y}}(A), \quad \forall B \subseteq \Omega_{X}
$$

- Generalizes both set projection and probabilistic marginalization.

Vacuous extension

- Problem: express $m^{\Omega_{X}}$ in $\Omega_{X Y}$.
- Solution: transfer each mass $m^{\Omega \times}(B)$ to the cylindrical extension of B : $B \times \Omega_{Y}$.
- Vacuous extension:

$$
m^{\Omega_{X} \uparrow \Omega_{X Y}}(A)= \begin{cases}m^{\Omega_{X}}(B) & \text { if } A=B \times \Omega_{Y} \\ 0 & \text { otherwise }\end{cases}
$$

Operations in product frames

Application to approximate reasoning

- Assume that we have:
- Partial knowledge of X formalized as a mass function $m^{\Omega_{x}}$;
- A joint mass function $m^{\Omega \times Y}$ representing an uncertain relation between X and Y.
- What can we say about Y ?
- Solution:

$$
m^{\Omega_{Y}}=\left(m^{\Omega_{X} \uparrow \Omega_{X Y}} \oplus m^{\Omega_{X Y}}\right)^{\downarrow \Omega_{Y}}
$$

- Infeasible with many variables and large frames of discernment, but efficient algorithms exist to carry out the operations in frames of minimal dimensions.

Fault tree example

Cause	$m(\{1\})$	$m(\{0\})$	$m(\{0,1\})$			
X_{1}	0.05	0.90	0.05			
X_{2}	0.05	0.90	0.05			
X_{3}	0.005	0.99	0.005			
X_{4}	0.01	0.985	0.005			
X_{5}	0.002	0.995	0.003			
G	0.001	0.99	0.009			
M	0.02	0.951	0.029			
F	0.019	0.961	0.02			
			Cnrs			

Summary

- The theory of belief function: a very general formalism for representing imprecision and uncertainty that extends both probabilistic and set-theoretic frameworks:
- Belief functions can be seen both as generalized sets and as generalized probability measures;
- Reasoning mechanisms extend both set-theoretic notions (intersection, union, cylindrical extension, inclusion relations, etc.) and probabilistic notions (conditioning, marginalization, Bayes theorem, stochastic ordering, etc.).
- The theory of belief function can also be seen as more general than Possibility theory (possibility measures are particular plausibility functions).

References I
 cf. http://www.hds.utc.fr/~tdenoeux

B
G. Shafer.

A mathematical theory of evidence. Princeton University Press, Princeton, N.J., 1976.

國 Ph. Smets and R. Kennes.
The Transferable Belief Model.
Artificial Intelligence, 66:191-243, 1994.
D. Dubois and H. Prade.

A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets.
International Journal of General Systems, 12(3):193-226, 1986

References II
 cf. http://www.hds.utc.fr/~tdenoeux

T. Denœux.

Analysis of evidence-theoretic decision rules for pattern classification.
Pattern Recognition, 30(7):1095-1107, 1997.
图 T. Denœux.
Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence.
Artificial Intelligence, Vol. 172, pages 234-264, 2008.

