Genotype Determination of Danish Jersey Cattle

Qualitative Knowledge

Example: Genotype Determination of Jersey Cattle

variables: 22, state space $6 \cdot 10^{13}$, parameters: 324

Graphical Model

•node → random variable

•edges → conditional dependencies

•decomposition $\rightarrow P(X_1,...,X_{22}) = \prod_{i=1}^{22} P(X_i | \text{parents}(X_i))$

•diagnosis $\rightarrow P(\cdot | \text{knowledge})$

Learning Graphical Models

- 747 cases
- 22 entries per case

Case 657:

ESPRIT Project DRUMS 2, BR 6156

Problems:

•How to reduce complexity problems?

•How to handle imprecise (fuzzy, vague, ...) data?

The Learning Problem

	known structure	unknown structure A B C
complete dataABC $< a_4$, b_3 , $c_1 >$ $< a_3$, b_2 , $c_4 >$	 Statistical Parametric Estimation (closed from eq.): statistical parameter fitting, ML Estimation, Bayesian Inference, 	 Discrete Optimization over Structures (discrete search): likelihood scores, MDL Problem: search complexity → heuristics
incomplete data(missing values, hidden variables,)ABC $,?,,b_2,?>$	 Parametric Optimization: EM, gradient descent, 	 Combined Methods: structured EM only few approaches Problems: criterion for fit? new variables? local maxima? fuzzy values?

Genotype Determination

Directed dependency network

Hypergraph representation

Rule \rightarrow conditional dependency

Rule \rightarrow constraint

Daimler-Chrysler Research and Technology Ulm, "Data Mining" Project

Fields of Application

- Improvement of Product Quality by Finding Weaknesses
 - Learn dependency network for vehicle properties and faults
 - Look for unusual conditional fault frequencies
 - Find causes for these unusual frequencies
 - Improve construction of vehicle
- Improvement of Error Diagnosis in Garages
 - Learn dependency network for vehicle properties and faults
 - Record properties of new faulty vehicle
 - Test for the most probable faults

Analysis of Daimler/Chrysler Database

Database: ~ 18.500 passenger cars > 100 attributes per car

Analysis of dependencies between special equipment and faults.

Results used as a starting point for technical experts looking for causes.

Use a criterion to measure the degree to which a network structure fits the data and the prior knowledge (model selection, goodness of hypergraph)

Use a search algorithm to find a model that receives a high score by the criterion (optimal spanning tree, K2: greedy selection of parents, ...)

Measuring the Deviation from an Independent Distribution

Probability- and Information-based Measures

- information gain *
 identical with mutual information
- information gain ratio *
 - *g*-function (Cooper and Herskovits)
 - minimum description length
 - gini index *

Possibilistic Measures

- expected nonspecificity
- specificity gain
- specificity gain ratio

(Measures marked with * originated from decision tree learning)

Data Mining Tool Clementine

Analysis of Daimler/Chrysler Database

There are significantly more **faulty batteries**, if both **air conditioning and electrical roof top** are built into the car.

Example Subnet

Influence of special equipment on battery faults:

(fictitious) frequency of		air conditioning	
battery faults		with	without
electrical sliding roof	with	8%	3%
	without	3%	2%

- significant deviation from independent distribution
- hints to possible causes and improvements
- here: larger battery may be required, if an air conditioning system *and* an electrical sliding roof are built in

(The dependencies and frequencies of this example are fictious, true numbers are confidential.)

Data Mining Tool "Information Miner

