Bayesian Networks

Prof. Dr. Rudolf Kruse, Matthias Steinbrecher

N_{F}

Computational Intelligence Group
Department of Knowledge Processing and Language Engineering
Faculty of Computer Science
kruse@iws.cs.uni-magdeburg.de

Organisational

- Lecture
- Consultation: Wednesday, 11:00 a. m.- noon, G29-008
- Preferredly reachable by e-mail: kruse@iws.cs.uni-magdeburg.de
- Excercises
- Tutor: Matthias Steinbrecher, at all hours
- G29-015, msteinbr@iws.cs.uni-magdeburg.de
- Updated information on the course:
- http://fuzzy.cs.uni-magdeburg.de/

Knowledge Based Systems

- Human Expert

A human expert is a specialist for a specific differentiated application field who creates solutions to customer problems in this respective field and supports them by applying these solutions.

- Requirements
- Formulate precise problem scenarios from customer inquiries
- Find correct and complete solution
- Understandable answers
- Explanation of solution
- Support the deployment of solution

Knowledge Based Systems (2)

- "Intelligent" System

An intelligent system is a program that models the knowledge and inference methods of a human expert of a specific field of application.

- Requirements for construction:
- Knowledge Representation
- Knowledge Acquisition
- Knowledge Modification

Expert System Architecture

Qualities of Knowledge

In most cases our knowledge about the present world is

- imprecise/missing (knowledge is not comprehensive)
- e.g. "I don't know the bus departure times for public holidays because I only take the bus on working days."
- vague/fuzzy (knowledge is not exact)
- e.g. "The bus departs roughly every full hour."
- uncertain (knowledge is unreliable)
- e.g. "The bus departs probably at 12 o'clock."

We have to decide nonetheless!

- Reasoning under Vagueness
- Reasoning with Probabilities
- ... and Cost/Benefit

Knowledge Characteristics

Example

Objective: Be at the university at 9:15 to attend a lecture.

- There are several plans to reach this goal:
- P_{1} : Get up at 8:00, leave at 8:55, take the bus at 9:00 \ldots
- P_{2} : Get up at 7:30, leave at $8: 25$, take the bus at $8: 30 \ldots$

○ ...

- All plans are correct, but
- they imply different costs and different probabilities to actually reach that goal.
- P_{2} would be the plan of choice as the lecture is important and the success rate of P_{1} is only about $80-95 \%$.
- Question: Is a computer capable of solving these problems involving uncertainty?

Uncertainty and Rules (1)

- Example: We are given a simple expert system for dentists that may contain the following rule:

$$
\forall p:[\operatorname{Symptom}(p, \text { toothache }) \Rightarrow \operatorname{Disease}(p, \text { cavity })]
$$

- This rule is incorrect! Better:

$$
\begin{aligned}
\forall p: & {[\operatorname{Symptom}(p, \text { toothache }) \Rightarrow} \\
& \operatorname{Disease}(p, \text { cavity }) \vee \operatorname{Disease}(p, \text { gumdisease }) \vee \ldots]
\end{aligned}
$$

- Maybe take the causal rule?

$$
\forall p:[\text { Disease }(p, \text { cavity }) \Rightarrow \operatorname{Symptom}(p, \text { toothache })]
$$

- Incorrect, too.

Uncertainty and Rules (2)

Problems with propositional logic:

- We cannot enumerate all possible causes, even though ...
- We do not know the (medical) cause-effect interactions, and even though ...
- Uncertainty about the patient remains:
- Caries and toothache may co-occurr by chance.
- Were (exhaustively) all examinations conducted? - If yes: correctly?
- Did the patient answer all questions? - If yes: appropriately?
- Without perfect knowledge no correct logical rules!

Uncertainty and Facts

Example:

- We would like to support a robot's localization by fixed landmarks.

From the presence of a landmark we may infer the location.

Problem:

- Sensors are imprecise!
- We cannot conclude definitely a location simply because there was a landmark detected by the sensors.
- The same holds true for undetected landmarks.
- Only probabilities are being increased or decreased.

Degrees of Belief

- We (or other agents) are only believing facts or rules to some extent.
- One possibility to express this partial belief is by using probability theory.
- "The agent believes the sensor information to 0.9 " means:

In 9 out of 10 cases the agent trusts in the correctness of the sensor output.

- Probabilities gather the "uncertainty" that originates due to ignorance.
- Probabilities \neq Vagueness/Fuzziness!
- The predicate "large" is fuzzy whereas "This might be Peter's watch." is uncertain.

Rational Decisions under Uncertainty

- Choice of several actions or plans
- These may lead to different results with different probabilities.
- The actions cause different (possibly subjective) costs.
- The results yield different (possibly subjective) benefits.
- It would be rational to choose that action that yields the largest total benefit.

Decision Theory $=$ Utility Theory + Probability Theory

Decision-theoretic Agent

input perception
output action
1: $K \leftarrow$ a set of probabilistic beliefs about the state of the world
2: calculate updated probabilities for current state based on available evidence including current percept and previous action
3: calculate outcome probabilities for actions, given action descriptions and probabilities of current states

4: select action A with highest expected utility given probabilities of outcomes and utility information

5: return A
Decision Theory: An agent is rational if and only if it chooses the action yielding the largest utility averaged over all possible outcomes of all actions.

Rule-based Expert Systems

Rule-based Expert Systems

Modi of usage:

- Query: Facts are retrieved from database or user is interrogated
- Explanation: System answers questions how a decision was concluded

Example rule base:

1. COLLAT \wedge PYMT \wedge REP \Rightarrow OK
2. APP \Rightarrow COLLAT
3. RATING \Rightarrow REP
4. INC \Rightarrow PYMT
5. BAL $\wedge \mathrm{REP} \Rightarrow \mathrm{OK}$

Decision Rule Tree

Corresponding and/or-Tree:

Example Queries

- User: Why do you believe that the loan should be approved?
- System: Because the collateral for the loan is satisfactory, and the applicant is able to make the loan payments, and the applicant has a good financial reputation.
- User: Why did you ask me about whether or not the applicant's income exceeds his/her expenses?
- System: Because I was trying to establish whether or not the applicant is able to make the loan payments.
- User: Why do you believe that the applicant has a good financial reputation?
- System: Because the credit rating service said that the applicant has a good credit rating.

Rules

- A rule in general is a if-then-construct consisting of a condition and an action.
If condition then conclusion
- These two parts may be interpreted differently according to the context:
- Inference rules: If premise then conclusion
- Hypotheses: If evidence then hypothesis
- Productions: If condition then action
- Rules are often referred to as productions or production rules.

Rules

- A rule in the ideal case represents a unit of knowledge.
- A set of rules together with an execution/evaluation strategy comprises a program to find solutions to specific problem classes.
- Prolog program: rule-based system
- Rule-based systems are historically the first types of AI systems and were for a long time considered prototypical expert systems.
- Nowadays, not every expert systems uses rules as its core inference mechanism.
- Rising importance in the field of business process rules.

Rule Evaluation

Forward chaining

- Expansion of knowledge base: as soon as new facts are inserted the system also calculates the conclusions/consequences.
- Data-driven behavior
- Premises-oriented reasoning: the chaining is determined by the left parts of the rules.

Backward chaining

- Answering queries
- Demand-driven behavior
- Conclusion-oriented reasoning: the chaining is determined by the right parts of the rules.

Components of a Rules-based System

Data base

- Set of structured data objects
- Current state of modeled part of world

Rule base

- Set of rules
- Application of a rule will alter the data base

Rule interpreter

- Inference machine
- Controls the program flow of the system

Rule Interpretation

- Main scheme forward chaining
- Select and apply rules from the set of rules with valid antecedences. This will lead to a modified data base and the possibility to apply further rules.
- Run this cycle as long as possible.
- The process terminates, if
- there is no rule left with valid antecendence
- a solution criterion is satisfied
- a stop criterion is satisfied (e.g. maximum number of steps)
- Following tasks have to be solved:
- Identify those rules with a valid condition \Rightarrow Instantiation or Matching
- Select rules to be executed
\Rightarrow need for conflict resolution
(e.g. via partial or total orderings on the rules)

Certainty Factors

Mycin (1970)

- Objective: Development of a system that supports physicians in diagnosing bacterial infections and suggesting antibiotics.
- Features: Uncertain knowledge was represented and processed via uncertainty factors.
- Expert Knowlegde: 500 (uncertain) decision rules as static knowledge base.
- Case-specific knowledge:
- static: patients' data
- dynamic: intermediate results (facts)
- Strengths:
- diagnosis-oriented interrogation
- hypotheses generation
- finding notification
- therapy recommendation
- explanation of inference path

Uncertainty Factors

- Uncertainty factor $\mathrm{CF} \in[-1,1] \approx$ degree of belief.
- Rules:

$$
\mathrm{CF}(A \rightarrow B) \begin{cases}=1 & B \text { is certainly true given } A \\ >0 & A \text { supports } B \\ =0 & A \text { has no influence on } B \\ <0 & A \text { provides evidence against } B \\ =-1 & B \text { is certainly false given } A\end{cases}
$$

A Mycin Rule

RULE035

PREMISE: (\$AND (SAME CNTXT GRAM GRAMNEG) (SAME CNTXT MORPH ROD) (SAME CNTXT AIR ANAEROBIC))
ACTION: (CONCL.CNTXT IDENTITY BACTEROIDES TALLY .6)

If 1) the gram stain of the organism is gramneg, and
2) the morphology of the organism is rod, and
3) the aerobicity of the organism is anaerobic
then there is suggestive evidence (0.6) that the identity of the organism is bacteroides

Example

$$
\begin{array}{rlrl}
A & \rightarrow B[0.80] & & A[1.00] \\
C & \rightarrow D[0.50] & C[0.50] \tag{0.50}\\
B \wedge D & \rightarrow E[0.90] & F[0.80] \\
E \vee F & \rightarrow G[0.25] & H[0.90] \\
H & \rightarrow G[0.30] &
\end{array}
$$

Propagation Rules

- Conjunction:

$$
\mathrm{CF}(A \wedge B)=\min \{\mathrm{CF}(A), \mathrm{CF}(B)\}
$$

- Disjunction:
$\mathrm{CF}(A \vee B)=\max \{\mathrm{CF}(A), \mathrm{CF}(B)\}$
- Serial Combination: $\operatorname{CF}(B,\{A\})=\operatorname{CF}(A \rightarrow B) \cdot \max \{0, \operatorname{CF}(A)\}$
- Parallel Combination: for $n>1$:

$$
\begin{aligned}
& \mathrm{CF}\left(B,\left\{A_{1}, \ldots, A_{n}\right\}\right)= \\
& \quad f\left(\mathrm{CF}\left(B,\left\{A_{1}, \ldots, A_{n-1}\right\}\right), \mathrm{CF}\left(B,\left\{A_{n}\right\}\right)\right)
\end{aligned}
$$

with

$$
f(x, y)= \begin{cases}x+y-x y & \text { if } \quad x, y>0 \\ x+y+x y & \text { if } x, y<0 \\ \frac{x+y}{1-\min \{|x|,|y|\}} & \text { otherwise }\end{cases}
$$

Example (cont.)

Was Mycin a failure?

It can be shown that the rule combination scheme is inconsistent in general. It worked in the Mycin case because the rules had tree-like structure.

Mycin was never used for its intented purpose, because

- physicians were distrustful and not willing to accept Mycin's recommendations.
- Mycin was too good.

However,

- Mycin was a milestone for the development of expert systems.
- it gave rise to impulses for expert system development in general.

Probabilistic Rules

How to assign probabilities to rules (implications)?

$$
P(B \mid A) \leq P(A \rightarrow B)=P(\neg A \vee B)
$$

A
0
:---:
0

In the following, probabilistic rules are evaluated with conditional probabilities.

Elements of Graph Theory

Simple Graph

Simple Graph

A simple graph (or just: graph) is a tuple $\mathcal{G}=(V, E)$ where

$$
V=\left\{A_{1}, \ldots, A_{n}\right\}
$$

represents a finite set of vertices (or nodes) and

$$
E \subseteq(V \times V) \backslash\{(A, A) \mid A \in V\}
$$

denotes the set of edges.
It is called simple since there are no self-loops and no multiple edges.

Edge Types

Let $\mathcal{G}=(V, E)$ be a graph. An edge $e=(A, B)$ is called

- directed if $(A, B) \in E \Rightarrow(B, A) \notin E$ Notation: $A \rightarrow B$
- undirected if $(A, B) \in E \Rightarrow(B, A) \in E$ Notation: $A-B$ or $B-A$

(Un)directed Graph

A graph with only (un)directed edges is called an (un)directed graph.

Adjacency Set

Let $\mathcal{G}=(V, E)$ be a graph. The set of nodes that is accessible via a given node $A \in V$ is called the adjacency set of A :

$$
\operatorname{adj}(A)=\{B \in V \mid(A, B) \in E\}
$$

Paths

Let $\mathcal{G}=(V, E)$ be a graph. A series ρ of r pairwise different nodes

$$
\rho=\left\langle A_{i_{1}}, \ldots, A_{i_{r}}\right\rangle
$$

is called a path from A_{i} to A_{j} if

- $A_{i_{1}}=A_{i}, \quad A_{i_{r}}=A_{j}$
- $A_{i_{k+1}} \in \operatorname{adj}\left(A_{i_{k}}\right), \quad 1 \leq k<r$

A path with only undirected edges is called an undirected path

$$
\rho=A_{i_{1}}-\cdots-A_{i_{r}}
$$

whereas a path with only directed edges is referred to as a directed path

$$
\rho=A_{i_{1}} \rightarrow \cdots \rightarrow A_{i_{r}}
$$

If there is a directed path ρ from node A to node B in a directed graph \mathcal{G} we write

$$
A \underset{\mathcal{G}}{\stackrel{\rho}{\underset{G}{~}}} B .
$$

If the path ρ is undirected we denote this with

Graph Types

Loop

Let $\mathcal{G}=(V, E)$ be an undirected graph. A path

$$
\rho=X_{1}-\cdots-X_{k}
$$

with $X_{k}-X_{1} \in E$ is called a loop.

Cycle

Let $\mathcal{G}=(V, E)$ be a directed graph. A path

$$
\rho=X_{1} \rightarrow \cdots \rightarrow X_{k}
$$

with $X_{k} \rightarrow X_{1} \in E$ is called a cycle.

Directed Acyclic Graph (DAG)

A directed graph $\mathcal{G}=(V, E)$ is called acyclic if for every path $X_{1} \rightarrow \cdots \rightarrow X_{k}$ in \mathcal{G} the condition $X_{k} \rightarrow X_{1} \notin E$ is satisfied, i. e. it contains no cycle.

Parents, Children and Families

Let $\mathcal{G}=(V, E)$ be a directed graph. For every node $A \in V$ we define the following sets:

- Parents:

$$
\operatorname{parents}_{\mathcal{G}}(A)=\{B \in V \mid B \rightarrow A \in E\}
$$

- Children:
$\operatorname{children}_{\mathcal{G}}(A)=\{B \in V \mid A \rightarrow B \in E\}$
- Family:

$$
\operatorname{family}_{\mathcal{G}}(A)=\{A\} \cup \text { parents }_{\mathcal{G}}(A)
$$

If the respective graph is clear from the context, the index \mathcal{G} is omitted.

$\operatorname{parents}(F)=\{C, D\}$
children $(F)=\{J, K\}$ family $(F)=\{C, D, F\}$

Ancestors, Descendants, Non-Descendants

Let $\mathcal{G}=(V, E)$ be a DAG. For every node $A \in V$ we define the following sets:

- Ancestors:

$$
\operatorname{ancs}_{\mathcal{G}}(A)=\{B \in V \mid \exists \rho: B \underset{\underset{\mathcal{G}}{\rho}}{\underset{\sim}{\rho}} A\}
$$

- Descendants:

$$
\operatorname{descs} \mathcal{G}(A)=\{B \in V \mid \exists \rho: A \underset{\mathcal{G}}{\rho} B\}
$$

- Non-Descendants:

$$
\operatorname{non}-\operatorname{descs} \mathcal{G}^{(A)}=V \backslash\{A\} \backslash \operatorname{descs}_{\mathcal{G}}(A)
$$

If the respective graph is clear from the context, the index \mathcal{G} is omitted.

$$
\begin{aligned}
\operatorname{ancs}(F) & =\{A, B, C, D\} \\
\operatorname{descs}(F) & =\{J, K, L, M\} \\
\text { non- } \operatorname{descs}(F) & =\{A, B, C, D, E, G, H\}
\end{aligned}
$$

Operations on Graphs

Let $\mathcal{G}=(V, E)$ be a DAG.
The Minimal Ancestral Subgraph of \mathcal{G} given a set $M \subseteq V$ of nodes is the smallest subgraph that contains all ancestors of all nodes in M.

The Moral Graph of \mathcal{G} is the undirected graph that is obtained by

1. connecting nodes that share a common child with an arbitrarily directed edge and,
2. converting all directed edges into undirected ones by dropping the arrow heads.

Moral graph of ancestral graph induced by the set $\{E, F, G\}$.

u-Separation

Let $\mathcal{G}=(V, E)$ be an undirected graph and $X, Y, Z \subseteq V$ three disjoint subsets of nodes. We agree on the following separation criteria:

1. Z u-separates X from Y - written as

$$
X \Perp_{\mathcal{G}} Y \mid Z,
$$

if every possible path from a node in X to a node in Y is blocked.
2. A path is blocked if it contains one (or more) blocking nodes.
3. A node is a blocking node if it lies in Z.

u-Separation

E.g. path $A-B-E-G-H$ is blocked by $E \in Z$. It can be easily verified, that every path from X to Y is blocked by Z. Hence we have:

$$
\{A, B, C, D\} \Perp_{\mathcal{G}}\{G, H, J\} \mid\{E, F\}
$$

u-Separation

Another way to check for u-separation: Remove the nodes in Z from the graph (and all the edges adjacent to these nodes). X and Y are u-separated by Z if the remaining graph is disconnected with X and Y in separate subgraphs.

d-Separation

Now: Separation criterion for directed graphs.
We use the same priciples as for u-separation. Two modifications are necessary:

- Directed paths may lead also in reverse to the arrows.
- The blocking node condition is more sophisticated.

Blocking Node (in a directed path)
A node A is blocked if its edge directions along the path

- are of type 1 and $A \in Z$, or
- are of type 2 and neither A nor one of its descendants is in Z.

Type 1

Type 2

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D$:

- C is serial and not in Z : non-blocking
- E is converging and not in Z, neither is F, G, H or J : blocking
\Rightarrow Path is blocked

$$
A \Perp D \mid \emptyset
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D$:

- C is serial and not in Z : non-blocking
- E is converging and in Z : non-blocking
\Rightarrow Path is not blocked

$$
A \not \Perp D \mid E
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D$:

- C is serial and not in Z : non-blocking
- E is converging and not in Z but one of its descendants (J) is in Z : non-blocking
\Rightarrow Path is not blocked

$$
A \not \Perp D \mid J
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \rightarrow F \rightarrow H$:

- C is serial and not in Z : non-blocking
- E is serial and not in Z : non-blocking
- F is serial and not in Z : non-blocking
\Rightarrow Path is not blocked

$$
A \not \Perp H \mid \emptyset
$$

d-Separation

Checking path $A \rightarrow C \rightarrow E \rightarrow F \rightarrow H$:

- C is serial and not in Z : non-blocking
- E is serial and in Z : blocking
- F is serial and not in Z : non-blocking
\Rightarrow Path is blocked

d-Separation

Checking path $A \rightarrow C \rightarrow E \leftarrow D \rightarrow B$:

- C is serial and not in Z : non-blocking
- E is converging and in Z : non-blocking
- D is serial and in Z : blocking
\Rightarrow Path is blocked

$$
A \Perp H, B \mid D, E
$$

d-Separation: Alternative Way for Checking

Steps

- Create the minimal ancestral subgraph induced by $X \cup Y \cup Z$.

d-Separation: Alternative Way for Checking

Steps

- Create the minimal ancestral subgraph induced by $X \cup Y \cup Z$.
- Moralize that subgraph.

d-Separation: Alternative Way for Checking

Steps:

- Create the minimal ancestral subgraph induced by $X \cup Y \cup Z$.
- Moralize that subgraph.
- Check for u-Separation in that undirected graph.

$$
A \Perp H, B \mid D, E
$$

Decomposition

Example

Example World

Relation

color	shape	size
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\triangle	medium
\square	\triangle	large
\square	\square	medium
\square	\square	medium
\square	\triangle	medium
\square	\triangle	large

- 10 simple geometric objects
- 3 attributes

Example

Relation

color	shape	size
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\bigcirc	small
\square	\bigcirc	medium
\square	\triangle	medium
\square	\triangle	large
\square	\square	medium
\square	\square	medium
\square	\triangle	medium
\square	\triangle	large

Geometric Representation

Object Representation

- Universe of Discourse: Ω
- $\omega \in \Omega$ represents a single abstract object.
- A subset $E \subseteq \Omega$ is called an event.
- For every event we use the function R to determine whether E is possible or not.

$$
R: 2^{\Omega} \rightarrow\{0,1\}
$$

- We claim the following properties of R :

1. $R(\emptyset)=0$
2. $\forall E_{1}, E_{2} \subseteq \Omega: R\left(E_{1} \cup E_{2}\right)=\max \left\{R\left(E_{1}\right), R\left(E_{2}\right)\right\}$

- For example:

$$
R(E)= \begin{cases}0 & \text { if } E=\emptyset \\ 1 & \text { otherwise }\end{cases}
$$

Object Representation

- Attributes or Properties of these objects are introduced by functions: (later referred to as random variables)

$$
A: \Omega \rightarrow \operatorname{dom}(A)
$$

where $\operatorname{dom}(A)$ is the domain (i. e., set of all possible values) of A.

- A set of attibutes $U=\left\{A_{1}, \ldots, A_{n}\right\}$ is called an attribute schema.
- The preimage of an attribute defines an event:

$$
\forall a \in \operatorname{dom}(A): A^{-1}(a)=\{\omega \in \Omega \mid A(\omega)=a\} \subseteq \Omega
$$

- Abbreviation: $A^{-1}(a)=\{\omega \in \Omega \mid A(\omega)=a\} \quad=\quad\{A=a\}$
- We will index the function R to stress on which events it is defined. $R_{A B}$ will be short for $R_{\{A, B\}}$.

$$
R_{A B}: \bigcup_{a \in \operatorname{dom}(A)} \bigcup_{b \in \operatorname{dom}(B)}\{\{A=a, B=b\}\} \rightarrow\{0,1\}
$$

Formal Representation

$A=$ color	$B=$ shape	$C=$ size
$a_{1}=\square$	$b_{1}=\bigcirc$	$c_{1}=$ small
$a_{1}=\square$	$b_{1}=\bigcirc$	$c_{2}=$ medium
$a_{2}=\square$	$b_{1}=\bigcirc$	$c_{1}=$ small
$a_{2}=\square$	$b_{1}=\bigcirc$	$c_{2}=$ medium
$a_{2}=\square$	$b_{3}=\triangle$	$c_{2}=$ medium
$a_{2}=\square$	$b_{3}=\triangle$	$c_{3}=$ large
$a_{3}=\square$	$b_{2}=\square$	$c_{2}=$ medium
$a_{4}=\square$	$b_{2}=\square$	$c_{2}=$ medium
$a_{4}=\square$	$b_{3}=\triangle$	$c_{2}=$ medium
$a_{4}=\square$	$b_{3}=\triangle$	$c_{3}=$ large

$$
\left.\left.\begin{array}{l}
R_{A B C}(A=a, B=b, C=c) \\
\quad=R_{A B C}(\{A=a, B=b, C=c\}) \\
=R_{A B C}(\{\omega \in \Omega \mid A(\omega)=a \wedge \\
B(\omega)=b \wedge
\end{array}\right] \begin{array}{ll}
C(\omega)=c)\}
\end{array}\right] \begin{array}{ll}
0 & \text { if there is no tuple }(a, b, c) \\
1 & \text { else }
\end{array}
$$

R serves as an indicator function.

Operations on the Relations

Projection / Marginalization

Let $R_{A B}$ be a relation over two attributes A and B. The projection (or marginalization) from schema $\{A, B\}$ to schema $\{A\}$ is defined as:

$$
\forall a \in \operatorname{dom}(A): R_{A}(A=a)=\max _{\forall b \in \operatorname{dom}(B)}\left\{R_{A B}(A=a, B=b)\right\}
$$

This principle is easily generalized to sets of attributes.

Object Representation

Cylindrical Extention

Let R_{A} be a relation over an attribute A. The cylindrical extention $R_{A B}$ from $\{A\}$ to $\{A, B\}$ is defined as:

$$
\forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): R_{A B}(A=a, B=b)=R_{A}(A=a)
$$

This principle is easily generalized to sets of attributes.

Object Representation

Intersection

Let $R_{A B}^{(1)}$ and $R_{A B}^{(2)}$ be two relations with attribute schema $\{A, B\}$. The intersection $R_{A B}$ of both is defined in the natural way:

$$
\forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B):
$$

$$
R_{A B}(A=a, B=b)=\min \left\{R_{A B}^{(1)}(A=a, B=b), R_{A B}^{(2)}(A=a, B=b)\right\}
$$

This principle is easily generalized to sets of attributes.

Object Representation

Conditional Relation

Let $R_{A B}$ be a relation over the attribute schema $\{A, B\}$. The conditional relation of A given B is defined as follows:

$$
\forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): R_{A}(A=a \mid B=b)=R_{A B}(A=a, B=b)
$$

This principle is easily generalized to sets of attributes.

Object Representation

(Unconditional) Independence

Let $R_{A B}$ be a relation over the attribute schema $\{A, B\}$. We call A and B relationally independent (w.r.t. $R_{A B}$) if the following condition holds:
$\forall a \in \operatorname{dom}(A): \forall b \in \operatorname{dom}(B): R_{A B}(A=a, B=b)=\min \left\{R_{A}(A=a), R_{B}(B=b)\right\}$
This principle is easily generalized to sets of attributes.

Object Representation

(Unconditional) Independence

Intuition: Fixing one (possible) value of A does not restrict the (possible) values of B and vice versa.

Conditioning on any possible value of B always results in the same relation R_{A}.
Alternative independence expression:

$$
\begin{aligned}
& \forall b \in \operatorname{dom}(B): R_{B}(B=b)=1: \\
& \quad R_{A}(A=a \mid B=b)=R_{A}(A=a)
\end{aligned}
$$

Decomposition

- Obviously, the original two-dimensional relation can be reconstructed from the two one-dimensional ones, if we have (unconditional) independence.
- The definition for (unconditional) independence already told us how to do so:

$$
R_{A B}(A=a, B=b)=\min \left\{R_{A}(A=a), R_{B}(B=b)\right\}
$$

- Storing R_{A} and R_{B} is sufficient to represent the information of $R_{A B}$.
- Question: The (unconditional) independence is a rather strong restriction. Are there other types of independence that allow for a decomposition as well?

Conditional Relational Independence

Clearly, A and C are unconditionally dependent, i. e. the relation $R_{A C}$ cannot be reconstructed from R_{A} and R_{C}.

Conditional Relational Independence

$$
R_{A C}\left(\cdot, \cdot \mid B=b_{3}\right)
$$

However, given all possible values of B, all respective conditional relations $R_{A C}$ show the independence of A and C.

$R_{A C}\left(\cdot, \cdot \mid B=b_{2}\right)$

$$
R_{A C}(a, c \mid b)=\min \left\{R_{A}(a \mid b), R_{C}(c \mid b)\right\}
$$

With the definition of a conditional relation, the decomposition description for $R_{A B C}$ reads:

$$
R_{A B C}(a, b, c)=\min \left\{R_{A B}(a, b), R_{B C}(b, c)\right\}
$$

$R_{A C}\left(\cdot, \cdot \mid B=b_{1}\right)$

Conditional Relational Independence

Again, we reconstruct the initial relation from the cylindrical extentions of the two relations formed by the attributes A, B and B, C.

It is possible since A and C are (relationally) independent given B.

Probability Foundations

Reminder: Probability Theory

- Goal: Make statements and/or predictions about results of physical processes.
- Even processes that seem to be simple at first sight may reveal considerable difficulties when trying to predict.
- Describing real-world physical processes always calls for a simplifying mathematical model.
- Although everybody will have some intuitive notion about probability, we have to formally define the underlying mathematical structure.
- Randomness or chance enters as the incapability of precisely modelling a process or the inability of measuring the initial conditions.
- Example: Predicting the trajectory of a billard ball over more than 9 banks requires more detailed measurement of the initial conditions (ball location, applied momentum etc.) than physically possible according to Heisenberg's uncertainty principle.

Formal Approach on the Model Side

- We conduct an experiment that has a set Ω of possible outcomes.
E. g.:
- Rolling a die $(\Omega=\{1,2,3,4,5,6\})$
- Arrivals of phone calls $\left(\Omega=\mathbb{N}_{0}\right)$
- Bread roll weights $\left(\Omega=\mathbb{R}_{+}\right)$
- Such an outcome is called an elementary event.
- All possible elementary events are called the frame of discernment Ω (or sometimes universe of discourse).
- The set representation stresses the following facts:
- All possible outcomes are covered by the elements of Ω. (collectively exhaustive).
- Every possible outcome is represented by exactly one element of Ω. (mutual disjoint).

Events

- Often, we are interested in higher-level events
(e.g. casting an odd number, arrival of at least 5 phone calls or purchasing a bread roll heavier than 80 grams)
- Any subset $A \subseteq \Omega$ is called an event which occurs, if the outcome $\omega_{0} \in \Omega$ of the random experiment lies in A :

$$
\text { Event } A \subseteq \Omega \text { occurs } \Leftrightarrow \bigvee_{\omega \in A}\left(\omega=\omega_{0}\right)=\text { true } \quad \Leftrightarrow \quad \omega_{0} \in A
$$

- Since events are sets, we can define for two events A and B :
- $A \cup B$ occurs if A or B occurs; $A \cap B$ occurs if A and B occurs.
- \bar{A} occurs if A does not occur (i. e., if $\Omega \backslash A$ occurs).
- A and B are mutually exclusive, iff $A \cap B=\emptyset$.

Event Algebra

- A family of sets $\mathcal{E}=\left\{E_{1}, \ldots, E_{n}\right\}$ is called an event algebra, if the following conditions hold:
- The certain event Ω lies in \mathcal{E}.
- If $E \in \mathcal{E}$, then $\bar{E}=\Omega \backslash E \in \mathcal{E}$.
- If E_{1} and E_{2} lie in \mathcal{E}, then $E_{1} \cup E_{2} \in \mathcal{E}$ and $E_{1} \cap E_{2} \in \mathcal{E}$.
- If Ω is uncountable, we require the additional property:

For a series of events $E_{i} \in \mathcal{E}, i \in \mathbb{N}$, the events $\bigcup_{i=1}^{\infty} E_{i}$ and $\bigcap_{i=1}^{\infty} E_{i}$ are also in \mathcal{E}. \mathcal{E} is then called a σ-algebra.

Side remarks:

- Smallest event algebra: $\mathcal{E}=\{\emptyset, \Omega\}$
- Largest event algebra (for finite or countable Ω): $\mathcal{E}=2^{\Omega}=\{A \subseteq \Omega \mid$ true $\}$

Probability Function

- Given an event algebra \mathcal{E}, we would like to assign every event $E \in \mathcal{E}$ its probability with a probability function $P: \mathcal{E} \rightarrow[0,1]$.
- We require P to satisfy the so-called Kolmogorov Axioms:
- $\forall E \in \mathcal{E}: 0 \leq P(E) \leq 1$
- $P(\Omega)=1$
- If $E_{1}, E_{2} \in \mathcal{E}$ are mutually exclusive, then $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$.
- From these axioms one can conclude the following (incomplete) list of properties:
- $\forall E \in \mathcal{E}: P(\bar{E})=1-P(E)$
- $P(\emptyset)=0$
- For pairwise disjoint events $E_{1}, E_{2}, \ldots \in \mathcal{E}$ holds:

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

Note that for $|\Omega|<\infty$ the union and sum are finite also.

Elementary Probabilities and Densities

Question 1: How to calculate P ?
Question 2: Are there "default" event algebras?

- Idea for question 1: We have to find a way of distributing (thus the notion distribution) the unit mass of probability over all elements $\omega \in \Omega$.
- If Ω is finite or countable a probability mass function p is used:

$$
p: \Omega \rightarrow[0,1] \quad \text { and } \quad \sum_{\omega \in \Omega} p(\omega)=1
$$

- If Ω is uncountable (i. e., continuous) a probability density function f is used:

$$
f: \Omega \rightarrow \mathbb{R} \quad \text { and } \quad \int_{\Omega} f(\omega) \mathrm{d} \omega=1
$$

"Default" Event Algebras

- Idea for question 2 ("default" event algebras) we have to distinguish again between the cardinalities of Ω :
- Ω finite or countable:

$$
\mathcal{E}=2^{\Omega}
$$

- Ω uncountable, e. g. $\Omega=\mathbb{R}$:

$$
\mathcal{E}=\mathcal{B}(\mathbb{R})
$$

- $\mathcal{B}(\mathbb{R})$ is the Borel Algebra, i. e., the smallest σ-algebra that contains all closed intervals $[a, b] \subset \mathbb{R}$ with $a<b$.
- $\mathcal{B}(\mathbb{R})$ also contains all open intervals and single-item sets.
- It is sufficient to note here, that all intervals are contained

$$
\{[a, b],] a, b],] a, b[,[a, b[\subset \mathbb{R} \mid a<b\} \subset \mathcal{B}(\mathbb{R})
$$

because the event of a bread roll having a weight between 80 g and 90 g is represented by the interval [80,90].

Probability Spaces

- For a sample space A, an event algebra B (over A) and a probability function C, we call the triple

$$
(A, B, C)
$$

a probability space.

Reminder: Preimage of a Function

- Let $f: D \rightarrow M$ be a function that assigns to every value of D a value in M.
- For every value of $y \in M$ we can ask which values of $x \in D$ are mapped to y :

$$
D \supseteq\{x \in D \mid f(x)=y\} \stackrel{\text { Def }}{=} f^{-1}(y)
$$

- $f^{-1}(y)$ is called the preimage of y under f, denoted also as $\{f=y\}$.
- The notion can be generalized from $y \in M$ to sets $B \subseteq M$:

$$
D \supseteq\{x \in D \mid f(x) \in B\} \stackrel{\text { Def }}{=} f^{-1}(B)
$$

- If f is bijective then $\forall y \in M:\left|f^{-1}(y)\right|=1$.
- Examples:
- $\sin ^{-1}(0)=\{k \cdot \pi \mid k \in \mathbb{Z}\}$
- $\exp ^{-1}(1)=\{0\}$
- $\operatorname{sgn}^{-1}(1)=(0,+\infty) \subset \mathbb{R}$

Random Variable

We still need a means of mapping real-world outcomes in Ξ to our space Ω.

- A function $X: D \rightarrow M$ is called a random variable iff the preimage of any value of M is an event (in some probability space).
- If X maps Ξ onto Ω, we define

$$
P_{X}(X \in A)=Q(\{\xi \in \Xi \mid X(\xi) \in A\}) .
$$

- X may also map from Ω to another domain: $X: \Omega \rightarrow \operatorname{dom}(X)$.

We then define:

$$
P_{X}(X \in A)=P(\{\omega \in \Omega \mid X(\omega) \in A\}) .
$$

- If X is numeric, we call $F(x)$ with

$$
F(x)=P(X \leq x)
$$

the distribution function of X.

Example: Rolling a Die

$$
\Omega=\{1,2,3,4,5,6\} \quad X=\mathrm{id}
$$

$$
p_{1}(\omega)=\frac{1}{6}
$$

$$
F_{1}(x)=P(X \leq x)
$$

$$
\begin{aligned}
\sum_{\omega \in \Omega} p_{1}(\omega) & =\sum_{i=1}^{6} p_{1}\left(\omega_{i}\right) \\
& =\sum_{i=1}^{6} \frac{1}{6}=1
\end{aligned}
$$

$$
P(X \leq x)=\sum_{x^{\prime} \leq x} P\left(X=x^{\prime}\right)
$$

$$
P(a<X \leq b)=F_{1}(b)-F_{1}(a)
$$

$$
P(X=x)=P(\{X=x\})=P\left(X^{-1}(x)\right)=P(\{\omega \in \Omega \mid X(\omega)=x\})
$$

The Big Picture

$$
\begin{aligned}
& \text { Real World Model } \\
& Q\left(\left\{\xi \in \Xi \mid X(\xi) \in Y^{-1}(q)\right\}\right)=P(\{\omega \in \Omega \mid Y(\omega)=q\})=P(Y=q)=P(q)
\end{aligned}
$$

Applied Probability Theory

Why (Kolmogorov) Axioms?

- If P models an objectively observable probability, these axioms are obviously reasonable.
- However, why should an agent obey formal axioms when modeling degrees of (subjective) belief?
- Objective vs. subjective probabilities
- Axioms constrain the set of beliefs an agent can abide.
- Finetti (1931) gave one of the most plausible arguments why subjective beliefs should respect axioms:
"When using contradictory beliefs, the agent will eventually fail."

Unconditional Probabilities

- $P(A)$ designates the unconditioned or a priori probability that $A \subseteq \Omega$ occurs if no other additional information is present. For example:

$$
P(\text { cavity })=0.1
$$

Note: Here, cavity is a proposition.

- A formally different way to state the same would be via a binary random variable Cavity:

$$
P(\text { Cavity }=\text { true })=0.1
$$

- A priori probabilities are derived from statistical surveys or general rules.

Unconditional Probabilities

- In general a random variable can assume more than two values:

$$
\begin{aligned}
& P(\text { Weather }=\text { sunny })=0.7 \\
& P(\text { Weather }=\text { rainy })=0.2 \\
& P(\text { Weather }=\text { cloudy })=0.02 \\
& P(\text { Weather }=\text { snowy })=0.08 \\
& P(\text { Headache }=\text { true })=0.1
\end{aligned}
$$

- $P(X)$ designates the vector of probabilities for the (ordered) domain of the random variable X :

$$
\begin{aligned}
P(\text { Weather }) & =\langle 0.7,0.2,0.02,0.08\rangle \\
P(\text { Headache }) & =\langle 0.1,0.9\rangle
\end{aligned}
$$

- Both vectors define the respective probability distributions of the two random variables.

Conditional Probabilities

- New evidence can alter the probability of an event.
- Example: The probability for cavity increases if information about a toothache arises.
- With additional information present, the a priori knowledge must not be used!
- $P(A \mid B)$ designates the conditional or a posteriori probability of A given the sole observation (evidence) B.

$$
P(\text { cavity } \mid \text { toothache })=0.8
$$

- For random variables X and $Y P(X \mid Y)$ represents the set of conditional distributions for each possible value of Y.

Conditional Probabilities

- P (Weather \mid Headache) consists of the following table:

	$\mathrm{h} \hat{=}$ Headache $=$ true	$\neg \mathrm{h} \hat{=}$ Headache $=$ false
Weather = sunny	$P(\mathrm{~W}=$ sunny $\mid \mathrm{h})$	$P(\mathrm{~W}=$ sunny $\mid \neg \mathrm{h})$
Weather = rainy	$P(\mathrm{~W}=$ rainy $\mid \mathrm{h})$	$P(\mathrm{~W}=$ rainy $\mid \neg \mathrm{h})$
Weather = cloudy	$P(\mathrm{~W}=$ cloudy $\mid \mathrm{h})$	$P(\mathrm{~W}=$ cloudy $\mid \neg \mathrm{h})$
Weather = snowy	$P(\mathrm{~W}=$ snowy $\mid \mathrm{h})$	$P(\mathrm{~W}=$ snowy $\mid \neg \mathrm{h})$

- Note that we are dealing with two distributions now!

Therefore each column sums up to unity!

- Formal definition:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)} \quad \text { if } \quad P(B)>0
$$

Conditional Probabilities

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

- Product Rule: $P(A \wedge B)=P(A \mid B) \cdot P(B)$
- Also: $P(A \wedge B)=P(B \mid A) \cdot P(A)$
- A and B are independent iff

$$
P(A \mid B)=P(A) \quad \text { and } \quad P(B \mid A)=P(B)
$$

- Equivalently, iff the following equation holds true:

$$
P(A \wedge B)=P(A) \cdot P(B)
$$

Interpretation of Conditional Probabilities

Caution! Common misinterpretation:

$$
" P(A \mid B)=0.8 \text { means, that } P(A)=0.8, \text { given } B \text { holds." }
$$

This statement is wrong due to (at least) two facts:

- $P(A)$ is always the a-priori probability, never the probability of A given that B holds!
- $P(A \mid B)=0.8$ is only applicable as long as no other evidence except B is present. If C becomes known, $P(A \mid B \wedge C)$ has to be determined.
In general we have:

$$
P(A \mid B \wedge C) \neq P(A \mid B)
$$

E. g. $C \rightarrow A$ might apply.

Joint Probabilities

- Let X_{1}, \ldots, X_{n} be random variables over the same framce of descernment Ω and event algebra \mathcal{E}. Then $\vec{X}=\left(X_{1}, \ldots, X_{n}\right)$ is called a random vector with

$$
\vec{X}(\omega)=\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right)
$$

- Shorthand notation:

$$
P\left(\vec{X}=\left(x_{1}, \ldots, x_{n}\right)\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(x_{1}, \ldots, x_{n}\right)
$$

- Definition:

$$
\begin{aligned}
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) & =P\left(\left\{\omega \in \Omega \mid \bigwedge_{i=1}^{n} X_{i}(\omega)=x_{i}\right\}\right) \\
& =P\left(\bigcap_{i=1}^{n}\left\{X_{i}=x_{i}\right\}\right)
\end{aligned}
$$

Joint Probabilities

- Example: P (Headache, Weather) is the joint probability distribution of both random variables and consists of the following table:

	$\mathrm{h} \hat{=}$ Headache $=$ true	$\neg \mathrm{h} \hat{=}$ Headache $=$ false
Weather = sunny	$P(\mathrm{~W}=$ sunny $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ sunny $\wedge \neg \mathrm{h})$
Weather = rainy	$P(\mathrm{~W}=$ rainy $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ rainy $\wedge \neg \mathrm{h})$
Weather = cloudy	$P(\mathrm{~W}=$ cloudy $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ cloudy $\wedge \neg \mathrm{h})$
Weather = snowy	$P(\mathrm{~W}=$ snowy $\wedge \mathrm{h})$	$P(\mathrm{~W}=$ snowy $\wedge \neg \mathrm{h})$

- All table cells sum up to unity.

Calculating with Joint Probabilities

All desired probabilities can be computed from a joint probability distribution.

	toothache	ᄀtoothache
cavity	0.04	0.06
ᄀcavity	0.01	0.89

- Example: P (cavity \vee toothache $)=P($ cavity \wedge toothache $)$

$$
\begin{aligned}
& +P(\neg \text { cavity } \wedge \text { toothache }) \\
& +P(\text { cavity } \wedge \neg \text { toothache })=0.11
\end{aligned}
$$

- Marginalizations:

$$
\begin{aligned}
\mathrm{P}(\text { cavity }) & =P(\text { cavity } \wedge \text { toothache }) \\
& +P(\text { cavity } \wedge \neg \text { toothache })=0.10
\end{aligned}
$$

- Conditioning:

$$
P(\text { cavity } \mid \text { toothache })=\frac{P(\text { cavity } \wedge \text { toothache })}{P(\text { toothache })}=\frac{0.04}{0.04+0.01}=0.80
$$

Problems

- Easiness of computing all desired probabilities comes at an unaffordable price:

Given n random variables with k possible values each, the joint probability distribution contains k^{n} entries which is infeasible in practical applications.

- Hard to handle.
- Hard to estimate.

Therefore:

1. Is there a more dense representation of joint probability distributions?
2. Is there a more efficient way of processing this representation?

- The answer is no for the general case, however, certain dependencies and independencies can be exploited to reduce the number of parameters to a practical size.

Stochastic Independence

- Two events A and B are stochastically independent iff

$$
\begin{gathered}
P(A \wedge B)=P(A) \cdot P(B) \\
\Leftrightarrow \\
P(A \mid B)=P(A)=P(A \mid \bar{B})
\end{gathered}
$$

- Two random variables X and Y are stochastically independent iff
$\forall x \in \operatorname{dom}(X): \forall y \in \operatorname{dom}(Y): \quad P(X=x, Y=y)=P(X=x) \cdot P(Y=y)$
$\forall x \in \operatorname{dom}(X): \forall y \in \operatorname{dom}(Y): \quad P(X=x \mid Y=y)=P(X=x)$
- Shorthand notation: $P(X, Y)=P(X) \cdot P(Y)$.

Note the formal difference between $P(A) \in[0,1]$ and $P(X) \in[0,1]^{\operatorname{dom}(X) \mid}$.

Conditional Independence

- Let X, Y and Z be three random variables. We call X and Y conditionally independent given Z, iff the following condition holds:
$\forall x \in \operatorname{dom}(X): \forall y \in \operatorname{dom}(Y): \forall z \in \operatorname{dom}(Z):$

$$
P(X=x, Y=y \mid Z=z)=P(X=x \mid Z=z) \cdot P(Y=y \mid Z=z)
$$

- Shorthand notation: $X \Perp_{P} Y \mid Z$
- Let $\boldsymbol{X}=\left\{A_{1}, \ldots, A_{k}\right\}, \boldsymbol{Y}=\left\{B_{1}, \ldots, B_{l}\right\}$ and $\boldsymbol{Z}=\left\{C_{1}, \ldots, C_{m}\right\}$ be three disjoint sets of random variables. We call \boldsymbol{X} and \boldsymbol{Y} conditionally independent given \boldsymbol{Z}, iff

$$
P(\boldsymbol{X}, \boldsymbol{Y} \mid \boldsymbol{Z})=P(\boldsymbol{X} \mid \boldsymbol{Z}) \cdot P(\boldsymbol{Y} \mid \boldsymbol{Z}) \Leftrightarrow P(\boldsymbol{X} \mid \boldsymbol{Y}, \boldsymbol{Z})=P(\boldsymbol{X} \mid \boldsymbol{Z})
$$

- Shorthand notation: $\quad \boldsymbol{X} \Perp_{P} \boldsymbol{Y} \mid \boldsymbol{Z}$

Conditional Independence

- The complete condition for $\boldsymbol{X} \Perp_{P} \boldsymbol{Y} \mid \boldsymbol{Z}$ would read as follows:

$$
\begin{aligned}
& \forall a_{1} \in \operatorname{dom}\left(A_{1}\right): \cdots \forall a_{k} \in \operatorname{dom}\left(A_{k}\right): \\
& \forall b_{1} \in \operatorname{dom}\left(B_{1}\right): \cdots \forall b_{l} \in \operatorname{dom}\left(B_{l}\right): \\
& \forall c_{1} \in \operatorname{dom}\left(C_{1}\right): \cdots \forall c_{m} \in \operatorname{dom}\left(C_{m}\right): \\
& \quad P\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k}, B_{1}=b_{1}, \ldots, B_{l}=b_{l} \mid C_{1}=c_{1}, \ldots, C_{m}=c_{m}\right) \\
& \quad=P\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C_{1}=c_{1}, \ldots, C_{m}=c_{m}\right) \\
& \quad \cdot P\left(B_{1}=b_{1}, \ldots, B_{l}=b_{l} \mid C_{1}=c_{1}, \ldots, C_{m}=c_{m}\right)
\end{aligned}
$$

- Remarks:

1. If $\boldsymbol{Z}=\emptyset$ we get (unconditional) independence.
2. We do not use curly braces $(\})$ for the sets if the context is clear. Likewise, we use X instead of \boldsymbol{X} to denote sets.

Conditional Independence - Example 1

(Weak) Dependence in the entire dataset: X and Y dependent.

Conditional Independence - Example 1

No Dependence in Group 1: X and Y conditionally independent given Group 1.

Conditional Independence - Example 1

No Dependence in Group 2: X and Y conditionally independent given Group 2.

Conditional Independence - Example 2

- $\operatorname{dom}(G)=\{$ mal, fem $\}$
- $\operatorname{dom}(S)=\{\mathrm{sm}, \overline{\mathrm{sm}}\}$
- $\operatorname{dom}(M)=\{$ mar, $\overline{\mathrm{mar}}\}$
- $\operatorname{dom}(P)=\{$ preg, $\overline{\text { preg }}\}$

Geschlecht (gender)
Raucher (smoker)
Verheiratet (married)
Schwanger (pregnant)

$p_{\text {GSMP }}$		$\mathrm{G}=\mathrm{mal}$		$\mathrm{G}=\mathrm{fem}$	
		$\mathrm{S}=\mathrm{sm}$	$\mathrm{S}=\overline{\mathrm{sm}}$	$\mathrm{S}=\mathrm{sm}$	$\mathrm{S}=\overline{\mathrm{sm}}$
$\mathrm{M}=\mathrm{mar}$	$\mathrm{P}=$ preg	0	0	0.01	0.05
	$\mathrm{P}=\overline{\mathrm{preg}}$	0.04	0.16	0.02	0.12
$\mathrm{M}=\overline{\mathrm{mar}}$	$\mathrm{P}=$ preg	0	0	0.01	0.01
	$\mathrm{P}=\overline{\mathrm{preg}}$	0.10	0.20	0.07	0.21

Conditional Independence - Example 2

$$
\begin{array}{rlrl}
P(\mathrm{G}=\mathrm{fem}) & =P(\mathrm{G}=\mathrm{mal})=0.5 & P(\mathrm{P}=\mathrm{preg})=0.08 \\
P(\mathrm{~S}=\mathrm{sm}) & =0.25 & P(\mathrm{M}=\mathrm{mar})=0.4
\end{array}
$$

- Gender and Smoker are not independent:

$$
P(\mathrm{G}=\mathrm{fem} \mid \mathrm{S}=\mathrm{sm})=0.44 \neq 0.5=P(\mathrm{G}=\mathrm{fem})
$$

- Gender and Marriage are marginally independent but conditionally dependent given Pregnancy:

$$
P(\mathrm{fem}, \operatorname{mar} \mid \overline{\mathrm{preg}}) \approx 0.152 \neq 0.169 \approx P(\mathrm{fem} \mid \overline{\mathrm{preg}}) \cdot P(\mathrm{mar} \mid \overline{\mathrm{preg}})
$$

Bayes Theorem

- Product Rule (for events A and B):

$$
P(A \cap B)=P(A \mid B) P(B) \quad \text { and } \quad P(A \cap B)=P(B \mid A) P(A)
$$

- Equating the right-hand sides:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- For random variables X and Y :

$$
\forall x \forall y: \quad P(Y=y \mid X=x)=\frac{P(X=x \mid Y=y) P(Y=y)}{P(X=x)}
$$

- Generalization concerning background knowledge/evidence E :

$$
P(Y \mid X, E)=\frac{P(X \mid Y, E) P(Y \mid E)}{P(X \mid E)}
$$

Bayes Theorem - Application

$$
\begin{aligned}
P(\text { toothache } \mid \text { cavity }) & =0.4 \\
P(\text { cavity }) & =0.1 \quad P(\text { cavity } \mid \text { toothache })=\frac{0.4 \cdot 0.1}{0.05}=0.8 \\
P(\text { toothache }) & =0.05
\end{aligned}
$$

Why not estimate P (cavity | toothache) right from the start?

- Causal knowledge like P (toothache \mid cavity $)$ is more robust than diagnostic knowledge P (cavity | toothache).
- The causality P (toothache \mid cavity $)$ is independent of the a priori probabilities P (toothache) and P (cavity).
- If P (cavity) rose in a caries epidemic, the causality P (toothache \| cavity) would remain constant whereas both P (cavity | toothache) and P (toothache) would increase according to P (cavity).
- A physician, after having estimated P (cavity \mid toothache), would not know a rule for updating.

Relative Probabilities

Assumption:
We would like to consider the probability of the diagnosis GumDisease as well.

$$
\begin{aligned}
P(\text { toothache } \mid \text { gumdisease }) & =0.7 \\
P(\text { gumdisease }) & =0.02
\end{aligned}
$$

Which diagnosis is more probable?
If we are interested in relative probabilities only (which may be sufficient for some decisions), P (toothache) needs not to be estimated:

$$
\begin{aligned}
\frac{P(C \mid T)}{P(G \mid T)} & =\frac{P(T \mid C) P(C)}{P(T)} \cdot \frac{P(T)}{P(T \mid G) P(G)} \\
& =\frac{P(T \mid C) P(C)}{P(T \mid G) P(G)}=\frac{0.4 \cdot 0.1}{0.7 \cdot 0.02} \\
& =28.57
\end{aligned}
$$

Normalization

If we are interested in the absolute probability of $P(C \mid T)$ but do not know $P(T)$, we may conduct a complete case analysis (according C) and exploit the fact that $P(C \mid T)+P(\neg C \mid T)=1$.

$$
\begin{aligned}
P(C \mid T) & =\frac{P(T \mid C) P(C)}{P(T)} \\
P(\neg C \mid T) & =\frac{P(T \mid \neg C) P(\neg C)}{P(T)} \\
1=P(C \mid T)+P(\neg C \mid T) & =\frac{P(T \mid C) P(C)}{P(T)}+\frac{P(T \mid \neg C) P(\neg C)}{P(T)} \\
P(T) & =P(T \mid C) P(C)+P(T \mid \neg C) P(\neg C)
\end{aligned}
$$

Normalization

- Plugging into the equation for $P(C \mid T)$ yields:

$$
P(C \mid T)=\frac{P(T \mid C) P(C)}{P(T \mid C) P(C)+P(T \mid \neg C) P(\neg C)}
$$

- For general random variables, the equation reads:

$$
P(Y=y \mid X=x)=\frac{P(X=x \mid Y=y) P(Y=y)}{\sum_{\forall y^{\prime} \in \operatorname{dom}(Y)} P\left(X=x \mid Y=y^{\prime}\right) P\left(Y=y^{\prime}\right)}
$$

- Note the "loop variable" y^{\prime}. Do not confuse with y.

Multiple Evidences

- The patient complains about a toothache. From this first evidence the dentist infers:

$$
P(\text { cavity } \mid \text { toothache })=0.8
$$

- The dentist palpates the tooth with a metal probe which catches into a fracture:

$$
P(\text { cavity } \mid \text { fracture })=0.95
$$

- Both conclusions might be inferred via Bayes rule. But what does the combined evidence yield? Using Bayes rule further, the dentist might want to determine:

$$
P(\text { cavity } \mid \text { toothache } \wedge \text { fracture })=\frac{P(\text { toothache } \wedge \text { fracture } \mid \text { cavity }) \cdot P(\text { cavity })}{P(\text { toothache } \wedge \text { fracture })}
$$

Multiple Evidences

Problem:
He needs P (toothache \wedge catch \mid cavity), i. e. diagnostics knowledge for all combinations of symptoms in general. Better incorporate evidences step-by-step:

$$
P(Y \mid X, E)=\frac{P(X \mid Y, E) P(Y \mid E)}{P(X \mid E)}
$$

Abbreviations:

- C - cavity
- T - toothache
- F - fracture

Objective:

Computing $P(C \mid T, F)$ with just causal statements of the form $P(\cdot \mid C)$ and under exploitation of independence relations among the variables.

Multiple Evidences

- A priori:

$$
P(C)
$$

- Evidence toothache: $\quad P(C \mid T) \quad=P(C) \frac{P(T \mid C)}{P(T)}$
- Evidence fracture: $\quad P(C \mid T, F)=P(C \mid T) \frac{P(F \mid C, T)}{P(F \mid T)}$

$$
\begin{aligned}
T \Perp F \mid C & \Leftrightarrow \quad P(F \mid C, T)=P(F \mid C) \\
P(C \mid T, F) & =P(C) \frac{P(T \mid C)}{P(T)} \frac{P(F \mid C)}{P(F \mid T)}
\end{aligned}
$$

Seems that we still have to cope with symptom inter-dependencies?!

Multiple Evidences

- Compound equation from last slide:

$$
\begin{aligned}
P(C \mid T, F) & =P(C) \frac{P(T \mid C) P(F \mid C)}{P(T) P(F \mid T)} \\
& =P(C) \frac{P(T \mid C) P(F \mid C)}{P(F, T)}
\end{aligned}
$$

- $P(F, T)$ is a normalizing constant and can be computed if $P(F \mid \neg C)$ and $P(T \mid \neg C)$ are known:

$$
P(F, T)=\underbrace{P(F, T \mid C)}_{P(F \mid C) P(T \mid C)} P(C)+\underbrace{P(F, T \mid \neg C)}_{P(F \mid \neg C) P(T \mid \neg C)} P(\neg C)
$$

- Therefore, we finally arrive at the following solution...

Multiple Evidences

$$
P(C \mid F, T)=\frac{P(C)=P(T \mid C) \mid P(F \mid C)}{|P(F \mid C)| P(T \mid C) \mid P(C)+P(F \mid \neg C) P P(T \mid \neg C)}
$$

Note that we only use causal probabilities $P(\cdot \mid C)$ together with the a priori (marginal) probabilities $P(C)$ and $P(\neg C)$.

Multiple Evidences - Summary

Multiple evidences can be treated by reduction on

- a priori probabilities
- (causal) conditional probabilities for the evidence
- under assumption of conditional independence

General rule:

$$
P(Z \mid X, Y)=\alpha P(Z) P(X \mid Z) P(Y \mid Z)
$$

for X and Y conditionally independent given Z and with normalizing constant α.

Monty Hall Puzzle

Marylin Vos Savant in her riddle column in the New York Times:
You are a candidate in a game show and have to choose between three doors. Behind one of them is a Porsche, whereas behind the other two there are goats. After you chose a door, the host Monty Hall (who knows what is behind each door) opens another (not your chosen one) door with a goat. Now you have the choice between keeping your chosen door or choose the remaining one.

Which decision yields the best chance of winning the Porsche?

Monty Hall Puzzle

$G \quad$ You win the Porsche.
$R \quad$ You revise your decision.
$A \quad$ Behind your initially chosen door is (and remains) the Porsche.

$$
\begin{aligned}
P(G \mid R) & =P(G, A \mid R)+P(G, \bar{A} \mid R) \\
& =P(G \mid A, R) P(A \mid R)+P(G \mid \bar{A}, R) P(\bar{A} \mid R) \\
& =0 \cdot P(A \mid R)+1 \cdot P(\bar{A} \mid R) \\
& =P(\bar{A} \mid R)=P(\bar{A})=\frac{2}{3} \\
P(G \mid \bar{R}) & =P(G, A \mid \bar{R})+P(G, \bar{A} \mid \bar{R}) \\
& =P(G \mid A, \bar{R}) P(A \mid \bar{R})+P(G \mid \bar{A}, \bar{R}) P(\bar{A} \mid \bar{R}) \\
& =1 \cdot P(A \mid \bar{R})+0 \cdot P(\bar{A} \mid \bar{R}) \\
& =P(A \mid \bar{R})=P(A)=\frac{1}{3}
\end{aligned}
$$

Simpson's Paradox

Example: $\quad C=$ Patient takes medication, $E=$ patient recovers

	E	$\neg E$	\sum	Recovery rate
C	20	20	40	50%
$\neg C$	16	24	40	40%
\sum	36	44	80	

Men	E	$\neg E$	\sum	Rec.rate	Women	E	$\neg E$	\sum	Rec.rate
C	18	12	30	60%	C	2	8	10	20%
$\neg C$	7	3	10	70%	$\neg C$	9	21	30	30%
	25	15	40			11	29	40	

$$
\text { but } \begin{aligned}
P(E \mid C) & >P(E \mid \neg C) \\
P(E \mid C, M) & <P(E \mid \neg C, M) \\
P(E \mid C, W) & <P(E \mid \neg C, W)
\end{aligned}
$$

Probabilistic Reasoning

- Probabilistic reasoning is difficult and may be problematic:
- $P(A \wedge B)$ is not determined simply by $P(A)$ and $P(B)$:
$P(A)=P(B)=0.5 \quad \Rightarrow \quad P(A \wedge B) \in[0,0.5]$
- $P(C \mid A)=x, P(C \mid B)=y \quad \Rightarrow \quad P(C \mid A \wedge B) \in[0,1]$

Probabilistic logic is not truth functional!

- Central problem: How does additional information affect the current knowledge? I. e., if $P(B \mid A)$ is known, what can be said about $P(B \mid A \wedge C)$?
- High complexity: n propositions $\rightarrow 2^{n}$ full conjunctives
- Hard to specify these probabilities.

Summary

- Uncertainty is inevitable in complex and dynamic scenarios that force agents to cope with ignorance.
- Probabilities express the agent's inability to vote for a definitive decision. They model the degree of belief.
- If an agent violates the axioms of probability, it may exhibit irrational behavior in certain circumstances.
- The Bayes rule is used to derive unknown probabilities from present knowledge and new evidence.
- Multiple evidences can be effectively included into computations exploiting conditional independencies.

Probabilistic Causal Networks

The Big Objective(s)

In a wide variety of application fields two main problems need to be addressed over and over:

1. How can (expert) knowledge of complex domains be efficiently represented?
2. How can inferences be carried out within these representations?
3. How can such representations be (automatically) extracted from collected data?

We will deal with all three questions during the lecture.

Example 1: Planning in car manufacturing

Available information

- "Engine type e_{1} can only be combined with transmission t_{2} or t_{5}."
- "Transmission t_{5} requires crankshaft c_{2}."
- "Convertibles have the same set of radio options as SUVs."

Possible questions/inferences:

- "Can a station wagon with engine e_{4} be equipped with tire set y_{6} ?"
- "Supplier S_{8} failed to deliver on time. What production line has to be modified and how?"
- "Are there any peculiarties within the set of cars that suffered an aircondition failure?"

Example 2: Medical reasoning

Available information:

- "Malaria is much less likely than flu."
- "Flu causes cough and fever."
- "Nausea can indicate malaria as well as flu."
- "Nausea never indicated pneunomia before."

Possible questions/inferences

- "The patient has fever. How likely is he to have malaria?"
- "How much more likely does flu become if we can exclude malaria?"

Common Problems

Both scenarios share some severe problems:

- Large Data Space

It is intractable to store all value combinations, i.e. all car part combinations or inter-disease dependencies.
(Example: VW Bora has 10^{200} theoretical value combinations*)

- Sparse Data Space

Even if we could handle such a space, it would be extremely sparse, i. e. it would be impossible to find good estimates for all the combinations.
(Example: with 100 diseases and 200 symptoms, there would be about 10^{62} different scenarios for which we had to estimate the probability.*)

* The number of particles in the observable universe is estimated to be between 10^{78} and 10^{85}.

Idea to Solve the Problems

- Given: A large (high-dimensional) distribution δ representing the domain knowledge.
- Desired: A set of smaller (lower-dimensional) distributions $\left\{\delta_{1}, \ldots, \delta_{s}\right\}$ (maybe overlapping) from which the original δ could be reconstructed with no (or as few as possible) errors.
- With such a decomposition we can draw any conclusions from $\left\{\delta_{1}, \ldots, \delta_{s}\right\}$ that could be inferred from δ - without, however, actually reconstructing it.

Example: Car Manufacturing

- Let us consider a car configuration is described by three attributes:
- Engine $E, \operatorname{dom}(E)=\left\{e_{1}, e_{2}, e_{3}\right\}$
- Breaks $B, \operatorname{dom}(B)=\left\{b_{1}, b_{2}, b_{3}\right\}$
- Tires $T, \operatorname{dom}(T)=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$
- Therefore the set of all (theoretically) possible car configurations is:

$$
\Omega=\operatorname{dom}(E) \times \operatorname{dom}(B) \times \operatorname{dom}(T)
$$

- Since not all combinations are technically possible (or wanted by marketing) a set of rules is used to cancel out invalid combinations.

Example: Car Manufacturing

Possible car configurations

Example

2-D projections

- Is it possible to reconstruct δ from the δ_{i} ?

Example: Reconstruction of δ with $\delta_{B E}$ and $\delta_{E T}$

Example: Reconstruction of δ with $\delta_{B E}$ and $\delta_{E T}$

Example: Reconstruction of δ with $\delta_{B E}$ and $\delta_{E T}$

Example - Qualitative Aspects

- Lecture theatre in winter: Waiting for Mr. K and Mr. B. Not clear whether there is ice on the roads.
- 3 variables:
- \mathbf{E} road condition: $\operatorname{dom}(\mathbf{E})=\{$ ice,\neg ice $\}$
- K K had an accident: $\quad \operatorname{dom}(\mathrm{K})=\{$ yes, no $\}$
- B $\quad B$ had an accident: $\operatorname{dom}(B)=\{$ yes, no $\}$
- Ignorance about these states is modelled via the observer's belief.

$\downarrow \quad \mathrm{E}$ influences K and B (the more ice the more accidents)
\uparrow Knowledge about accident increases belief in ice

Example

A priori knowledge	Evidence	Inferences
E unknown	B has accident	$\Rightarrow \mathrm{E}=$ ice more likely
		$\Rightarrow \mathrm{K}$ has accident more likely
$\mathrm{E}=\neg$ ice	B has accident	\Rightarrow no change in belief about E
		\Rightarrow no change in belief about accident of K
E unknown	K and B dependent	
E known	K and B independent	

Causal Dependence vs. Reasoning

Rule: $\quad A$ entails B with certainty $x: \quad A \xrightarrow{x} B$

- Deduction (\rightarrow) :
A and $A \xrightarrow{x} B$, therefore B more likely as effect (causality)
- Abduction (\leftarrow) :
B and $A \xrightarrow{x} B$, therefore A more likely as cause (no causality)

For this reason, the notion "dependency model" is to be preferred to "causal network".

Objective

Is it possible to exploit local constraints (wherever they may come from - both structural and expert knowledge-based) in a way that allows for a decomposition of the large (intractable) distribution $P\left(X_{1}, \ldots, X_{n}\right)$ into several sub-structures $\left\{C_{1}, \ldots, C_{m}\right\}$ such that:

- The collective size of those sub-structures is much smaller than that of the original distribution P.
- The original distribution P is recomposable (with no or at least as few as possible errors) from these sub-structures in the following way:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{m} \Psi_{i}\left(c_{i}\right)
$$

where c_{i} is an instantiation of C_{i} and $\Psi_{i}\left(c_{i}\right) \in \mathbb{R}^{+}$a factor potential.

The Big Picture / Lecture Roadmap

Probabilistic Causal Networks

Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes represent propositions or variables and the directed edges model a direct causal dependence between the connected nodes. The strength of dependence is defined by conditional probabilities.

In general (according chain rule):

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{6}\right)= & P\left(X_{6} \mid X_{5}, \ldots, X_{1}\right) \\
& P\left(X_{5} \mid X_{4}, \ldots, X_{1}\right) \\
& P\left(X_{4} \mid X_{3}, X_{2}, X_{1}\right) \\
& P\left(X_{3} \mid X_{2}, X_{1}\right) \\
& P\left(X_{2} \mid X_{1}\right) \\
& P\left(X_{1}\right)
\end{aligned}
$$

Probabilistic Causal Networks

Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes represent propositions or variables and the directed edges model a direct causal dependence between the connected nodes. The strength of dependence is defined by conditional probabilities.

According graph (independence structure):

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{6}\right)= & P\left(X_{6} \mid X_{5}\right) \\
& P\left(X_{5} \mid X_{2}, X_{3}\right) \\
& P\left(X_{4} \mid X_{2}\right) \\
& P\left(X_{3} \mid X_{1}\right) \\
& P\left(X_{2} \mid X_{1}\right) \\
& P\left(X_{1}\right)
\end{aligned}
$$

Formal Framework

Nomenclature for the next slides:

- X_{1}, \ldots, X_{n}

Variables
(properties, attributes, random variables, propositions)

- $\Omega_{1}, \ldots, \Omega_{n}$
respective finite domains
(also designated with $\operatorname{dom}\left(X_{i}\right)$)
- $\Omega={\underset{i=1}{X} \Omega_{i}, ~}_{\text {in }}$

Universe of Discourse (tuples that characterize objects described by X_{1}, \ldots, X_{n})

- $\Omega_{i}=\left\{x_{i}^{(1)}, \ldots, x_{i}^{\left(n_{i}\right)}\right\} \quad n=1, \ldots, n, n_{i} \in \mathbb{N}$

Formal Framework

- Let Ω^{*} be the real universe of objects under consideration (e.g. population of people, collection of cars, customer transactions, etc.). Then the random vector $\vec{X}=\left(X_{1}, \ldots, X_{n}\right)$ describes each element $\omega^{*} \in \Omega^{*}$ in terms of the universe of discourse Ω :

$$
\vec{X}: \Omega^{*} \rightarrow \Omega \quad \text { with } \quad \vec{X}\left(\omega^{*}\right)=\left(X_{1}\left(\omega^{*}\right), \ldots, X_{n}\left(\omega^{*}\right)\right)
$$

- If $\left(\Omega^{*}, \mathcal{E}, Q\right)$ is an intrinsic probability space acting in the background, then it induces - in combination with \vec{X} - a probability measure P over Ω :

$$
\begin{aligned}
& \forall\left(x_{1}, \ldots, x_{n}\right) \in \Omega: \\
& P\left(\left\{\left(x_{1}, \ldots, x_{n}\right)\right\}\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \\
& =Q\left(\left\{\omega^{*} \in \Omega^{*} \mid \bigwedge_{i=1}^{n} X_{i}=x_{i}\right\}\right)
\end{aligned}
$$

Formal Framework

- The product space $\left(\Omega, 2^{\Omega}, P\right)$ is unique iff $P\left(\left\{\left(x_{1}, \ldots, x_{n}\right)\right\}\right)$ is specified for all $x_{i} \in\left\{x_{i}^{(1)}, \ldots, x_{i}^{\left(n_{i}\right)}\right\}, i=1, \ldots, n$.
- When the distribution $P\left(X_{1}, \ldots, X_{n}\right)$ is given in tabular form, then $\prod_{i=1}^{n}\left|\Omega_{i}\right|$ entries are necessary.
- For variables with $\left|\Omega_{i}\right| \geq 2$ at least 2^{n} entries.
- The application of DAGs allows for the representation of existing (in)dependencies.

Constructing a DAG

input $P\left(X_{1}, \ldots, X_{n}\right)$
output a unique DAG G
1: Set the nodes of G to $\left\{X_{1}, \ldots, X_{n}\right\}$.
2: Choose a total ordering on the set of variables
(e.g. $X_{1} \prec X_{2} \prec \cdots \prec X_{n}$)

3: For X_{i} find the smallest (uniquely determinable) set $S_{i} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$ sucht that $P\left(X_{i} \mid S_{i}\right)=P\left(X_{i} \mid X_{1} \ldots, X_{i-1}\right)$.
4: Connect all nodes in S_{i} with X_{i} and store $P\left(X_{i} \mid S_{i}\right)$ as quantization of the dependencies for that node X_{i} (given its parents).
5: return G

Belief Network

- A Belief Network (V, E, P) consists of a set $V=\left\{X_{1}, \ldots, X_{n}\right\}$ of random variables and a set E of directed edges between the variables.
- Each variable has a finite set of mutual exclusive and collectively exhaustive states.
- The variables in combination with the edges form a directed, acyclich graph.
- Each variable with parent nodes B_{1}, \ldots, B_{m} is assigned a potential table $P\left(A \mid B_{1}, \ldots, B_{m}\right)$.
- Note, that the connections between the nodes not necessarily express a causal relationship.
- For every belief network, the following equation holds:

$$
P(V)=\prod_{v \in V: P(c(v))>0} P(v \mid c(v))
$$

with $c(v)$ being the parent nodes of v.

Example

- Let a_{1}, a_{2}, a_{3} be three blood groups and b_{1}, b_{2}, b_{3} three indications of a blood group test.

$$
\begin{array}{lll}
\text { Variables: } & A \text { (blood group) } & B \text { (indication) } \\
\text { Domains: } & \Omega_{A}=\left\{a_{1}, a_{2}, a_{3}\right\} & \Omega_{B}=\left\{b_{1}, b_{2}, b_{3}\right\}
\end{array}
$$

- It is conjectured that there is a causal relationship between the variables.
- A and B constitute random variables w.r.t. $\left(\Omega^{*}, \mathcal{E}, Q\right)$.

$$
\Omega=\Omega_{A} \times \Omega_{B} \quad A: \Omega^{*} \rightarrow \Omega_{A}, \quad B: \Omega^{*} \rightarrow \Omega_{B}
$$

- A, B and $\left(\Omega^{*}, \mathcal{E}, Q\right)$ induce the probability space $\left(\Omega, 2^{\Omega}, P\right)$ with

$$
P(\{(a, b)\})=Q\left(\left\{\omega^{*} \in \Omega^{*} \mid A\left(\omega^{*}\right)=a \wedge B\left(\omega^{*}\right)=b\right\}\right):
$$

$P\left(\left\{\left(a_{i}, b_{j}\right)\right\}\right)$	b_{1}	b_{2}	b_{3}	\sum
a_{1}	0.64	0.08	0.08	0.8
a_{2}	0.01	0.08	0.01	0.1
a_{3}	0.01	0.01	0.08	0.1
\sum	0.66	0.17	0.17	1

$$
\begin{aligned}
& A \\
& P(A, B)=P(B \mid A) \cdot P(A)
\end{aligned}
$$

We are dealing with a belief net- work.

Example

Choice of universe of discourse

	Variable	Domain	
A	metastatic cancer	$\left\{a_{1}, a_{2}\right\}$	
B	increased serum calcium	$\left\{b_{1}, b_{2}\right\}$	$\left(\cdot_{1}\right.$ - present, $\cdot 2$ - absent $)$
C	brain tumor	$\left\{c_{1}, c_{2}\right\}$	$\Omega=\left\{a_{1}, a_{2}\right\} \times \cdots \times\left\{e_{1}, e_{2}\right\}$
D	coma	$\left\{d_{1}, d_{2}\right\}$	$\|\Omega\|=32$
E	headache	$\left\{e_{1}, e_{2}\right\}$	

Analysis of dependencies

Example

Choice of probability parameters

$$
\begin{aligned}
& P(a, b, c, d, e) \stackrel{\text { abbr. }}{=} P(A=a, B=b, C=c, D=d, E=e) \\
& \quad=P(e \mid c) P(d \mid b, c) P(c \mid a) P(b \mid a) P(a)
\end{aligned} \quad \begin{aligned}
& \text { Shorthand notation }
\end{aligned}
$$

- 11 values to store instead of 31
- Consult experts, textbooks, case studies, surveys, etc.

Calculation of conditional probabilities
Calculation of marginal probabilities

Crux of the Matter

- Knowledge acquisition (Where do the numbers come from?)
\rightarrow learning strategies
- Computational complexities
\rightarrow exploit independencies

Problem:

- When does the independency of X and Y given Z hold in (V, E, P) ?
- How can we determine $P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$ solely using the graph structure?

Dependencies

Converging Connection

Meal quality	
A	quality of ingredients
B	cook's skill
C	meal quality

- If C is not instantiated (i. e., no value specified/observed), A and B are marginally independent.
- After instantiation (observation) of C the variables A and B become conditionally dependent given C.
- Evidence can only be transferred over a converging connection if the variable in between (or one of its successors) is initialized.

Dependencies

Diverging Connection

Diagnosis	
A	body temperature
B	cough
C	disease

- If C is unknown, knowledge about A ist relevant for B and vice versa, i. e. A and B are marginally dependent.
- However, if C is observed, A and B become conditionally independent given C.
- A influences B via C. If C is known it in a way blocks the information from flowing from A to B, thus rendering A and B (conditionally) independent.

Dependencies

Serial Connection

Accidents	
A	rain
B	accident risk
C	road conditions

- Analog scenario to case 2
- A influences C and C influences B. Thus, A influences B. If C is known, it blocks the path between A and B.

Formal Representation

Converging Connection: Marginal Independence

- Decomposition according to graph:

$$
P(A, B, C)=P(C \mid A, B) \cdot P(A) \cdot P(B)
$$

- Embedded Independence:

$$
\begin{aligned}
P(A, B, C) & =\frac{P(A, B, C)}{P(A, B)} \cdot P(A) \cdot P(B) \quad \text { with } \quad P(A, B) \neq 0 \\
P(A, B) & =P(A) \cdot P(B) \\
& \Rightarrow A \Perp B \mid \emptyset
\end{aligned}
$$

Formal Representation

Diverging Connection: Conditional Independence

- Decomposition according to graph:

$$
P(A, B, C)=P(A \mid C) \cdot P(B \mid C) \cdot P(C)
$$

- Embedded Independence:

$$
\begin{aligned}
P(A, B \mid C) & =P(A \mid C) \cdot P(B \mid C) \\
& \Rightarrow A \Perp B \mid C
\end{aligned}
$$

- Alternative derivation:

$$
\begin{aligned}
P(A, B, C) & =P(A \mid C) \cdot P(B, C) \\
P(A \mid B, C) & =P(A \mid C) \\
& \Rightarrow A \Perp B \mid C
\end{aligned}
$$

Formal Representation

Serial Connection: Conditional Independence

- Decomposition according to graph:

$$
P(A, B, C)=P(B \mid C) \cdot P(C \mid A) \cdot P(A)
$$

- Embedded Independence:

$$
\begin{aligned}
P(A, B, C) & =P(B \mid C) \cdot P(C, A) \\
P(B \mid C, A) & =P(B \mid C) \\
& \Rightarrow A \Perp B \mid C
\end{aligned}
$$

Formal Representation

Trivial Cases:

- Marginal Independence:

$$
\text { (A) } B \quad P(A, B)=P(A) \cdot P(B)
$$

- Marginal Dependence:

$$
A \quad B \quad P(A, B)=P(B \mid A) \cdot P(A)
$$

Question

Question: Are X_{2} and X_{3} independent given X_{1} ?

d-Separation

Let $G=(V, E)$ a DAG and $X, Y, Z \in V$ three nodes.
a) A set $S \subseteq V \backslash\{X, Y\} d$-separates X and Y, if S blocks all paths between X and Y. (paths may also route in opposite edge direction)
b) A path π is d-separated by S if at least one pair of consecutive edges along π is blocked. There are the following blocking conditions:

1. $X \leftarrow Y \rightarrow Z \quad$ tail-to-tail
2. $\begin{aligned} & X \leftarrow Y \leftarrow Z \quad \text { head-to-tail }\end{aligned}$
3. $X \rightarrow Y \leftarrow Z \quad$ head-to-head
c) Two edges that meet tail-to-tail or head-to-tail in node Y are blocked if $Y \in S$.
d) Two edges meeting head-to-head in Y are blocked if neither Y nor its successors are in S.

Relation to Conditional independence

If $S \subseteq V \backslash\{X, Y\}$ d-separates X and Y in a Belief network (V, E, P) then X and Y are conditionally independent given S :

$$
P(X, Y \mid S)=P(X \mid S) \cdot P(Y \mid S)
$$

Application to the previous example:

$$
\begin{aligned}
\text { Paths: } & \pi_{1}=\left\langle X_{2}-X_{1}-X_{3}\right\rangle, \pi_{2}=\left\langle X_{2}-X_{5}-X_{3}\right\rangle \\
& \pi_{3}=\left\langle X_{2}-X_{4}-X_{1}-X_{3}\right\rangle, S=\left\{X_{1}\right\} \\
\pi_{1} & X_{2} \leftarrow X_{1} \rightarrow X_{3} \text { tail-to-tail } \\
& X_{1} \in S \Rightarrow \pi_{1} \text { is blocked by } S \\
\pi_{2} & X_{2} \rightarrow X_{5} \leftarrow X_{3} \text { head-to-head } \\
& X_{5}, X_{6} \notin S \Rightarrow \pi_{2} \text { is blocked by } S \\
\pi_{3} & X_{4} \leftarrow X_{1} \rightarrow X_{3} \text { tail-to-tail } \\
& X_{2} \rightarrow X_{4} \leftarrow X_{1} \text { head-to-head } \\
& \text { both connections are blocked } \Rightarrow \pi_{3} \text { is blocked }
\end{aligned}
$$

Example (cont.)

- Answer: X_{2} and X_{3} are d-separated via $\left\{X_{1}\right\}$. Therefore X_{2} and X_{3} become conditionally independent given X_{1}.
$S=\left\{X_{1}, X_{4}\right\} \quad \Rightarrow \quad X_{2}$ and X_{3} are d-separated by S
$S=\left\{X_{1}, X_{6}\right\} \quad \Rightarrow \quad X_{2}$ and X_{3} are not d-separated by S

Another Example

Are A and L conditionally independent given $\{B, M\}$?

Algebraic structure of CI statements

Question: Is it possible to use a formal scheme to infer new conditional independence (CI) statements from a set of initial CIs?

Repetition

Let (Ω, \mathcal{E}, P) be a probability space and W, X, Y, Z disjoint subsets of variables. If X and Y are conditionally independent given Z we write:

$$
X \Perp_{P} Y \mid Z
$$

Often, the following (equivalent) notation is used:

$$
I_{P}(X|Z| Y) \quad \text { or } \quad I_{P}(X, Y \mid Z)
$$

If the underlying space is known the index P is omitted.

(Semi-)Graphoid-Axioms

Let (Ω, \mathcal{E}, P) be a probability space and W, X, Y and Z four disjoint subsets of random variables (over Ω). Then the propositions
a) Symmetry: $\quad\left(X \Perp_{P} Y \mid Z\right) \Rightarrow\left(Y \Perp_{P} X \mid Z\right)$
b) Decomposition: $\left(W \cup X \Perp_{P} Y \mid Z\right) \Rightarrow\left(W \Perp_{P} Y \mid Z\right) \wedge\left(X \Perp_{P} Y \mid Z\right)$
c) Weak Union: $\quad\left(W \cup X \Perp_{P} Y \mid Z\right) \Rightarrow\left(X \Perp_{P} Y \mid Z \cup W\right)$
d) Contraction: $\quad\left(X \Perp_{P} Y \mid Z \cup W\right) \wedge\left(W \Perp_{P} Y \mid Z\right) \Rightarrow\left(W \cup X \Perp_{P} Y \mid Z\right)$
are called the Semi-Graphoid Axioms. The above propositions and
e) Intersection: $\quad\left(W \Perp_{P} Y \mid Z \cup X\right) \wedge\left(X \Perp_{P} Y \mid Z \cup W\right) \Rightarrow\left(W \cup X \Perp_{P} Y \mid Z\right)$ are called the Graphoid Axioms.

Decomposition

Drawings adapted from [Castillo et al. 1997].

Weak Union

Learning irrelevant information W cannot render irrelevant information X relevant.

Drawings adapted from [Castillo et al. 1997].

Contraction

If X is irrelevant (to Y) after having learnt some irrelevant information W , then X must have been irrelevant before.

Drawings adapted from [Castillo et al. 1997].

Intersection

Unless W affects Y when X is known or X affects Y when W is known, neither X nor W nor their combination can affect Y.

Drawings adapted from [Castillo et al. 1997].

Example

Proposition: $B \Perp C \mid A$

Propagation in Belief Networks

Objective

- Given:

Belief network (V, E, P) with tree structure and $P(V)>0$. Set $W \subseteq V$ of instantiated variables where a priori knowledge $W \neq \emptyset$ is allowed

- Desired: $\quad P(B \mid W)$ for all $B \in V$
- Notation: W_{B}^{-}subset of those variables of W that belong to the subtree of (V, E) that has root B
$W_{B}^{+}=W \backslash W_{B}^{-}$
$s(B)$ set of direct successors of B
$\Omega_{B} \quad$ domain of B
$b^{*} \quad$ value that B is instantiated with

Example

Example

$$
\begin{aligned}
P(B=b \mid W) & =P\left(b \mid W_{B}^{-} \cup W_{B}^{+}\right) \quad \text { with } B \notin W \\
& =\frac{P\left(W_{B}^{-} \cup W_{B}^{+} \mid b\right) P(b)}{P\left(W_{B}^{-} \cup W_{B}^{+}\right)} \\
& =\frac{P\left(W_{B}^{-} \mid b\right) P\left(W_{B}^{+} \mid b\right) P(b)}{P\left(W_{B}^{-} \cup W_{B}^{+}\right)} \\
& =\frac{P\left(W_{B}^{-} \mid b\right) P\left(b \mid W_{B}^{+}\right)}{P\left(W_{B}^{-} \cup W_{B}^{+}\right) P\left(W_{B}^{+}\right)} \\
& =\beta_{B, W} \underbrace{P\left(W_{B}^{-} \mid b\right)}_{\text {Evidence from "'below"' }} \underbrace{P\left(b \mid W_{B}^{+}\right)}_{\text {Evidence from "'above"' }}
\end{aligned}
$$

Example

Since we ignore the constant $\beta_{B, W}$ for the derivations below, the following designations are used instead of $P(\cdot)$:
π-values and λ-values
Let $B \in V$ be a variable and $b \in \Omega_{B}$ a value of its domain. We define the π - and λ-values as follows:

$$
\begin{aligned}
& \lambda(b)=\left\{\begin{array}{cl}
P\left(W_{B}^{-} \mid b\right) & \text { if } B \notin W \\
1 & \text { if } B \in W \wedge b^{*}=b \\
0 & \text { if } B \in W \wedge b^{*} \neq b
\end{array}\right. \\
& \pi(b)=P\left(b \mid W_{B}^{+}\right)
\end{aligned}
$$

Example

$$
\begin{array}{rlrl}
\lambda(b) & =\prod_{C \in s(B)} P\left(W_{C}^{-} \mid b\right) & & \text { if } B \in W \\
\lambda(b) & =1 & & \text { if } B \text { leaf in } \\
\pi(b) & =P(b) & & \text { if } B \text { root i } \\
P(b \mid W) & =\alpha_{B, W} \cdot \lambda(b) \cdot \pi(b) &
\end{array}
$$

Example

λ-message

Let $B \in V$ be an attribute and $C \in s(B)$ its direct children with the respective domains $\operatorname{dom}(B)=\left\{B_{1}, \ldots, b_{i}, \ldots, b_{k}\right\}$ and $\operatorname{dom}(C)=\left\{c_{1}, \ldots, c_{j}, \ldots, c_{m}\right\}$.

$$
\lambda_{C \rightarrow B}\left(b_{i}\right) \stackrel{\text { Def }}{=} \sum_{j=1}^{m} P\left(c_{j} \mid b_{i}\right) \cdot \lambda\left(c_{j}\right), \quad i=1, \ldots, k
$$

The vector

$$
\vec{\lambda}_{C \rightarrow B} \stackrel{\text { Def }}{=}\left(\lambda_{C \rightarrow B}\left(b_{i}\right)\right)_{i=1}^{k}
$$

is called λ-message from C to B.

Example

Let $B \in V$ an attribute an $b \in \operatorname{dom}(B)$ a value of its domain. Then

$$
\lambda(b)=\left\{\begin{array}{lll}
\rho_{B, W} \cdot \prod_{C \in s(B)} \lambda_{C}(b) & \text { if } B \notin W \\
1 & & \text { if } B \in W \wedge b=b^{*} \\
0 & & \text { if } B \in W \wedge b \neq b^{*}
\end{array}\right.
$$

with $\rho_{B, W}$ being a positive constant.

Example

π-message

Let $B \in V$ be a non-root node in (V, E) and $A \in V$ its parent with domain $\operatorname{dom}(A)=\left\{a_{1}, \ldots, a_{j}, \ldots, a_{m}\right\}$.

$$
\begin{aligned}
& j=1, \ldots, m: \\
& \pi_{A \rightarrow B}\left(a_{j}\right) \stackrel{\text { Def }}{=} \begin{cases}\pi\left(a_{j}\right) \cdot \prod_{C \in s(A) \backslash\{B\}} \lambda_{C}\left(a_{j}\right) & \text { if } A \notin W \\
1 & \text { if } A \in W \wedge a=a^{*} \\
0 & \text { if } A \in W \wedge a \neq a^{*}\end{cases}
\end{aligned}
$$

The vector

$$
\vec{\pi}_{A \rightarrow B} \stackrel{\text { Def }}{=}\left(\pi_{A \rightarrow B}\left(a_{j}\right)\right)_{j=1}^{m}
$$

is called π-message from A to B.

Example

Let $B \in V$ be a non-root node in (V, E) and A the parent node of B. Further let $b \in \operatorname{dom}(B)$ be a value of B 's domain.

$$
\pi(b)=\mu_{B, W} \cdot \sum_{a \in \operatorname{dom}(A)} P(b \mid a) \cdot \pi_{A \rightarrow B}(a)
$$

Let $A \notin W$ a non-instantiated attribute and $P(V)>0$.

$$
\begin{aligned}
\pi_{A \rightarrow B}\left(a_{j}\right) & =\pi\left(a_{j}\right) \cdot \prod_{C \in s(A) \backslash\{B\}} \lambda_{C \rightarrow A}\left(a_{j}\right) \\
& =\tau_{B, W} \cdot \frac{P\left(a_{j} \mid W\right)}{\lambda_{B \rightarrow A}\left(a_{j}\right)}
\end{aligned}
$$

Propagation in Belief Trees

Belief Tree:

Parameters:

$$
\begin{array}{rl}
P\left(a_{1}\right)=0.1 & P\left(b_{1} \mid a_{1}\right)=0.7 \\
& P\left(b_{1} \mid a_{2}\right)=0.2 \\
P\left(d_{1} \mid a_{1}\right)=0.8 & P\left(c_{1} \mid b_{1}\right)=0.4 \\
P\left(d_{1} \mid a_{2}\right)=0.4 & P\left(c_{1} \mid b_{2}\right)=0.001
\end{array}
$$

Desired:

$$
\forall X \in\{A, B, C, D\}: P(X \mid \emptyset)=?
$$

Propagation in Belief Trees (2)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .

Propagation in Belief Trees (3)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$

Propagation in Belief Trees (4)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$.
- A sends π-messages to B and D.

Propagation in Belief Trees (5)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$.
- A sends π-messages to B and D.
- B and D update their π-values.

Propagation in Belief Trees (6)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$.
- A sends π-messages to B and D.
- B and D update their π-values.
- B sends π-message to C.

Propagation in Belief Trees (7)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$.
- A sends π-messages to B and D.
- B and D update their π-values.
- B sends π-message to C.
- C updates it π-value.

Propagation in Belief Trees (8)

Belief Tree:

Initialization Phase:

- Set all λ-messages and λ-values to 1 .
- $\pi\left(a_{1}\right)=P\left(a_{1}\right)$ and $\pi\left(a_{2}\right)=P\left(a_{2}\right)$.
- A sends π-messages to B and D.
- B and D update their π-values.
- B sends π-message to C.
- C updates it π-value.
- Initialization finished.

Larger Network (1): Parameters

Larger Network (2): After Initialization

Larger Network (3): Set Evidence e_{1}, g_{1}, h_{1}

Larger Network (4): Propagate Evidence

Larger Network (5): Propagate Evidence, cont.

Larger Network (6): Propagate Evidence, cont.

Larger Network (7): Propagate Evidence, cont.

Larger Network (8): Propagate Evidence, cont.

Larger Network (9): Propagate Evidence, cont.

Larger Network (10): Propagate Evidence, cont.

Larger Network (11): Propagate Evidence, cont.

Larger Network (12): Propagate Evidence, cont.

Larger Network (13): Propagate Evidence, cont.

Larger Network (14): Propagate Evidence, cont.

Larger Network (15): Finished

Propagation in Clique Trees

Problems

- The propagation algorithm as presented can only deal with trees.
- Can be extended to polytrees (i. e. singly connected graphs with multiple parents per node).
- However, it cannot handle networks that contains loops.

Idea

- Combine nodes of the original (primary) graph structure
- These groups form the nodes of a secondary structure
- Find a transformation that yields tree structure

Prerequisites

Complete Graph

An undirected Graph $G=(V, E)$ is called complete, if every pair of (distinct) nodes is connected by an edge.

Induced Subgraph

Let $G=(V, E)$ be an undirected graph and $W \subseteq V$ a selection of nodes. Then, $G_{W}=\left(W, E_{W}\right)$ is called the subgraph of G induced by W with E_{W} being

$$
E_{W}=\{(u, v) \in E \mid u, v \in W\} .
$$

Incomplete graph

Subgraph $\left(W, E_{W}\right)$ with $W=\{A, B, C, E\}$

Complete (sub)graph

Prerequisites (2)

Complete Set, Clique

Let $G=(V, E)$ be an undirected graph. A set $W \subseteq V$ is called complete iff it induces a complete subgraph. It is further called a clique, iff W is maximal, i.e. it is not possible to add a node to W without violating the completeness condition.
a) W is complete $\Leftrightarrow W$ induces a complete subgraph
b) W is a clique $\Leftrightarrow W$ is complete and maximal

Prerequisites (3)

Perfect Ordering

Let $G=(V, E)$ be an undirected graph with n nodes and $\alpha=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ a total ordering on V. Then, α is called perfect, if the following sets

$$
\operatorname{adj}\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\} \quad i=1, \ldots, n
$$

are complete, where $\operatorname{adj}\left(v_{i}\right)=\left\{w \mid\left(v_{i}, w\right) \in E\right\}$ returns the adjacent nodes of v_{i}.

i	$\operatorname{adj}\left(v_{i}\right)$	$\operatorname{adj}\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\}$		
1	$\{C\}$	$\{C\} \cap \emptyset$	$=\emptyset$	complete
2	$\{A, D, F\}$	$\{A\} \cap\{A, D, F\}$	$=\{A\}$	complete
3	$\{C, B, E, F\}$	$\{A, C\} \cap\{C, B, E, F\}$	$=\{C\}$	complete
4	$\{G, C, D, E, H\}$	$\{A, C, D\} \cap\{G, C, D, E, H\}$	$=\{C, D\}$	complete
5	$\{B, D, F, H\}$	$\{A, C, D, F\} \cap\{B, D, F, H\}$	$=\{D, F\}$	complete
6	$\{D, E\}$	$\{A, C, D, F, E\} \cap\{D, E\}$	$=\{D, E\}$	complete
7	$\{F, E\}$	$\{A, C, D, F, E, B\} \cap\{F, E\}$	$=\{F, E\}$	complete
8	$\{F\}$	$\{A, C, D, F, E, B, H\} \cap\{F\}$	$=\{F\}$	complete

α is a perfect ordering
$\alpha=\langle A, C, D, F, E, B, H, G\rangle$

Prerequisites (4)

Running Intersection Property

Let $G=(V, E)$ be an undirected graph with p cliques. An ordering of these cliques has the running intersection property (RIP), if for every $j>1$ there exists an $i<j$ such that:

$$
C_{j} \cap\left(C_{1} \cup \cdots \cup C_{j-1}\right) \subseteq C_{i}
$$

j				i
2	$C_{2} \cap C_{1}$	$=\{C\}$	$\subseteq C_{1}$	1
3	$C_{3} \cap\left(C_{1} \cup C_{2}\right)$	$=\{D, F\}$	$\subseteq C_{2}$	2
4	$C_{4} \cap\left(C_{1} \cup C_{2} \cup C_{3}\right)$	$=\{D, E\}$	$\subseteq C_{3}$	3
5	$C_{5} \cap\left(C_{1} \cup C_{2} \cup C_{3} \cup C_{4}\right)$	$=\{E, F\}$	$\subseteq C_{3}$	3
6	$C_{6} \cap\left(C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \cup C_{5}\right)$	$=\{F\}$	$\subseteq C_{5}$	5

ξ has running intersection property

Prerequisites (5)

If a node ordering α of an undirected graph $G=(V, E)$ is perfect and the cliques of G are ordered according to the highest rank (w.r.t. α) of the containing nodes, then this clique ordering has RIP.

Clique	Rank		
$\{A, C\}$	$\max \{\alpha(A), \alpha(C)\}$	$=2$	$\rightarrow C_{1}$
$\{C, D, F\}$	$\max \{\alpha(C), \alpha(D), \alpha(F)\}$	$=4$	$\rightarrow C_{2}$
$\{D, E, F\}$	$\max \{\alpha(D), \alpha(E), \alpha(F)\}$	$=5$	$\rightarrow C_{3}$
$\{B, D, E\}$	$\max \{\alpha(B), \alpha(D), \alpha(E)\}$	$=6$	$\rightarrow C_{4}$
$\{F, E, H\}$	$\max \{\alpha(F), \alpha(E), \alpha(H)\}$	$=7$	$\rightarrow C_{5}$
$\{F, G\}$	$\max \{\alpha(F), \alpha(G)\}$	$=8$	$\rightarrow C_{6}$

How to get a perfect ordering?

Triangulated Graphs

Triangulated Graph

An undirected graph is called triangulated if every simple loop (i. e. path with identical start and end node but with any other node occurring at most once) of length greater 3 has a chord.

not triangulated

triangulated

not triangulated

no chord for $\langle A, B, E, C\rangle$

Triangulated Graphs (2)

Maximum Cardinality Search

Let $G=(V, E)$ be an undirected graph. An ordering according maximum cardinality search (MCS) is obtained by first assigning 1 to an arbitray node. If n numbers are assigned the node that is connected to most of the nodes already numbered gets assigned number $n+1$.

3 can be assigned to D or F
6 can be assigned to H or B

Triangulated Graphs (3)

An undirected graph is triangulated iff the ordering obtained by MCS is perfect.

To check whether a graph is triangulated is efficient to implement. The optimization problem that is related to the triangulation task is NP-hard. However, there are good heuristics.

Moral Graph (Repetition)
Let $G=(V, E)$ be a directed acyclic graph. If $u, w \in W$ are parents of $v \in V$ connect u and w with an (arbitrarily oriented) edge. After the removal of all edge directions the resulting graph $G_{m}=\left(V, E^{\prime}\right)$ is called the moral graph of G.

Join-Tree Construction (1)

Given directed graph.

Join-Tree Construction (2)

- Moral graph

Join-Tree Construction (3)

- Moral graph
- Triangulated graph

Join-Tree Construction (4)

- Moral graph
- Triangulated graph
- MCS yields perfect ordering

Join-Tree Construction (5)

- Moral graph
- Triangulated graph
- MCS yields perfect ordering
- Clique order has RIP

Join-Tree Construction (6)

- Moral graph
- Triangulated graph
- MCS yields perfect ordering
- Clique order has RIP
- Form a join-tree

Two cliques can be connected if they have a non-empty intersection. The generation of the tree follows the RIP. In case of a tie, connect cliques with the largest intersection. (e.g. $D B E-F E D$ instead of $D B E-C F D)$ Break remaining ties arbitrarily.

Propagation on Cliques (1)

Example: Metastatic Cancer

Dependencies

Moralization/Triangulation

MCS, hyper graph

Clique tree with separator sets

Propagation on Cliques (2)

Quantitative knowledge:

(a, b, c)	$P(a, b, c)$
a_{1}, b_{1}, c_{1}	0.032
a_{2}, b_{1}, c_{1}	0.008
\vdots	\vdots
a_{2}, b_{2}, c_{2}	0.608

(b, c, d)	$P(b, c, d)$
b_{1}, c_{1}, d_{1}	0.032
b_{2}, c_{1}, d_{1}	0.032
\vdots	\vdots
b_{2}, c_{2}, d_{2}	0.608

(c, e)	$P(b, c, d)$
c_{1}, e_{1}	0.064
c_{2}, e_{1}	0.552
c_{1}, e_{2}	0.016
c_{2}, e_{2}	0.368

Potential representation:

$$
\begin{aligned}
P(A, B, C, D, E,) & =P(A \mid \emptyset) P(B \mid A) P(C \mid A) P(B \mid B C) P(E \mid C) \\
& =\frac{P(A, B, C) P(B, C, D), P(C, E)}{P(B C) P(C)}
\end{aligned}
$$

Propagation on Cliques (3)

Propagation:

- $P\left(d_{1}\right)=0.32, \quad$ evidence $E=e_{1}, \quad$ desired: $\quad P^{*}(\ldots)=P\left(\cdot \mid\left\{e_{1}\right\}\right)$ $P^{*}(c) \quad=P\left(c \mid e_{1}\right) \quad$ conditional marginal distribution $P^{*}(b, c, d)=\frac{P(b, c, d)}{P(c)} P^{*}(c) \quad$ multipl./division with separation prob. $P(b, c), \quad P^{*}(b, c) \quad$ calculate marginal distributions $P^{*}(a, b, c)=\frac{P(a, b, c)}{P(b, c)} P^{*}(b, c) \quad$ multipl./division with separation prob.

$$
P^{*}\left(d_{1}\right) \quad=P\left(d_{1} \mid e_{1}\right)=0.33
$$

Factorization

Potential Representation

Let $V=\left\{X_{j}\right\}$ be a set of random variables $X_{j}: \Omega \rightarrow \operatorname{dom}\left(X_{j}\right)$ and P the joint distribution over V. Further, let

$$
\left\{W_{i} \mid W_{i} \subseteq V, 1 \leq i \leq p\right\}
$$

a family of subsets of V with associated functions

$$
\Psi_{i}: \underset{X_{j} \in W_{i}}{X} \operatorname{dom}\left(X_{j}\right) \rightarrow \mathbb{R}
$$

It is said that $P(V)$ factorizes according $\left(\left\{W_{1}, \ldots, W_{p}\right\},\left\{\Psi_{1}, \ldots, \Psi_{p}\right\}\right)$ if $P(V)$ can be written as:

$$
P(v)=k \cdot \prod_{i=1}^{p} \Psi_{i}\left(w_{i}\right)
$$

where $k \in \mathbb{R}, w_{i}$ is a realization of W_{i} that meets the values of v.

Example

$$
\begin{aligned}
& V=\{A, B, C\}, W_{1}=\{A, B\}, W_{2}=\{B, C\} \\
& \operatorname{dom}(A)=\left\{a_{1}, a_{2}\right\} \\
& \operatorname{dom}(B)=\left\{b_{1}, b_{2}\right\} \\
& \operatorname{dom}(C)=\left\{c_{1}, c_{2}\right\} \\
& P(a, b, c)=\frac{1}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \Psi_{1}:\left\{a_{1}, a_{2}\right\} \times\left\{b_{1}, b_{2}\right\} \rightarrow \mathbb{R} \\
& \Psi_{2}:\left\{b_{1}, b_{2}\right\} \times\left\{c_{1}, c_{2}\right\} \rightarrow \mathbb{R} \\
& \Psi_{1}(a, b)=\frac{1}{4} \\
& \Psi_{2}(b, c)=\frac{1}{2}
\end{aligned}
$$

$\left(\left\{W_{1}, W_{2}\right\},\left\{\Psi_{1}, \Psi_{2}\right\}\right)$ is a potential representation of P.

Factorization of a Belief Network

Let (V, E, P) be an belief network and $\left\{C_{1}, \ldots, C_{p}\right\}$ the cliques of the join tree. For every node $v \in V$ choose a clique C such that v and all of its parents are contained in C, i. e. $\{v\} \cup c(v) \subseteq C$. The chosen clique is designated as $f(v)$.

To arrive at a factorization $\left(\left\{C_{1}, \ldots, C_{p}\right\},\left\{\Psi_{1}, \ldots, \Psi_{p}\right\}\right)$ of P the factor potentials are:

$$
\Psi_{i}\left(c_{i}\right)=\prod_{v: f(v)=C_{i}} P(v \mid c(v))
$$

Separator Sets and Residual Sets

Let $\left\{C_{1}, \ldots, C_{p}\right\}$ be a set of cliques w.r.t. V. The sets

$$
S_{i}=C_{i} \cap\left(C_{1} \cup \cdots \cup C_{i-1}\right), \quad i=1, \ldots, p, \quad S_{1}=\emptyset
$$

are called separator sets with their corresponding residual sets

$$
R_{i}=C_{i} \backslash S_{i}
$$

Example

$$
\begin{array}{lll}
S_{1}=\emptyset & R_{1}=\{A, B, C\} & f(A)=C_{1} \\
S_{2}=\{B, C\} & R_{2}=\{D\} & f(B)=C_{1} \\
S_{3}=\{C\} & R_{3}=\{E\} & f(C)=C_{1} \\
& & f(D)=C_{2} \\
& & f(E)=C_{3}
\end{array}
$$

$\Psi_{1}\left(C_{1}\right)=P(A, B, C \mid \emptyset)=P(A) \cdot P(C \mid A) \cdot P(B \mid A)$ $\Psi_{2}\left(C_{2}\right)=P(D \mid B, C)$
$\Psi_{3}\left(C_{3}\right)=P(E \mid C)$

Propagation is accomplished by sending π - and λ messages across the cliques in the tree. The emerging potentials are maintained by each clique.

Learning Graphical Models

A (simple) Learning Approach

What does lerning mean?

- Given: A database D with samples over a set of attributes V.
- Desired: A network over V for which D is maximal probable, i. e. that describes best the data.

Alternative definition of a Bayesian network:

$$
B=\left(B_{S}, B_{P}\right)
$$

$B_{S} \quad$ Structure: \quad The graph encoding the (in)dependencies
B_{P} Parameters: The entries of the potential tables, i.e. the conditional probabilities.

Structure vs. Parameters

- $V=\{\mathrm{G}, \mathrm{M}, \mathrm{F}\}$
- $\operatorname{dom}(\mathrm{G})=\{\mathrm{g}, \overline{\mathrm{g}}\}$
- $\operatorname{dom}(M)=\{m, \bar{m}\}$
- $\operatorname{dom}(F)=\{f, \bar{f}\}$
- The potential tables' layout is determined by the graph structure.
- The parameters (i.e. the table entries) can be easily estimated from the database, e. g.:

$$
\hat{P}(\mathrm{f} \mid \mathrm{g}, \mathrm{~m})=\frac{\#(\mathrm{~F}=\mathrm{f}, \mathrm{G}=\mathrm{g}, \mathrm{M}=\mathrm{m})}{\#(\mathrm{G}=\mathrm{g}, \mathrm{M}=\mathrm{m})}
$$

Likelihood of a database

Database D with 100 entries for 3 attributes.

$$
\begin{aligned}
& P\left(D \mid B_{S}, B_{P}\right)=\prod_{h=1}^{100} P\left(c_{h} \mid B_{S}, B_{P}\right)
\end{aligned}
$$

Likelihood of a database (2)

$$
\begin{aligned}
& P\left(D \mid B_{S}, B_{P}\right)=\prod_{h=1}^{100} P\left(c_{h} \mid B_{S}, B_{P}\right) \\
& =P(\mathrm{f} \mid \mathrm{g}, \mathrm{~m})^{10} P(\overline{\mathrm{f}} \mid \mathrm{g}, \mathrm{~m})^{0} P(\mathrm{f} \mid \mathrm{g}, \overline{\mathrm{~m}})^{24} P(\overline{\mathrm{f}} \mid \mathrm{g}, \overline{\mathrm{~m}})^{16} \\
& \\
& \quad \cdot P(\mathrm{f} \mid \overline{\mathrm{g}}, \mathrm{~m})^{8} P(\overline{\mathrm{f}} \mid \overline{\mathrm{g}}, \mathrm{~m})^{2} P(\mathrm{f} \mid \overline{\mathrm{g}}, \overline{\mathrm{~m}})^{6} P(\overline{\mathrm{f}} \mid \overline{\mathrm{g}}, \overline{\mathrm{~m}})^{34} \\
&
\end{aligned}
$$

The last equation shows the principle of reordering the factors:

- First, we sort by attributes (here: F, G then M).
- Within the same attributes, factors are grouped by the parent attributes' values combinations (here: for $F:(\mathrm{g}, \mathrm{m}),(\mathrm{g}, \overline{\mathrm{m}}),(\overline{\mathrm{g}}, \mathrm{m})$ and $(\overline{\mathrm{g}}, \overline{\mathrm{m}}))$.
- Finally, it is sorted by attribute values (here: for F: first f, then \bar{f}).

Likelihood of a database (3)

General likelihood of a database D :

$$
P\left(D \mid B_{S}, B_{P}\right)=\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \prod_{k=1}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}}
$$

General potential table:

A_{i}	$Q_{i 1}$	\cdots	$Q_{i j}$	\cdots	$Q_{i q_{i}}$
$a_{i 1}$	$\theta_{i 11}$	\cdots	$\theta_{i j 1}$	\cdots	$\theta_{i q_{i} 1}$
\vdots	\vdots	\ddots	\vdots	\ddots	\vdots
$a_{i k}$	$\theta_{i 1 k}$	\cdots	$\theta_{i j k}$	\cdots	$\theta_{i q_{i} k}$
\vdots	\vdots	\ddots	\vdots	\ddots	\vdots
$a_{i r_{i}}$	$\theta_{i 1 r_{i}}$	\cdots	$\theta_{i j r_{i}}$	\cdots	$\theta_{i q_{i} r_{i}}$

A (simple) Learning Approach (2)

Back to our inital question: How to find the structure that yields the highest likelihood of the database D ?

$$
\widehat{B}_{S}=\underset{B_{S} \in \mathcal{B}_{V}}{\arg \max } P\left(D \mid B_{S}, B_{P}\right)
$$

\mathcal{B}_{V} designates the set of all directed, acyclic graphs with V as the set of nodes.

Flaws of this approch:

- Inserting edges cannot lower the likelihood, i. e. the result of a maximum likelihood approch will always be a fully connected graph.
- The set \mathcal{B}_{V} grows over-exponentially in $|V|$.
\Rightarrow Assumptions and heuristics needed!

Learning Approaches

(A) Test whether a candidate graph decomposes the distribution/relation
(B) Conditional independence tests
(C) Measure marginal independence strengths

Since the search space \mathcal{B}_{V} is too large, we cannot exhaustively enumerate all candidate graphs.
\Rightarrow Search algorithms needed, consisting of

- an evaluation measure (to measure the "fitness" of the current solution candidate)
- a search heuristic to traverse \mathcal{B}_{V}, e. g.:
- random-guided search (e.g. generic algorithms)
- greedy search (presented later)

Example for (A): Test for Decomposition

Given a solution candidate $B_{S} \in \mathcal{B}_{V}$, how good does it explain the database D ?

- Compare the distribution defined by B_{S} with the given empirical distribution of D.
- If both are identical, a solution B_{S} has been found.

However, in most (real) cases, there is no exact decomposition, so we have to find the candidate B_{S} that approximates best the distribution of D.
\Rightarrow Measure for the quality of approximation between distributions needed.

Kullback-Leibler

Kullback-Leibler cross entropy

Let $\left(\Omega, 2^{\Omega}, P\right)$ and $\left(\Omega, 2^{\Omega}, P^{*}\right)$ be two finite probability spaces. Then

$$
I_{\mathrm{KLdiv}}\left(P, P^{*}\right)=\sum_{\omega \in \Omega} P(\omega) \cdot \log _{2} \frac{P(\omega)}{P^{*}(\omega)}
$$

is called the Kullback-Leiber cross entropy of P and P^{*}.

Remark:

$$
I_{\mathrm{KLdiv}}\left(P, P^{*}\right) \geq 0 ; \quad I_{\mathrm{KLdiv}}\left(P, P^{*}\right)=0 \Leftrightarrow P \equiv P^{*}
$$

Where does this this equation come from?

Excursus: Information Content

Information Content

The information content of a message ω that occurs with probability $p(\omega)$ is defined as

$$
\operatorname{Inf}(\omega)=-\log _{2} p(\omega)
$$

Intention:

- Neglect all subjective references to ω and let the information content be determined by $p(\omega)$ only.
- The information of a certain message $(p(\omega)=1)$ is zero.
- The less frequent a message occurs (i.e., the less probable it is), the more interesting is the fact of its occurrence:

$$
p\left(\omega_{1}\right)<p\left(\omega_{2}\right) \quad \Rightarrow \quad \operatorname{Inf}\left(\omega_{1}\right)>\operatorname{Inf}\left(\omega_{2}\right)
$$

- We only use one bit to encode the occurrence of a message with probability $\frac{1}{2}$.

Excursus: Information Content (2)

The function Inf fulfills all these requirements.

- The set of all messages Ω can be considered a set of elementary events.
- Then Inf becomes a random variable, the expected value of which can be written as follows:

$$
E(\operatorname{Inf})=-\sum_{\omega \in \Omega} p(\omega) \cdot \log _{2} p(\omega) \stackrel{\text { Def }}{=} H(P)
$$

Excursus: Shannon Entropy

Shannon Entropy

Let $\left(\Omega, 2^{\Omega}, P\right)$ be a probability space. Then,

$$
H^{(\text {Shannon })}(P)=-\sum_{\omega \in \Omega} P(\omega) \log _{2} P(\omega)
$$

is called the Shannon entropy of P, where $0 \cdot \log _{2} 0=0$ is assumed.

- $H^{(\text {Shannon })}(P)$ is the expected value (in bits) of the information content that is related to the occurrence of the elementary events $\omega \in \Omega$.

$$
H^{(\text {Shannon })}(P)=\sum_{\omega \in \Omega} \underbrace{P(\omega)}_{\text {Probability of } \omega} \cdot \underbrace{\left(-\log _{2} P(\omega)\right)}_{\begin{array}{l}
\text { Information content of } \omega \text { (identi- } \\
\text { fication of outcome } \omega \text { out of } \frac{1}{P(\omega)} \\
\text { outcomes). }
\end{array}}
$$

Excursus: Approximation Measure

- We could define $D\left(P, P^{*}\right)$ as the degree that P is approximated by P^{*} in the following way:

$$
D\left(P, P^{*}\right)=H^{(\text {Shannon })}\left(P^{*}\right)-H^{(\text {Shannon })}(P)
$$

- Assume two variables X and Y with the joint distribution $P(X, Y)$.
- Further let

$$
P^{*}(X, Y)=P(X) \cdot P(Y)
$$

be the joint distribution in the case of independence.

$$
H^{(\mathrm{Sh} .)}(P)=-\sum_{(x, y) \in \Omega_{X} \times \Omega_{Y}} P(x, y) \log _{2} P(x, y)
$$

Back to: Kullback-Leibler

$$
\begin{aligned}
H^{(\text {Sh. })}\left(P^{*}\right) & =-\sum_{(x, y) \in \Omega_{X} \times \Omega_{Y}} P(x) P(y) \log _{2}(P(x) P(y)) \\
& =-\sum_{(x, y) \in \Omega_{X} \times \Omega_{Y}} P(x) P(y) \log _{2} P(x)-\sum_{(x, y) \in \Omega_{X} \times \Omega_{Y}} P(x) P(y) \log _{2} P(y) \\
& =-\sum_{x \in \Omega_{X}} P(x) \log _{2} P(x)-\sum_{y \in \Omega_{Y}} P(y) \log _{2} P(y) \\
& =-\sum_{(x, y) \in \Omega_{X} \times \Omega_{Y}} P(x, y) \log _{2} P(x)-\sum_{(x, y) \in \Omega_{X} \times \Omega_{Y}} P(x, y) \log _{2} P(y) \\
& =-\sum_{(x, y) \in \Omega_{X} \times \Omega_{Y}} P(x, y) \log _{2}(P(x) P(y))
\end{aligned}
$$

Therefore:

$$
D\left(P, P^{*}\right)=I_{\mathrm{KLdiv}}\left(P, P^{*}\right)=\sum_{(x, y) \in \Omega_{X} \times \Omega_{Y}} P(x, y) \cdot \log _{2} \frac{P(x, y)}{P(x) P(y)}
$$

Example for (B): Conditional Independence Tests

- Find an independence map B_{S} of the given database distribution.
- Measure the degree of independence between attributes by using the KullbackLeibler cross entropy.

To measure the strength of dependence of two attributes A and B, we simply compare the joint distribution $P(A, B)$ with the distribution in the case of independence $P(A)$. $P(B)$.

Mutual (Shannon) Information

Let A and B be two attributes and P a strictly positive probability measure. Then

$$
I_{\mathrm{mut}}(A, B)=\sum_{a \in \operatorname{dom}(A)} \sum_{b \in \operatorname{dom}(B)} P(A=a, B=b) \log _{2} \frac{P(A=a, B=b)}{P(A=a) \cdot P(B=b)}
$$

is called the mutual (Shannon) information or (Shannon) cross entropy of A and B w.r.t. P.

Example for (B): Conditional Independence Tests

Note, $I_{\text {mut }}$ is also referred to as Shannon information gain.
To measure the strength of conditional independence, we generalize $I_{\text {mut }}$:

$$
I_{\mathrm{mut}}(A, B \mid C)=\sum_{c \in \operatorname{dom}(C)} P(c) \sum_{a \in \operatorname{dom}(A)} \sum_{b \in \operatorname{dom}(B)} P(a, b \mid c) \log _{2} \frac{P(a, b \mid c)}{P(a \mid c) P(b \mid c)}
$$

We can now use the equation above to estimate attribute (in)dependencies and use this information while constructing an independence map.

Example for (C): Marginal Dependencies

- Given: A belief network (V, E, P) where only V and $P(V)$ are known. $P(V)$ may be estimated from data.
- Desired: Belief tree $\left(V, E^{*}, P^{*}\right)$ for which P is approximated best by P^{*}.

Steps to determine $\left(V, E^{*}, P^{*}\right)$

1. For tree $T=\left(V, E^{\prime}\right)$ determine $\left(V, E^{\prime}, P_{T}\right)$ with

$$
D\left(P, P_{T}\right)=\min \left\{D\left(P, P^{\prime}\right) \mid\left(V, E^{\prime}, P^{\prime}\right) \text { is belief tree }\right\}
$$

(P_{T} is the projection of P on T)
2. Determine a belief tree $\left(V, E^{*}, P^{*}\right)$ with

$$
D\left(P, P^{*}\right)=\min \left\{D\left(P, P_{T}\right) \mid T \text { is tree with node set } V\right\}
$$

(P_{T} is the projection of P on T with $\forall X \in V: P_{T}(X \mid c(X))=P(X \mid c(X))$ where $c(X)$ denotes the direct predecessor (parent) of X.)

Example for (C): Marginal Dependencies

Chow, Liu 1968

$D\left(P, P^{*}\right)$ is minimal w.r.t. to step 2 of enumeration on the previous slide if P^{*} is a projection of P on a MWST (maximum weight spanning tree), in which the weight of every edge $(X, Y) \in E^{*}$ is defined by

$$
I(X, Y) \stackrel{\text { Def }}{=} \sum_{(x, y) \in \Omega_{X} \times \Omega_{Y}} P(x, y) \log _{2} \frac{P(x, y)}{P(x) P(y)} \geq 0
$$

If (V, E, P) is a belief tree, then the projection P_{T} on every MWST $T=\left(V, E^{\prime}\right)$ coincides with P.

Construction of a MWST

1. Determine $P(X, Y)$ for all $(X, Y) \in V \times V$, with $X \neq Y$
2. Calculate all $\frac{n(n-1)}{2}$ edge weights $I(X, Y)$
3. Assign two edges with the highest weights to the tree (V, E^{*}) under construction.
4. Assign to $\left(V, E^{*}\right)$ an edge not yet assigned with highest weight without forming a loop.
5. Repeat step 4 until $n-1$ egdes have been assigned (the MWST is then constructed).
6. Determine P^{*} with Chow-Liu theorem.

This results in the desired belief tree $\left(V, E^{*}, P^{*}\right)$.

Example for (C): Marginal Dependencies

Remarks:

- MWST construction requires $O\left(|V|^{2}\right)$ steps.
- P^{*} is a maximum likelihood estimation of P, if estimated from a given database
- Disadvantage: algorithm only efficient on tree-like structures. However, after extention polytrees are constructable as well.

K2 Algorithm

- Proposed by [Cooper and Herskovits 1992]
- Greedy algorithm (category (C))
- Uses the K2 metric to evaluate the quality of a candidate graph

$$
\begin{aligned}
\widehat{B}_{S} & =\underset{B_{S}}{\arg \max } P\left(B_{S} \mid D\right)=\underset{B_{S}}{\arg \max } \frac{P\left(B_{S}, D\right)}{P(D)} \\
& =\underset{B_{S}}{\arg \max } P\left(B_{S}, D\right)
\end{aligned}
$$

\Rightarrow Find an equation for $P\left(B_{S}, D\right)$.

K2 Algorithm

Model Averaging

We first consider $P\left(B_{S}, D\right)$ to be the marginalization of $P\left(B_{S}, B_{P}, D\right)$ over all possible parameters B_{P}.

$$
\begin{aligned}
P\left(B_{S}, D\right) & =\int_{B_{P}} P\left(B_{S}, B_{P}, D\right) \mathrm{d} B_{P} \\
& =\int_{B_{P}} P\left(D \mid B_{S}, B_{P}\right) P\left(B_{S}, B_{P}\right) \mathrm{d} B_{P} \\
& =\int_{B_{P}} P\left(D \mid B_{S}, B_{P}\right) f\left(B_{P} \mid B_{S}\right) P\left(B_{S}\right) \mathrm{d} B_{P} \\
& =\underbrace{P\left(B_{S}\right)}_{\text {A priori prob. }} \int_{B_{P}} \underbrace{P\left(D \mid B_{S}, B_{P}\right)}_{\text {Likelihood of } D} \underbrace{f\left(B_{P} \mid B_{S}\right)}_{\text {Parameter densities }} \mathrm{d} B_{P}
\end{aligned}
$$

K2 Algorithm

- The a priori distribution $P\left(B_{S}\right)$ can be used to bias the evaluation measure towards user-specific network structures.
- Substitute the likelihood definition:

$$
P\left(B_{S}, D\right)=P\left(B_{S}\right) \int_{B_{P}}\left[\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \prod_{k=1}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}}\right] f\left(B_{P} \mid B_{S}\right) \mathrm{d} B_{P}
$$

K2 Algorithm

- The parameter densities $f\left(B_{P} \mid B_{S}\right)$ describe the probabilities of the parameters given a network structure. They are densities of second order (distribution over distributions)
- For fixed i and j, a vector $\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right)$ represents a probability distribution, namely the j-th column of the i-th potential table.
- Assuming mutual independence between the potential tables, we arrive for $f\left(B_{P} \mid B_{S}\right)$ at the following:

$$
f\left(B_{P} \mid B_{S}\right)=\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} f\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right)
$$

K2 Algorithm

Thus, we can further concretize the equation for $P\left(B_{S}, D\right)$:

$$
\begin{aligned}
P\left(B_{S}, D\right) & =P\left(B_{S}\right) \int \ldots \int\left[\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \prod_{k=1}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}}\right] \cdot\left[\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} f\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right)\right] \mathrm{d} \theta_{111}, \ldots, \mathrm{~d} \theta_{n q_{n} r_{n}} \\
& =P\left(B_{S}\right) \prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \int \ldots \int\left[\prod_{\theta_{i j k}}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}}\right] \cdot f\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right) \mathrm{d} \theta_{i j 1}, \ldots, \mathrm{~d} \theta_{i j r_{i}}
\end{aligned}
$$

K2 Algorithm

A last assumption: for fixed i and j the density $f\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right)$ is uniform:

$$
\begin{gathered}
f\left(\theta_{i j 1}, \ldots, \theta_{i j r_{i}}\right)=\left(r_{i}-1\right)! \\
P\left(B_{S}, D\right)=P\left(B_{S}\right) \prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \int \ldots \int\left[\prod_{\theta_{i j k}}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}}\right] \cdot\left(r_{i}-1\right)!\mathrm{d} \theta_{i j 1}, \ldots, \mathrm{~d} \theta_{i j r_{i}} \\
=P\left(B_{S}\right) \prod_{i=1}^{n} \prod_{j=1}^{q_{i}}\left(r_{i}-1\right)!\underbrace{\iint \prod_{k=1}^{r_{i}} \theta_{i j k}^{\alpha_{i j k}} \mathrm{~d} \theta_{i j 1}, \ldots, \mathrm{~d} \theta_{i j r_{i}}}_{\text {Dirichlet's integral }=\frac{\prod_{k=1}^{r_{i}} \alpha_{i j k}!}{\left(\sum_{k=1}^{r_{i}} \alpha_{i j k}+r_{i}-1\right)!}}
\end{gathered}
$$

K2 Algorithm

Thus, we finally arrive at an expression for $P\left(B_{S}, D\right)$ which we identify with the K2 metric of P_{S} given the data D :

$$
\begin{array}{r}
P\left(B_{S}, D\right)=\mathrm{K} 2\left(B_{S} \mid D\right)=P\left(B_{S}\right) \prod_{i=1}^{n} \prod_{j=1}^{q_{i}}\left[\frac{\left(r_{i}-1\right)!}{\left(N_{i j}+r_{i}-1\right)!} \prod_{k=1}^{r_{i}} \alpha_{i j k}!\right] \\
\text { with } N_{i j}=\sum_{k=1}^{r_{i}} \alpha_{i j k}
\end{array}
$$

Properties of the K2 metric

- Global - Refers to the outer product: the total value of the K2 metric is the product over all K2 values of attribute families.
- Local - The likelihood equation assumes that given a parents instantiation, the probabilities for the respective child attribute values are mutual independent. This is reflected in the product over all q_{i} different parent attributes' value combinations of attribute A_{i}.

We exploit the global property to write the K2 metric as follows:

$$
\begin{gathered}
\mathrm{K} 2\left(B_{S} \mid D\right)=P\left(B_{S}\right) \prod_{i=1}^{n} \mathrm{~K} 2_{\mathrm{local}}\left(A_{i} \mid D\right) \\
\text { with } \\
\mathrm{K} 2_{\mathrm{local}}\left(A_{i} \mid D\right)=\prod_{j=1}^{q_{i}}\left[\frac{\left(r_{i}-1\right)!}{\left(N_{i j}+r_{i}-1\right)!} \prod_{k=1}^{r_{i}} \alpha_{i j k}!\right]
\end{gathered}
$$

K2 Algorithm

Prerequisites:

- Choose a topological order on the attributes $\left(A_{1}, \ldots, A_{n}\right)$
- Start out with a network that consists of n isolated nodes.
- Let q_{i} be the quality of the i-th attribute given parent attributes M :

$$
q_{i}(M)=\mathrm{K} 2_{\text {local }}\left(A_{i} \mid D\right) \quad \text { with } \quad \text { parents }\left(A_{i}\right)=M
$$

K2 Algorithm

Execution:

1. Determine for the parentless node A_{i} the quality measure $q_{i}(\emptyset)$
2. Evaluate for every predecessor $\left\{A_{1}, \ldots, A_{i-1}\right\}$ whether inserted as parent of A_{i}, the quality measure would increase. Let Y be the node that yields the highest quality.

$$
Y=\underset{1 \leq l \leq i-1}{\arg \max } q_{i}\left(\left\{A_{l}\right\}\right)
$$

This best quality measure be $g=q_{i}(\{Y\})$.
3. If g is better than $q_{i}(\emptyset), Y$ is inserted permanently as a parent node: parents $\left(A_{i}\right)=\{Y\}$
4. Repeat steps 2 und 3 to increase the parent set until no quality increase can be achieved or no nodes are left or a predefined maximum number of parent nodes per node is reached.

K2 Algorithm

```
for \(i \leftarrow 1 \ldots n\) do \(/ /\) Initialization
    parents \(\left(A_{i}\right) \leftarrow \emptyset\)
end for
for \(i \leftarrow n \ldots 1\) do // Iteration
    repeat
        Select \(Y \in\left\{A_{1}, \ldots, A_{i-1}\right\} \backslash \operatorname{parents}\left(A_{i}\right)\),
        which maximizes \(g=q_{i}\left(\operatorname{parents}\left(A_{i}\right) \cup\{Y\}\right)\)
        \(\delta \leftarrow g-q_{i}\left(\operatorname{parents}\left(A_{i}\right)\right)\)
        if \(\delta>0\) then
        parents \(\left(A_{i}\right) \leftarrow \operatorname{parents}\left(A_{i}\right) \cup\{Y\}\)
        end if
    until \(\delta \leq 0\) or parents \(\left(A_{i}\right)=\left\{A_{1}, \ldots, A_{i-1}\right\}\) or \(\left|\operatorname{parents}\left(A_{i}\right)\right|=n_{\text {max }}\)
end for
```


Demo of K2 Algorithm

Step 1 - Edgeless graph

Step 2 - Insert M Step 3 - Insert KA temporarily.

Step 4 - Node L maximizes K2 value and thus is added permantently.

Demo of K2 Algorithm

Step 5 - Insert M temporarily.

Step $6-\mathrm{KA}$ is added as second parent node of KV.

Step 7 - M does not increase the quality of the network if insertes as third parent node.

Step 8 - Insert KA temporarily.

Demo of K2 Algorithm

Step 9 - Node L becomes perent node of M.

Step 10 - Adding KA does not increase overall network quaility.

Step 11 - Node L Result becomes parent node of KA.

Decision Graphs / Influence Diagrams

Motivation

Up to now, we used Bayesian networks for

- modeling (in)dependence relations between random/chance variables
- quantifying the strength of these relations by assigning (conditional) probabilities
- update these probabilities after evidence observations

However, in practical, this is only a part of a more complex task: decision making under uncertainty.

If a set of actions solves a problem, we have to choose one particular action based on predefined criteria, e. g. costs and/or gains.

Therefore, we will now augment the current framework with special nodes that serve these purposes.

Example: Observations and Actions

T... Temperature
A....Aspirine

- Rectangular nodes: intervening actions/decisions
- Triangular nodes: test actions/observations
- Observations may change probabilities of nodes that are causes:

Observing $T=37^{\circ} \mathrm{C}$ decreases probability of Fever and Flu (and, of course, Sleepy).

- The impact of intervening actions can only follow the direction of the (causal) edges:

Taking Aspirine (A) decreases the probability of Fever and Sleepy and may result in an alike observation for T. However, it cannot change the state for Flu since Aspirine only eases the pain and does not kill viruses.

Example: Utilities

Mildew Fungus Infestation (dt. Mehltau-Befall)
Before the harvest, a farmer checks the state of his crop and decides whether to apply a fungi treatment or not.

- Q - Quality of the crop
- M - Mildew infestation severity
- H - Harvest quality
- A - Action to be taken
- $\mathrm{M}^{*} \quad$ Mildew infestation after action A
- U - Utility function of the harvest (i.e. the benefit)
- C - Utility functon of the action (i.e. the treatment costs)
\longrightarrow edges leading to chance nodes
------------- edges leading to decision nodes
\longrightarrow edges leading to utility nodes

Example: Utilities (2)

- Diamond-shaped nodes: utility functions (costs/benefits)
- Given the quality of the crops and the mildew state, which action maximizes the benefit?
- $C(\mathrm{~A})<0$
- $U(\mathrm{H}) \geq 0$
- Expected total utility of action $\mathrm{A}=a$:

$$
\mathrm{E}(U(a \mid q, m))=C(a)+\sum_{h} U(h) \cdot P(h \mid a, q, m)
$$

Single-Action Models

A single-action model consists of

- a Bayesian network representing the chance nodes
- one decision (action) node
- a set of utility nodes
- decision nodes can affect chance and utility nodes
- utility nodes can be affected by chance and decision nodes

Single-Action Models (2)

Given n utility nodes U_{1}, \ldots, U_{n} and assuming they all depend on only one respective chance node X_{i}, the total expected utility given a decision $D=d$ and (chance node) evidence e is defined as:
vskip-2mm

$$
\mathrm{E}(U(d \mid e))=\sum_{i=1}^{n} \sum_{x \in \operatorname{dom}\left(X_{i}\right)} U_{1}\left(x_{1}\right) \cdot P\left(x_{1} \mid d, e\right)
$$

The optimal decision d^{*} is then chosen:

$$
d^{*}=\underset{d \in \operatorname{dom}(D)}{\arg \max } \mathrm{E}(U(d \mid e))
$$

Influence Diagrams

An influence diagram consists of a directed acyclic graph over chance nodes, decision nodes and utility nodes that obey the following structural properties:

- there is a directed path comprising all decision nodes
- utility nodes cannot have children
- decision and chance nodes are discrete
- utility nodes do not have states
- chance nodes are assigned potential tables given their parents (including decision nodes)
- each utility node U gets assigned a real-valued utility function over its parents

$$
U: \underset{X \in \operatorname{parents}(U)}{X} \operatorname{dom}(X) \rightarrow \mathbb{R}
$$

Influence Diagrams (2)

- Links into decision nodes carry no quantitative information, they only introduce a temporal ordering.
- The required path between the decision nodes induces a temporal partition of the chance nodes:
If there are n decision nodes, then for $1 \leq i<n$ the set I_{i} represents all chance nodes that have to be observed after decision D_{i} but before decision D_{i+1}.
- I_{0} is the set of chance nodes to be observed before any decision.
- I_{n} is the set of chance nodes that are not observed.

Influence Diagrams (3)

(A)

Influence Diagrams (3)

(A)
(C)
(B)
(E)
(I)

(G)

D_{4}

(D)
(H)
(J)
(K)

Influence Diagrams (3)

Influence Diagrams (3)

Influence Diagrams (3)

Influence Diagrams (3)

d-Separation in Influence Diagrams

To be able to use the d-separation, we need to preprocess the graphical structure of an influence diagram as follows:

- remove all utility nodes (and the edges towards them)
- remove edges that point to decision nodes

For example: $\quad C \Perp T \mid B \quad$ or $\quad\{A, T\} \Perp D_{2} \mid \emptyset$.

Chain Rule

The semantics of an influence diagram disallow some probabilities:

- $P(D)$ for a decision node D has no meaning
- $P(A \mid D)$ has no meaning unless a decision $d \in \operatorname{dom}(D)$ has been chosen

Given an influence diagram G with U_{C} being the set of chance nodes and U_{D} being the set of decision nodes, we can factorize P as follows:

$$
P\left(U_{C} \mid U_{D}\right)=\prod_{X \in U_{C}} P(X \mid \operatorname{parents}(X))
$$

Solutions to Influence Diagrams

- Given: an influence diagram
- Desired: a strategy which decision(s) to make

Policy

A policy for decision D_{i} is a mapping σ_{i}, which for any configuration of the past of D_{i} yields a decision for D_{i}, i. e.

$$
\sigma_{i}\left(I_{0}, D_{1}, I_{1}, \ldots, D_{i-1}, I_{i-1}\right) \in \operatorname{dom}\left(D_{i}\right)
$$

Strategy

A strategy for an influence diagram is a set of policies, one for each decision node.

Solution

A solution to an influence diagram is a strategy maximizing the expected utility.

Solutions to Influence Diagrams (2)

Assume, we are given an influence diagram G over $U=U_{C} \cup U_{D}$ and U_{V}.

- $U_{C} \ldots$ set of chance nodes
- $U_{D} \ldots$ set of decision nodes and
- $U_{V}=\left\{V_{i}\right\} \ldots$ set of utility nodes

Further, we know the following temporal order:

$$
I_{0} \prec D_{1} \prec I_{1} \prec \cdots \prec D_{n} \prec I_{n}
$$

The total utility V be defined as the sum of all utility nodes: $V=\sum_{i} V_{i}$

Solutions to Influence Diagrams (3)

- An optimal policy for D_{i} is

$$
\sigma_{i}\left(I_{0}, D_{1}, \ldots, I_{i-1}\right)=\arg \max _{d_{i}} \sum_{I_{i}} \max _{d_{i+1}} \cdots \max _{d_{n}} \sum_{I_{n}} P\left(U_{C} \mid U_{D}\right) \cdot V
$$

where $d_{x} \in \operatorname{dom}\left(D_{x}\right)$.

- The expected utility from following policy σ_{i} (and acting optimally in the future) is

$$
\rho_{i}\left(I_{0}, D_{1}, \ldots, I_{i-1}\right)=\frac{\max _{d_{i}} \sum_{I_{i}} \max _{d_{i+1}} \cdots \max _{d_{n}} \sum_{I_{n}} P\left(U_{C} \mid U_{D}\right) \cdot V}{P\left(I_{0}, \ldots, I_{i-1} \mid D_{1}, \ldots, D_{i-1}\right)}
$$

where $d_{x} \in \operatorname{dom}\left(D_{x}\right)$.

Solutions to Influence Diagrams (4)

- An optimal strategy yields the maximum expected utility of

$$
\operatorname{MEU}(G)=\sum_{I_{0}} \max _{d_{1}} \sum_{I_{1}} \max _{d_{2}} \cdots \max _{d_{n}} \sum_{I_{n}} P\left(U_{C} \mid U_{D}\right) \cdot V
$$

- $\sum_{I_{i}}$ means (sum-)marginalizing over all nodes in I_{i}
- max means taking the maximum over all $d_{i} \in \operatorname{dom}\left(D_{i}\right)$ and thus (max-)marginalizing d_{i} over D_{i}
- Everytime I_{i} is marginalized out, the result is used to determine a policy for D_{i}.
- Marginalization in reverse temporal order
- \Rightarrow use simplification techniques from the Bayesian network realm to simplify the joint probability distribution $P\left(U_{C} \mid U_{D}\right)$

Example

Example (2)

For D_{2} we can read from the graph:

$$
I_{0}=\emptyset \quad I_{1}=\{T\} \quad I_{2}=\{A, B, C\}
$$

Thus, σ_{2} can be solved to the following strategy:

$\sigma_{2}\left(\emptyset, D_{1},\{T\}\right)$	$d_{1}^{(1)}$	$d_{1}^{(2)}$
y	$d_{2}^{(1)}$	$d_{2}^{(1)}$
n	$d_{2}^{(2)}$	$d_{2}^{(2)}$

$\rho_{2}\left(\emptyset, D_{1},\{T\}\right)$	$d_{1}^{(1)}$	$d_{1}^{(2)}$
y	9.51	11.29
n	10.34	8.97

Finally, $\sigma_{1}=d_{1}^{(2)}$ and $\operatorname{MEU}(G)=10.58$.

Frameworks of Imprecision and Uncertainty

Problems with Probability Theory

Representation of Ignorance (dt. Unwissen)

- We are given a die with faces $1, \ldots, 6$

What is the certainty of showing up face i ?

- Conduct a statistical survey (roll the die 10000 times) and estimate the relative frequency: $P(\{i\})=\frac{1}{6}$
- Use subjective probabilities (which is often the normal case): We do not know anything (especially and explicitly we do not have any reason to assign unequal probabilities), so the most plausible distribution is a uniform one.
\Rightarrow Problem: Uniform distribution because of ignorance or extensive statistical tests
- Experts analyze aircraft shapes: 3 aircraft types A, B, C "It is type A or B with 90% certainty. About C, I don't have any clue and I do not want to commit myself. No preferences for A or B."
\Rightarrow Problem: Propositions hard to handle with Bayesian theory

Modeling Imprecise Data

" $A \subseteq X$ being an imprecise date" means: the true value x_{0} lies in A but there are no preferences on A.
$\Omega \quad$ set of possible elementary events
$\Theta=\{\xi\} \quad$ set of observers
$\lambda(\xi) \quad$ importance of observer ξ
Some elementary event from Ω occurs and every observer $\xi \in O$ shall announce which elementary events she personally considers possible. This set is denoted by $\Gamma(\xi) \subseteq \Omega$. $\Gamma(\xi)$ is then an imprecise date.
$\lambda: 2^{\Theta} \rightarrow[0,1] \quad$ probability measure (interpreted as importance measure)
$\left(\Theta, 2^{\Theta}, \lambda\right) \quad$ probability space
$\Gamma: \Theta \rightarrow 2^{\Omega} \quad$ set-valued mapping

Imprecise Data (2)

Let $A \subseteq \Omega$:
a) $\Gamma^{*}(A) \stackrel{\text { Def }}{=}\{\xi \in \Theta \mid \Gamma(\xi) \cap A \neq \emptyset\}$
b) $\Gamma_{*}(A) \stackrel{\text { Def }}{=}\{\xi \in \Theta \mid \Gamma(\xi) \neq \emptyset$ and $\Gamma(\xi) \subseteq A\}$

Remarks:
a) If $\xi \in \Gamma^{*}(A)$, then it is plausible for ξ that the occurred elementary event lies in A.
b) If $\xi \in \Gamma_{*}(A)$, then it is certain for ξ that the event lies in A.
c) $\{\xi \mid \Gamma(\xi) \neq \emptyset\}=\Gamma^{*}(\Omega)=\Gamma_{*}(\Omega)$

Let $\lambda\left(\Gamma^{*}(\Omega)\right)>0$. Then we call

$$
P^{*}(A)=\frac{\lambda\left(\Gamma^{*}(A)\right)}{\lambda\left(\Gamma^{*}(\Omega)\right)} \quad \text { the upper, and } \quad P_{*}(A)=\frac{\lambda\left(\Gamma_{*}(A)\right)}{\lambda\left(\Gamma_{*}(\Omega)\right)} \quad \text { the lower }
$$

probability w.r.t. λ and Γ.

Example

$$
\left.\begin{array}{rlrlr}
\Theta= & \{a, b, c, d\} & \lambda: a \mapsto 1 / 6 & \Gamma: a \mapsto\{1\} \\
\Omega & =\{1,2,3\} & b \mapsto 1 / 6 & & b \mapsto\{2\} \\
\Gamma^{*}(\Omega)= & \{a, b, d\} & c \mapsto 2 / 6 & & c \mapsto \emptyset \\
\lambda\left(\Gamma^{*}(\Omega)\right)= & 4 / 6 & & d \mapsto 2 / 6 & \\
& & & & \mapsto
\end{array}\right)\{2,3\}
$$

One can consider $P^{*}(A)$ and $P_{*}(A)$ as upper and lower probability bounds.

Imprecise Data (3)

Some properties of probability bounds:
a) $P^{*}: 2^{\Omega} \rightarrow[0,1]$
b) $0 \leq P_{*} \leq P^{*} \leq 1, \quad P_{*}(\emptyset)=P^{*}(\emptyset)=0, \quad P_{*}(\Omega)=P^{*}(\Omega)=1$
c) $A \subseteq B \quad \Rightarrow \quad P^{*}(A) \leq P^{*}(B) \quad$ and $\quad P_{*}(A) \leq P_{*}(B)$
d) $A \cap B=\emptyset \quad \nRightarrow \quad P^{*}(A)+P^{*}(B)=P^{*}(A \cup B)$
e) $P_{*}(A \cup B) \geq P_{*}(A)+P_{*}(B)-P_{*}(A \cap B)$
f) $P^{*}(A \cup B) \leq P^{*}(A)+P^{*}(B)-P^{*}(A \cap B)$
g) $P_{*}(A)=1-P^{*}(\Omega \backslash A)$

Imprecise Data (4)

One can prove the following generalized equation:

$$
P_{*}\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{\emptyset \neq I: I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \cdot P_{*}\left(\bigcap_{i \in I} A_{i}\right)
$$

These set functions also play an important role in theoretical physics (capacities, Choquet, 1955). Shafer did generalize these thoughts and developed a theory of belief functions.

Belief Revision

How is new knowledge incoporated?
Every observer announces the location of the ship in form of a subset of all possible ship locations. Given these set-valued mappings, we can derive upper and lower probabilities with the help of the observer importance measure. Let us assume the ship is certainly at sea.

How do the upper/lower probabilities change?

Example

a) Geometric Conditioning
(observers that give partial or full wrong information are discarded)

$$
\begin{aligned}
& P_{*}(A \mid B)=\frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq A \text { and } \Gamma(\xi) \subseteq B\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})}=\frac{P_{*}(A \cap B)}{P_{*}(B)} \\
& P^{*}(A \mid B)=\frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B \text { and } \Gamma(\xi) \cap A \neq \emptyset\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})}=\frac{P^{*}(A \cup \bar{B})-P^{*}(\bar{B})}{1-P^{*}(\bar{B})}
\end{aligned}
$$

Belief Revision (2)

b) Data Revision
(the observed data is modified such that they fit the certain information)

$$
\begin{aligned}
\left(P_{*}\right)_{B}(A) & =\frac{P_{*}(A \cup \bar{B})-P_{*}(\bar{B})}{1-P_{*}(B)} \\
\left(P^{*}\right)_{B}(A) & =\frac{P^{*}(A \cap B)}{P^{*}(B)}
\end{aligned}
$$

These two concepts have different semantics. There are several more belief revision concepts.

Imprecise Probabilities

Let x_{0} be the true value but assume there is no information about $P(A)$ to decide whether $x_{0} \in A$. There are only probability boundaries.

Let \mathcal{L} be a set of probability measures. Then we call

$$
\begin{array}{ll}
\left(P_{\mathcal{L}}\right)_{*}: 2^{\Omega} \rightarrow[0,1], A \mapsto \inf \{P(A) \mid P \in \mathcal{L}\} & \text { the lower and } \\
\left(P_{\mathcal{L}}\right)^{*}: 2^{\Omega} \rightarrow[0,1], A \mapsto \sup \{P(A) \mid P \in \mathcal{L}\} & \text { the upper }
\end{array}
$$

probability of A w.r.t. \mathcal{L}.
a) $\left(P_{\mathcal{L}}\right)_{*}(\emptyset)=\left(P_{\mathcal{L}}\right)^{*}(\emptyset)=0 ; \quad\left(P_{\mathcal{L}}\right)_{*}(\Omega)=\left(P_{\mathcal{L}}\right)^{*}(\Omega)=1$
b) $0 \leq\left(P_{\mathcal{L}}\right)_{*}(A) \leq\left(P_{\mathcal{L}}\right)^{*}(A) \leq 1$
c) $\left(P_{\mathcal{L}}\right)^{*}(A)=1-\left(P_{\mathcal{L}}\right)_{*}(\bar{A})$
d) $\left(P_{\mathcal{L}}\right)_{*}(A)+\left(P_{\mathcal{L}}\right)_{*}(B) \leq\left(P_{\mathcal{L}}\right) *(A \cup B)$
e) $\left(P_{\mathcal{L}}\right)_{*}(A \cap B)+\left(P_{\mathcal{L}}\right)_{*}(A \cup B) \nsupseteq\left(P_{\mathcal{L}}\right)_{*}(A)+\left(P_{\mathcal{L}}\right)_{*}(B)$

Belief Revision

Let $B \subseteq \Omega$ and \mathcal{L} a class of probabilities. The we call

$$
\begin{array}{ll}
A \subseteq \Omega:\left(P_{\mathcal{L}}\right)_{*}(A \mid B)=\inf \{P(A \mid B) \mid P \in \mathcal{L} \wedge P(B)>0\} & \text { the lower and } \\
A \subseteq \Omega:\left(P_{\mathcal{L}}\right)^{*}(A \mid B)=\sup \{P(A \mid B) \mid P \in \mathcal{L} \wedge P(B)>0\} & \text { the upper }
\end{array}
$$

conditional probability of A given B.
A class \mathcal{L} of probability measures on $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is of type 1 , iff there exist functions R_{1} and R_{2} from 2^{Ω} into $[0,1]$ with:

$$
\mathcal{L}=\left\{P \mid \forall A \subseteq \Omega: R_{1}(A) \leq P(A) \leq R_{2}(A)\right\}
$$

Belief Revision (2)

Intuition: P is determined by $P\left(\left\{\omega_{i}\right\}\right), i=1, \ldots, n$ which corresponds to a point in \mathbb{R}^{n} with coordinates $\left(P\left(\left\{\omega_{1}\right\}\right), \ldots, P\left(\left\{\omega_{n}\right\}\right)\right)$.

If \mathcal{L} is type 1 , it holds true that:

$$
\begin{aligned}
& \mathcal{L} \Leftrightarrow\left\{\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}^{n} \mid \exists P: \forall A \subseteq \Omega:\right. \\
&\left(P_{\mathcal{L}}\right)_{*}(A) \leq P(A) \leq\left(P_{\mathcal{L}}\right)^{*}(A) \\
&\left.\quad \text { and } r_{i}=P\left(\left\{\omega_{i}\right\}\right), i=1, \ldots, n\right\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\} \\
& \mathcal{L}=\left\{P \left\lvert\, \frac{1}{2} \leq P\left(\left\{\omega_{1}, \omega_{2}\right\}\right) \leq 1\right., \quad \frac{1}{2} \leq P\left(\left\{\omega_{2}, \omega_{3}\right\}\right) \leq 1, \quad \frac{1}{2} \leq P\left(\left\{\omega_{1}, \omega_{3}\right\}\right) \leq 1\right\}
\end{aligned}
$$

general restriction:

$$
\begin{aligned}
& 0 \leq P\left(\left\{\omega_{i}\right\}\right) \leq 1 \\
& P\left(\left\{\omega_{1}\right\}\right)+P\left(\left\{\omega_{2}\right\}\right)+P\left(\left\{\omega_{3}\right\}\right)=1
\end{aligned}
$$

$$
\left\{P \left\lvert\, \frac{1}{2} \leq P\left(\left\{\omega_{1}, \omega_{2}\right\}\right) \leq 1\right.\right\}
$$

Let $A_{1}=\left\{\omega_{1}, \omega_{2}\right\}, A_{2}=\left\{\omega_{2}, \omega_{3}\right\}, A_{3}=\left\{\omega_{1}, \omega_{3}\right\}$

$$
\begin{array}{r}
P_{*}\left(A_{1}\right)+P_{*}\left(A_{2}\right)+P_{*}\left(A_{3}\right)-P_{*}\left(A_{1} \cap A_{2}\right)-P_{*}\left(A_{2} \cap A_{3}\right)-P_{*}\left(A_{1} \cap A_{3}\right)+P_{*}\left(A_{1} \cap A_{2} \cap A_{3}\right) \\
=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-0-0-0+0=\frac{3}{2}>1=P\left(A_{1} \cup A_{2} \cup A_{3}\right)
\end{array}
$$

Belief Revision (3)

If \mathcal{L} is type 1 and $\left(P_{\mathcal{L}}\right)^{*}(A \cup B) \geq\left(P_{\mathcal{L}}\right)^{*}(A)+\left(P_{\mathcal{L}}\right)^{*}(B)-\left(P_{\mathcal{L}}\right)^{*}(A \cap B)$, then

$$
\left(P_{\mathcal{L}}\right)^{*}(A \mid B)=\frac{\left(P_{\mathcal{L}}\right)^{*}(A \cap B)}{\left(P_{\mathcal{L}}\right)^{*}(A \cap B)+\left(P_{\mathcal{L}}\right)_{*}(B \cap \bar{A})}
$$

and

$$
\left(P_{\mathcal{L}}\right)_{*}(A \mid B)=\frac{\left(P_{\mathcal{L}}\right)_{*}(A \cap B)}{\left(P_{\mathcal{L}}\right)_{*}(A \cap B)+\left(P_{\mathcal{L}}\right)^{*}(B \cap \bar{A})}
$$

Let \mathcal{L} be a class of type 1 . \mathcal{L} is of type 2 , iff

$$
\left(P_{\mathcal{L}}\right)_{*}\left(A_{1} \cup \cdots \cup A_{n}\right) \geq \sum_{I: \emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \cdot\left(P_{\mathcal{L}}\right) *\left(\bigcap_{i \in I} A_{i}\right)
$$

Belief Functions

Motivation
$(\Theta, Q) \quad$ Sensors
$\Omega \quad$ possible results, $\Gamma: \Theta \rightarrow 2^{\Omega}$
$\Gamma, Q \quad$ induce a probability m on 2^{Ω}
$m: \quad A \mapsto Q(\{\theta \in \Theta \mid \Gamma(\theta)=A\})$
Bel : $\quad A \mapsto \sum_{B: B \subseteq A} m(B)$
$\mathrm{Pl}: \quad A \mapsto \sum_{B: B \cap A \neq \emptyset} m(B)$
mass distribution
Belief (lower probability)
Plausibility (upper probability)

- Random sets: Dempster (1968)
- Belief functions: Shafer (1974)

Development of a completely new uncertainty calculus

Belief Functions (2)

The function Bel : $2^{\Omega} \rightarrow[0,1]$ is called belief function, if it possesses the following properties:

- $\operatorname{Bel}(\emptyset)=0$
- $\operatorname{Bel}(\Omega)=1$
- $\forall n \in \mathbb{N}: \forall A_{1}, \ldots, A_{n} \in 2^{\Omega}$:
$\operatorname{Bel}\left(A_{1} \cup \cdots \cup A_{n}\right) \geq \sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \cdot \operatorname{Bel}\left(\cap_{i \in I} A_{i}\right)$
If Bel is a belief function then for $m: 2^{\Omega} \rightarrow \mathbb{R}$ with $m(A)=\sum_{B: B \subseteq A}(-1)^{|A \backslash B|}$. $\operatorname{Bel}(B)$ the following properties hold:
- $0 \leq m(A) \leq 1$
- $m(\emptyset)=0$
- $\sum_{A \subseteq \Omega} m(A)=1$

Belief Functions (3)

Let $|\Omega|<\infty$ and $f, g: 2^{\Omega} \rightarrow[0,1]$.

$$
\begin{aligned}
& \forall A \subseteq \Omega:\left(f(A)=\sum_{B: B \subseteq A} g(B)\right) \\
& \quad \Leftrightarrow \\
& \forall A \subseteq \Omega:\left(g(A)=\sum_{B: B \subseteq A}(-1)^{|B|} \cdot f(B)\right)
\end{aligned}
$$

(g is called the Möbius transformed of f)
The mapping $m: 2^{\Omega} \rightarrow[0,1]$ is called a mass distribution, if the following properties hold:

- $m(\emptyset)=0$
- $\sum_{A \subseteq \Omega} m(A)=1$

Example

A	\emptyset	$\{1\}$	$\{2\}$	$\{3\}$	$\{1,2\}$	$\{2,3\}$	$\{1,3\}$	$\{1,2,3\}$
$m(A)$	0	$1 / 4$	$1 / 4$	0	0	0	$2 / 4$	0
$\operatorname{Bel}(A)$	0	$1 / 4$	$1 / 4$	0	$2 / 4$	$1 / 4$	$3 / 4$	1

Belief $\widehat{=}$ lower probability with modified semantic

$$
\begin{aligned}
\operatorname{Bel}(\{1,3\}) & =m(\emptyset)+m(\{1\})+m(\{3\})+m(\{1,3\}) \\
m(\{1,3\}) & =\operatorname{Bel}(\{1,3\})-\operatorname{Bel}(\{1\})-\operatorname{Bel}(\{3\})
\end{aligned}
$$

$m(A) \quad$ measure of the trust/belief that exactly A occurs
$\operatorname{Bel}_{m}(A) \quad$ measure of total belief that A occurs
$\mathrm{Pl}_{m}(A) \quad$ measure of not being able to disprove A (plausibility)

$$
\mathrm{Pl}_{m}(A)=\sum_{B: A \cap B \neq \emptyset} m(B)=1-\operatorname{Bel}(\bar{A})
$$

Given one of m, Bel or Pl , the other two can be efficiently computed.

Knowledge Representation

$$
\begin{array}{ll}
m(\Omega)=1, m(A)=0 \text { else } & \text { total ignorance } \\
m\left(\left\{\omega_{0}\right\}\right)=1, m(A)=0 \text { else } & \text { value }\left(\omega_{0}\right) \text { known } \\
m\left(\left\{\omega_{i}\right\}\right)=p_{i}, \sum_{i=1}^{n} p_{i}=1 & \text { Bayesian analysis }
\end{array}
$$

Further intermediate steps can be modeled.

Belief Revision

- Data Revision:
- Mass of A flows onto $A \cap B$.
- Masses are normalized to 1 (\emptyset-mass is destroyed)
- Geometric Conditioning:
- Masses that do not lie completely inside B, flow off
- Normalize

There is a mass flow from t to s (written: $s \sqsubseteq t$) iff for every $A \subseteq \Omega$ there exist functions $h_{A}: 2^{\Omega} \rightarrow[0,1]$ such that the following properties hold:

- $\sum_{B: B \subseteq \Omega} h_{A}(B)=t(A)$ for all A
- $h(A(B) \neq 0 \Rightarrow B \subseteq A$ for all A, B
- $s(B)=\frac{\sum_{A: A \subseteq \Omega} h_{A}(B)}{1-\sum_{A: A \subseteq \Omega} h_{A}(\emptyset)}$

Example

A	$s(A)$	$t(A)$	$u(A)$
\emptyset	0	0	0
$\{1\}$	0	0	0.1
$\{2\}$	0.4	0.4	0
$\{3\}$	0.1	0	0
$\{1,2\}$	0.2	0.5	0.1
$\{1,3\}$	0	0	0.4
$\{2,3\}$	0.3	0.1	0.4
Ω	0	0	0

The following relations hold:
$s \sqsubseteq t, t \sqsubseteq s, s \sqsubseteq u, t \sqsubseteq u, t \sqsubseteq t, u \nsubseteq s$

Combination of Random Sets

Let $\left(\Omega, 2^{\Omega}\right)$ be a space of events. Further be $\left(O_{1}, 2^{O_{1}}, \lambda_{1}\right)$ and $\left(O_{2}, 2^{O_{2}}, \lambda_{2}\right)$ spaces of independent observers.

We call $\left(O_{1} \times O_{2}, \lambda_{1} \cdot \lambda_{2}\right)$ the product space of observers and

$$
\Gamma: O_{1} \times O_{2} \rightarrow 2^{\Omega}, \Gamma\left(x_{1}, x_{2}\right)=\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{2}\left(x_{2}\right)
$$

the combined observer function.
We obtain with

$$
\left(P_{L}\right)_{*}(A)=\frac{\left(\lambda_{1} \cdot \lambda_{2}\right)\left(\left\{\left(x_{1}, x_{2}\right) \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset \wedge \Gamma\left(x_{1}, x_{2}\right) \sqsubseteq A\right\}\right)}{\left(\lambda_{1} \cdot \lambda_{2}\right)\left(\left\{\left(x_{1}, x_{2} \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset\right)\right\}\right)}
$$

the lower probability of A that respects both observations.

Example

$$
\begin{aligned}
\Omega=\{1,2,3\} & \lambda_{1}: & \{a\} \mapsto 1 / 3 & \lambda_{2}:\{c\} \mapsto 1 / 2 \\
& \{b\} & \mapsto 2 / 3 & \lambda_{2}:\{d\} \mapsto 1 / 2 \\
O_{1}=\{a, b\} & \Gamma_{1}: & a \mapsto\{1,2\} & \Gamma_{2}: c \mapsto\{1\} \\
O_{2}=\{c, d\} & & b \mapsto\{2,3\} &
\end{aligned} d \mapsto\{2,3\}
$$

Combination:

$$
O_{1} \times O_{2}=\{\overline{a c}, \overline{b c}, \overline{a d}, \overline{b d}\}
$$

$$
\begin{aligned}
& \lambda:\{\overline{a c}\} \mapsto 1 / 6 \quad \Gamma: \overline{a c} \mapsto\{1\} \\
& \{\overline{a d}\} \mapsto 1 / 6 \quad \overline{a d} \mapsto\{2\} \\
& \Gamma_{*}(\Omega)=\left\{\left(x_{1}, x_{2}\right) \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset\right\} \\
& =\{\overline{a c}, \overline{a d}, \overline{b d}\} \\
& \{\overline{b c}\} \mapsto 2 / 6 \\
& \overline{b c} \mapsto \emptyset \\
& \{\overline{b d}\} \mapsto 2 / 6 \quad \overline{b d} \mapsto\{2,3\} \\
& \lambda\left(\Gamma_{*}(\Omega)\right)=4 / 6
\end{aligned}
$$

Example (2)

A	$m_{1}(A)$	$\left(P_{*}\right)_{\Gamma_{1}}(A)$	$m_{2}(A)$	$\left(P_{*}\right)_{\Gamma_{2}}(A)$	$m(A)$	$\left(P_{*}\right)_{\Gamma}(A)$
\emptyset	0	0	0	0	0	0
$\{1\}$	0	0	$1 / 2$	$1 / 2$	$1 / 4=1 / 6 / 4 / 6$	$1 / 4$
$\{2\}$	0	0	0	0	$1 / 4$	$1 / 4$
$\{3\}$	0	0	0	0	0	0
$\{1,2\}$	$1 / 3$	$1 / 3$	0	$1 / 2$	0	$1 / 2$
$\{1,3\}$	0	0	0	$1 / 2$	0	$1 / 4$
$\{2,3\}$	$2 / 3$	$2 / 3$	$1 / 2$	$1 / 2$	$1 / 2$	$3 / 4$
$\{1,2,3\}$	0	1	0	1	0	1

Combinations of Mass Distributions

Motivation: Combination of m_{1} and m_{2} $m_{1}\left(A_{i}\right) \cdot m_{2}\left(B_{j}\right):$

Mass attached to $A_{i} \cap B_{j}$, if only A_{i} or B_{j} are concerned
$\sum_{i, j: A_{i} \cap B_{j}=A} m_{1}\left(A_{i}\right) \cdot m_{2}\left(B_{j}\right): \quad$ Mass attached to A (after combination)
This consideration only leads to a mass distribution, if $\sum_{i, j: A_{i} \cap B_{j}=\emptyset} m_{1}\left(A_{i}\right) \cdot m_{2}\left(B_{j}\right)=0$.
If this sum is >0 normalization takes place.

Combination Rule

If m_{1} and m_{2} are mass distributions over Ω with belief functions Bel_{1} and Bel_{2} and does further hold $\sum_{i, j: A_{i} \cap B_{j}=\emptyset} m_{1}\left(A_{i}\right) \cdot m_{2}\left(B_{j}\right)<1$, then the function $m: 2^{\Omega} \rightarrow[0,1], m(\emptyset)=0$

$$
m(A)=\frac{\sum_{B, C: B \cap C=A} m_{1}(B) \cdot m_{2}(C)}{1-\sum_{B, C: B \cap C=\emptyset} m_{1}(B) \cdot m_{2}(C)}
$$

is a mass distribution. The belief function of m is denoted as comb $\left(\mathrm{Bel}_{1}, \mathrm{Bel}_{2}\right)$ or $\mathrm{Bel}_{1} \oplus \mathrm{Bel}_{2}$. The above formula is called the combination rule.

Example

$$
\begin{array}{lr}
m_{1}(\{1,2\})=1 / 3 & m_{2}(\{1\})=1 / 2 \\
m_{1}(\{2,3\})=2 / 3 & m_{2}(\{2,3\})=1 / 2
\end{array}
$$

$$
\begin{aligned}
m=m_{1} \oplus m_{2} & : \\
\{1\} & \mapsto \frac{1 / 6}{4 / 6}=1 / 4 \\
\{2\} & \mapsto \frac{1 / 6}{4 / 6}=1 / 4 \\
\emptyset & \mapsto 0 \\
\{2,3\} & \mapsto \frac{2 / 6}{4 / 6}=1 / 2
\end{aligned}
$$

Combination Rule (2)

Remarks:
a) The result from the combination rule and the analysis of random sets is identical
b) There are more efficient ways of combination
c) $\mathrm{Bel}_{1} \oplus \mathrm{Bel}_{2}=\mathrm{Bel}_{2} \oplus \mathrm{Bel}_{1}$
d) \oplus is associative
e) $\mathrm{Bel}_{1} \oplus \mathrm{Bel}_{1} \neq \mathrm{Bel}_{1}$ (in general)
f) $\mathrm{Bel}_{2}: 2^{\Omega} \rightarrow[0,1], m_{2}(B)=1$

$$
\operatorname{Bel}_{2}(A)= \begin{cases}1 & \text { if } B \subseteq A \\ 0 & \text { otherwise }\end{cases}
$$

The combination of Bel_{1} and Bel_{2} yields the data revision of m_{1} with B.

Fuzzy Sets

Classical description of concepts/properties:
Example: concept "two-digit number"
a) as a set: $\{10,11, \ldots, 99\}=M$
b) as predicate $\operatorname{two}-\operatorname{digit}(x)= \begin{cases}\text { true } & \text { if } 10 \leq x \leq 99 \\ \text { false } & \text { else }\end{cases}$

Connection between a) and b):

$$
M=\{x \in \mathbb{N} \mid \operatorname{two}-\operatorname{digit}(x)\} ; \quad \operatorname{two}-\operatorname{digit}(x) \Leftrightarrow x \in M
$$

Both concepts are not suited for defining concepts like:

- "large"
- "old"
- "heavy"

Example

"Set" of sizes (in cm) at which a child would be regarded "tall".

The saltus at 110 cm from 0 to 1 is not intuitive. Therefore:

membership degree function

Fuzzy Sets

A fuzzy set over a basic set X is a mapping

$$
\mu_{X}: X \rightarrow[0,1]
$$

$\mu_{X}(x) \in[0,1]$ is the degree of membership of x to the fuzzy set μ_{X}.

Operations on Fuzzy Sets

Combination of concepts like "tall", "approx. $110 \mathrm{~cm} ", \ldots$
a) The child is "tall" and "approx. 110 cm (tall)"
b) The child is "tall" or "approx. 110 cm (tall)"
c) The child is not "tall"

a) $\widehat{=}$ Intersection:
b) $\hat{=}$ Union:
c) $\widehat{=}$ Complement:
classical: $\quad x \in A \cap B \quad \Leftrightarrow \quad x \in A \wedge x \in B$
classical: $\quad x \in A \cup B \quad \Leftrightarrow \quad x \in A \vee x \in B$
classical: $\quad x \in \bar{A} \quad \Leftrightarrow \neg(x \in A)$
Postulate:

$$
\mu_{\text {tall } \wedge \text { approx. }} 110 \mathrm{~cm}(x)=\mu_{\text {tall }}(x) \top \mu_{\text {approx. }} 110 \mathrm{~cm}(x)
$$

I. e., we need a mapping \top : $[0,1]^{2} \rightarrow[0,1]$

Generalized Conjunction, t-Norm

A t-norm is a mapping $T:[0,1]^{2} \rightarrow[0,1]$ with
(T1) $\mathrm{T}(a, 1)=a$
(T2) $a \leq a^{\prime} \Rightarrow \mathrm{\top}(a, b) \leq \top\left(a^{\prime}, b\right)$
(T3) $\mathrm{\top}(a, b)=\mathrm{\top}(b, a)$
(T4) $\mathrm{T}(\mathrm{T}(a, b), c)=\mathrm{T}(a, \mathrm{~T}(b, c)$
Examples:

$$
\begin{aligned}
& \min \{a, b\}, a \cdot b, \max \{a+b-1,0\} \\
& \text { largest t-norm, the only idempotent t-norm (i. e., } T(a, a)=a) \\
& 0 \leq \mathrm{T}(0,0) \stackrel{(\mathrm{T} 2)}{\leq} \mathrm{T}(1,0) \stackrel{(\mathrm{T} 3)}{=} \mathrm{T}(0,1) \stackrel{(\mathrm{T} 1)}{=} 0 ; \quad \mathrm{T}(1,1) \stackrel{(\mathrm{T} 1)}{=} 1
\end{aligned}
$$

Reasonable claim: $\mu_{\text {tall }}(x) \top \mu_{\text {tall }}(x)=\mu_{\text {tall }}(x) \Rightarrow \top$ idempotent

t-Norms / Fuzzy Conjunctions

standard conjunction:
algebraic product:
Łukasiewicz:
drastic product:

$T_{\text {min }}$

$$
\begin{aligned}
\top_{\min }(a, b) & =\min \{a, b\} \\
\top_{\text {prod }}(a, b) & =a \cdot b \\
\top_{\text {Łuka }}(a, b) & =\max \{0, a+b-1\}
\end{aligned}
$$

$$
\top_{-1}(a, b)= \begin{cases}a, & \text { if } b=1 \\ b, & \text { if } a=1 \\ 0, & \text { otherwise }\end{cases}
$$

Example

$X=\left\{c_{1}, c_{2}, c_{3}\right\}$	Set of computers
$\mu_{\text {cheap }}$	Fuzzy set of cheap computers
$\mu_{\text {fast }}$	Fuzzy set of fast computers
$\mu_{\text {goodvalue }}$	$\mu_{\text {cheap }} \top \mu_{\text {fast }}$

Computer	Price	Speed	$\mu_{\text {cheap }}$	$\mu_{\text {fast }}$	$\mu_{\text {goodvalue }}\left(T=T_{\min }\right)$	$\left(T=T_{\text {prod }}\right)$
c_{1}	2000	20	1.0	0.4	0.4	0.40
c_{2}	2500	40	0.6	0.8	0.6	0.48
c_{3}	2500	50	0.6	0.9	0.6	0.54

Generalized Disjunction, t-Conorm

A t-conorm is a mapping $\perp:[0,1]^{2} \rightarrow[0,1]$ with
(S1) $\perp(a, 0)=a$
(S2) $a \leq a^{\prime} \Rightarrow \perp(a, b) \leq \perp\left(a^{\prime}, b\right)$
(S3) $\perp(a, b)=\perp(b, a)$
(S4) $\perp(\perp(a, b), c)=\perp(a, \perp(b, c)$
Examples:

$$
\max \{a, b\}, a+b-a \cdot b, \min \{a+b, 1\}
$$

smallest t-conorm, the only idempotent t-conorm (i.e., $\perp(a, a)=a$)

t-Conorms / Fuzzy Disjunctions

standard disjunction:
algebraic sum:
Łukasiewicz:
drastic sum:

$$
\begin{aligned}
\perp_{\max }(a, b) & =\max \{a, b\} \\
\perp_{\text {sum }}(a, b) & =a+b-a \cdot b \\
\perp_{\text {Łuka }}(a, b) & =\min \{1, a+b\} \\
\perp_{-1}(a, b) & = \begin{cases}a, & \text { if } b=0 \\
b, & \text { if } a=0 \\
1, & \text { otherwise }\end{cases}
\end{aligned}
$$

Generalized Negation

A negation operator is a mapping $\sim:[0,1] \rightarrow[0,1]$ with
(N1) $\sim 0=1$
(N2) $a \leq b \quad \Rightarrow \quad \sim b \leq \sim a$
(N3) $\sim(\sim a)=a$
From (N1) and (N3) follows: $\quad \sim 1=0$

Relation between t-norms and t-conorms:
\top t-norm $\Leftrightarrow \perp_{\sim}$ t-conorm: $\perp_{\sim}(a, b)=\sim(\top(\sim a, \sim b))(a \vee b \hat{=} \neg(\neg a \wedge \neg b))$
\perp t-conorm $\Leftrightarrow T \sim$ t-norm: $\quad T \sim(a, b)=\sim(\perp(\sim a, \sim b))(a \wedge b \hat{=} \neg(\neg a \vee \neg b))$

Fuzzy Negations

standard negation:

$$
\begin{array}{ll}
\sim a & =1-a \\
\sim(a ; \theta) & = \begin{cases}1, & \text { if } x \leq \theta, \\
0, & \text { otherwise } .\end{cases} \\
\sim a & =\frac{1}{2}(1+\cos \pi a) \\
\sim(a ; \lambda) & =\frac{1-a}{1+\lambda a} \\
\sim(a ; \lambda) & =\left(1-a^{\lambda}\right)^{\frac{1}{\lambda}}
\end{array}
$$

threshold negation:

Reasoning with Uncertainty Module (RUM)

Motivation:

$$
\text { modus ponens (mp): } \frac{A \rightarrow B, A}{B}, \quad \text { modus tollens (mt): } \quad \frac{A \rightarrow B, \neg B}{\neg A}
$$

Generalization of mp and mt on $[0,1]$-valued propositions, e.g.:

$$
\mu_{\text {tall }}(x) \xrightarrow{0.8} \mu_{\text {heavy }}(x), \mu_{\text {tall }}(x) \geq 0.9 \quad \Rightarrow \quad \mu_{\text {heavy }} \geq ?
$$

Reasoning with Uncertainty Module (2)

Modus Ponens:
$\llbracket \rrbracket$ fulfillment degree

- Given: $\llbracket A \rightarrow B \rrbracket \geq \gamma ; \llbracket A \rrbracket \geq \alpha$
- Desired: $\llbracket B \rrbracket \geq \beta=\beta(\gamma, \alpha)$
- $\llbracket B \rrbracket \geq \llbracket A \wedge(A \rightarrow B) \rrbracket=\top(\llbracket A \rrbracket, \llbracket A \rightarrow B \rrbracket) \geq \mathrm{T}(\alpha, \gamma)=\beta$

Modus Tollens:

- Given: $\llbracket B \rrbracket \leq \beta, \llbracket A \rightarrow B \rrbracket \geq \gamma$
- Desired: $\llbracket A \rrbracket \leq \alpha=\alpha(\beta, \gamma)$
- $\llbracket \neg A \rrbracket \geq \llbracket \neg B \wedge(A \rightarrow B) \rrbracket=\mathrm{T}(\sim(/ B /), \llbracket A \rightarrow B \rrbracket) \geq \mathrm{T}(\sim(\beta), \gamma)$
$\Rightarrow \llbracket A \rrbracket=\llbracket \neg \neg A \rrbracket=\sim(\llbracket \neg A \rrbracket) \leq \sim(T(\sim(\beta), \gamma))=\perp(\beta, \sim(\gamma))$

Possibility Theory

a) The vague concept "cloudy" is modeled by the fuzzy set $\mu_{\text {cloudy }}$:

Vagueness
b) There exists a true but unknown value x_{0}. Every x is assigned a degree to which extent $x=x_{0}$ is considered possible.

Uncertainty

Possibility Theory (2)

$\pi(x)$ is a possibility degree
$\pi(x)=0 \quad x=x_{0}$ impossible
$\pi(x)=1 \quad x=x_{0}$ without restriction possible
$\pi(x) \in(0,1) \quad x=x_{0}$ gradually possible

A possibility distribution π over Ω is a function $\pi: \Omega \rightarrow[0,1]$ for which the condition

$$
\exists \omega \in \Omega: \pi(\omega)=1
$$

holds.

Possibility and Necessity

Let π be a possibility distribution over Ω.

- The possibility measure Poss induced by π is defined as

$$
\text { Poss : } 2^{\Omega} \rightarrow[0,1], \quad A \mapsto \sup \{\pi(x) \mid x \in A\}
$$

- The necessity measure Nec induced by π is defined as

$$
\operatorname{Nec}: 2^{\Omega} \rightarrow[0,1], \quad A \mapsto 1-\operatorname{Poss}(\bar{A})
$$

Possibility and Necessity (2)

The functions Poss and Nec fulfill the following properties:

$$
\begin{array}{lll}
\operatorname{Poss}(\emptyset)=0, & \operatorname{Poss}(\Omega)=1, & \operatorname{Poss}(A \cup B)=\max \{\operatorname{Poss}(A), \operatorname{Poss}(B)\} \\
\operatorname{Nec}(\emptyset)=0, & \operatorname{Nec}(\Omega)=1, & \operatorname{Nec}(A \cap B)=\min \{\operatorname{Nec}(A), \operatorname{Nec}(B)\}
\end{array}
$$

In general:

$$
\begin{aligned}
& \operatorname{Poss}(A \cap B) \neq \min \{\operatorname{Poss}(A), \operatorname{Poss}(B)\} \\
& \operatorname{Nec}(A \cup B) \neq \max \{\operatorname{Nec}(A), \operatorname{Nec}(B)\} \quad \text { but } \\
& \operatorname{Nec}(A \cup B) \geq \max \{\operatorname{Nec}(A), \operatorname{Nec}(B)\}
\end{aligned}
$$

$\operatorname{Nec}(A)=0$ and $\operatorname{Poss}(A)=1$ represent complete ignorance.

Possibility and Necessity (3)

A mass distribution

$$
m: 2^{\Omega} \rightarrow[0,1]
$$

with

$$
\sum_{A: A \subseteq \Omega} m(A)=1, m(\emptyset)=0
$$

is called consonant, if all sets A with $m(A)>0$ (the so-called focal elements) form an inclusion chain, i.e. there exists for all such sets an enumeration such that:

$$
A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{m}
$$

Possibility and Necessity (4)

If m is consonant, then the corresponding belief function

$$
\operatorname{Bel}_{m}: 2^{\Omega} \rightarrow[0,1] ; \quad A \mapsto \sum_{B: B \subseteq A} m(B)
$$

has the properties of a necessity measure:

$$
\operatorname{Bel}_{m}(\emptyset)=0, \quad \operatorname{Bel}_{m}(\Omega)=1, \quad \operatorname{Bel}_{m}(A \cap B)=\min \left\{\operatorname{Bel}_{m}(A), \operatorname{Bel}_{m}(B)\right\}
$$

If m is consonant, then the corresponding plausibility function

$$
\mathrm{Pl}_{m}: 2^{\Omega} \rightarrow[0,1] ; \quad A \mapsto \sum_{B: B \cap A \neq \emptyset} m(B)
$$

has the properties of a possibility measure.

Homepages

- Otto-von-Guericke-University of Magdeburg http://www.uni-magdeburg.de/
- School of Computer Science http://www.cs.uni-magdeburg.de/
- Computational Intelligence Group http://fuzzy.cs.uni-magdeburg.de/

