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Organisational
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• Lecture
◦ Consultation: Wednesday, 11:00 a. m.– noon, G29-008
◦ Preferredly reachable by e-mail: kruse@iws.cs.uni-magdeburg.de

• Excercises
◦ Tutor: Matthias Steinbrecher, at all hours
◦ G29-015, msteinbr@iws.cs.uni-magdeburg.de

• Updated information on the course:
◦ http://fuzzy.cs.uni-magdeburg.de/



Knowledge Based Systems
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• Human Expert

A human expert is a specialist for a specific differentiated application field who
creates solutions to customer problems in this respective field and supports them
by applying these solutions.

• Requirements

◦ Formulate precise problem scenarios from customer inquiries

◦ Find correct and complete solution

◦ Understandable answers

◦ Explanation of solution

◦ Support the deployment of solution



Knowledge Based Systems (2)
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• “Intelligent” System

An intelligent system is a program that models the
knowledge and inference methods of a human expert
of a specific field of application.

• Requirements for construction:

◦ Knowledge Representation

◦ Knowledge Acquisition

◦ Knowledge Modification



Expert System Architecture
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Qualities of Knowledge
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In most cases our knowledge about the present world is

• imprecise/missing (knowledge is not comprehensive)

◦ e. g. “I don’t know the bus departure times for public holidays because I only
take the bus on working days.”

• vague/fuzzy (knowledge is not exact)

◦ e. g. “The bus departs roughly every full hour.”

• uncertain (knowledge is unreliable)

◦ e. g. “The bus departs probably at 12 o’clock.”

We have to decide nonetheless!

• Reasoning under Vagueness

• Reasoning with Probabilities

• . . . and Cost/Benefit



Knowledge Characteristics
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Example
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Objective: Be at the university at 9:15 to attend a lecture.

• There are several plans to reach this goal:

◦ P1: Get up at 8:00, leave at 8:55, take the bus at 9:00 . . .

◦ P2: Get up at 7:30, leave at 8:25, take the bus at 8:30 . . .

◦ . . .

• All plans are correct, but

◦ they imply different costs and different probabilities
to actually reach that goal.

◦ P2 would be the plan of choice as the lecture is important
and the success rate of P1 is only about 80–95%.

• Question: Is a computer capable of solving these
problems involving uncertainty?



Uncertainty and Rules (1)
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• Example: We are given a simple expert system for dentists
that may contain the following rule:

∀p : [Symptom(p, toothache)⇒ Disease(p, cavity)]

• This rule is incorrect ! Better:

∀p :
[
Symptom(p, toothache)⇒

Disease(p, cavity) ∨ Disease(p, gumdisease) ∨ . . .
]

• Maybe take the causal rule?

∀p :
[
Disease(p, cavity)⇒ Symptom(p, toothache)

]

• Incorrect, too.



Uncertainty and Rules (2)
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Problems with propositional logic:

• We cannot enumerate all possible causes, even though . . .

• We do not know the (medical) cause-effect interactions, and even though . . .

• Uncertainty about the patient remains:

◦ Caries and toothache may co-occurr by chance.

◦ Were (exhaustively) all examinations conducted?
— If yes: correctly?

◦ Did the patient answer all questions?
— If yes: appropriately?

• Without perfect knowledge no correct logical rules!



Uncertainty and Facts
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Example:

• We would like to support a robot’s localization by fixed landmarks.
From the presence of a landmark we may infer the location.

Problem:

• Sensors are imprecise!

◦ We cannot conclude definitely a location simply because
there was a landmark detected by the sensors.

◦ The same holds true for undetected landmarks.

◦ Only probabilities are being increased or decreased.



Degrees of Belief
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• We (or other agents) are only believing facts or rules to some extent.

• One possibility to express this partial belief is by using probability theory.

• “The agent believes the sensor information to 0.9” means:
In 9 out of 10 cases the agent trusts in the correctness of the sensor output.

• Probabilities gather the “uncertainty” that originates due to ignorance.

• Probabilities 6= Vagueness/Fuzziness!

◦ The predicate “large” is fuzzy whereas “This might be Peter’s watch.”
is uncertain.



Rational Decisions under Uncertainty
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• Choice of several actions or plans

• These may lead to different results with different probabilities.

• The actions cause different (possibly subjective) costs.

• The results yield different (possibly subjective) benefits.

• It would be rational to choose that action that yields the largest total benefit.

Decision Theory = Utility Theory + Probability Theory



Decision-theoretic Agent
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input perception
output action

1: K ← a set of probabilistic beliefs about the state of the world

2: calculate updated probabilities for current state based on available evidence includ-
ing current percept and previous action

3: calculate outcome probabilities for actions, given action descriptions and probabil-
ities of current states

4: select action A with highest expected utility given probabilities of outcomes and
utility information

5: return A

Decision Theory: An agent is rational if and only if it chooses
the action yielding the largest utility averaged
over all possible outcomes of all actions.
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Rule-based Expert Systems



Rule-based Expert Systems
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Modi of usage:

• Query: Facts are retrieved from database or user is interrogated

• Explanation: System answers questions how a decision was concluded

Example rule base:

1. COLLAT ∧ PYMT ∧ REP ⇒ OK

2. APP ⇒ COLLAT

3. RATING ⇒ REP

4. INC ⇒ PYMT

5. BAL ∧ REP ⇒ OK



Decision Rule Tree
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Corresponding and/or-Tree:

OK

OK OK

BAL REP

REP

RATING

COLLAT PYMT REP

COLLAT PYMT REP

APP INC RATING

rule 5 rule 1

rule 3 rule 2 rule 4 rule 3



Example Queries
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• User: Why do you believe that the loan should be approved?

• System: Because the collateral for the loan is satisfactory, and
the applicant is able to make the loan payments,
and the applicant has a good financial reputation.

• User: Why did you ask me about whether or not the
applicant’s income exceeds his/her expenses?

• System: Because I was trying to establish whether or not the
applicant is able to make the loan payments.

• User: Why do you believe that the applicant has
a good financial reputation?

• System: Because the credit rating service said that the
applicant has a good credit rating.



Rules
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• A rule in general is a if-then-construct consisting of a condition and an action.

If condition then conclusion

• These two parts may be interpreted differently according to the context:

◦ Inference rules: If premise then conclusion

◦ Hypotheses: If evidence then hypothesis

◦ Productions: If condition then action

• Rules are often referred to as productions or production rules.



Rules
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• A rule in the ideal case represents a unit of knowledge.

• A set of rules together with an execution/evaluation strategy
comprises a program to find solutions to specific problem classes.

• Prolog program: rule-based system

• Rule-based systems are historically the first types of
AI systems and were for a long time considered prototypical expert systems.

• Nowadays, not every expert systems uses rules as its
core inference mechanism.

• Rising importance in the field of business process rules.



Rule Evaluation
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Forward chaining

• Expansion of knowledge base: as soon as new facts are
inserted the system also calculates the conclusions/consequences.

• Data-driven behavior

• Premises-oriented reasoning: the chaining is determined by
the left parts of the rules.

Backward chaining

• Answering queries

• Demand-driven behavior

• Conclusion-oriented reasoning: the chaining is determined by
the right parts of the rules.



Components of a Rules-based System
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Data base

• Set of structured data objects

• Current state of modeled part of world

Rule base

• Set of rules

• Application of a rule will alter the data base

Rule interpreter

• Inference machine

• Controls the program flow of the system



Rule Interpretation
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• Main scheme forward chaining

◦ Select and apply rules from the set of rules with valid antecedences. This will
lead to a modified data base and the possibility to apply further rules.

• Run this cycle as long as possible.

• The process terminates, if

◦ there is no rule left with valid antecendence

◦ a solution criterion is satisfied

◦ a stop criterion is satisfied (e. g. maximum number of steps)

• Following tasks have to be solved:

◦ Identify those rules with a valid condition
⇒ Instantiation or Matching

◦ Select rules to be executed
⇒ need for conflict resolution
(e. g. via partial or total orderings on the rules)
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Certainty Factors



Mycin (1970)
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• Objective: Development of a system that supports
physicians in diagnosing bacterial infections and suggesting antibiotics.

• Features: Uncertain knowledge was represented and processed
via uncertainty factors.

• Expert Knowlegde: 500 (uncertain) decision rules as static knowledge base.

• Case-specific knowledge:

◦ static: patients’ data

◦ dynamic: intermediate results (facts)

• Strengths:

◦ diagnosis-oriented interrogation

◦ hypotheses generation

◦ finding notification

◦ therapy recommendation

◦ explanation of inference path



Uncertainty Factors
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• Uncertainty factor CF ∈ [−1, 1] ≈ degree of belief.

• Rules:

CF(A→ B)






= 1 B is certainly true given A

> 0 A supports B

= 0 A has no influence on B

< 0 A provides evidence against B

= −1 B is certainly false given A



A Mycin Rule

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 27

RULE035

PREMISE: ($AND (SAME CNTXT GRAM GRAMNEG)

(SAME CNTXT MORPH ROD)

(SAME CNTXT AIR ANAEROBIC))

ACTION: (CONCL.CNTXT IDENTITY BACTEROIDES TALLY .6)

If 1) the gram stain of the organism is gramneg, and

2) the morphology of the organism is rod, and

3) the aerobicity of the organism is anaerobic

then there is suggestive evidence (0.6) that the

identity of the organism is bacteroides



Example
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A→ B [0.80] A [1.00]
C → D [0.50] C [0.50]

B ∧D → E [0.90] F [0.80]
E ∨ F → G [0.25] H [0.90]

H → G [0.30]

A
1.0

B

C
0.5

D

B ∧D E

E ∨ F

F0.8

G

H0.90.8

0.5

0.9

0.3

0.25



Propagation Rules
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• Conjunction: CF(A ∧B) = min{CF(A), CF(B)}

• Disjunction: CF(A ∨B) = max{CF(A), CF(B)}

• Serial Combination: CF(B, {A}) = CF(A→ B) ·max{0, CF(A)}

• Parallel Combination: for n > 1 :

CF(B, {A1, . . . , An}) =

f(CF(B, {A1, . . . , An−1}), CF(B, {An}))

with

f(x, y) =






x + y − xy if x, y > 0

x + y + xy if x, y < 0
x + y

1−min{|x| , |y|}
otherwise



Example (cont.)
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A
1.0

B 0.8

C
0.5

D 0.25

B ∧D0.25 E 0.225

E ∨ F0.8

F0.8

G 0.416

H0.90.8

0.5

0.9

0.3

0.25

f(0.3 · 0.9, 0.25 · 0.8) = 0.27 + 0.2− 0.27 · 0.2 = 0.416



Was Mycin a failure?
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It can be shown that the rule combination scheme is inconsistent in general.
It worked in the Mycin case because the rules had tree-like structure.

Mycin was never used for its intented purpose, because

• physicians were distrustful and not willing to accept Mycin’s recommendations.

• Mycin was too good.

However,

• Mycin was a milestone for the development of expert systems.

• it gave rise to impulses for expert system development in general.



Probabilistic Rules
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How to assign probabilities to rules (implications)?

P (B | A) ≤ P (A→ B) = P (¬A ∨B)

A B P (·)
0 0 0.04
0 1 0.95
1 0 0.01
1 1 0

P (B | A) = 0, but P (A→ B) = 0.99!

In the following, probabilistic rules are evaluated with conditional probabilities.
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Elements of Graph Theory



Simple Graph
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Simple Graph

A simple graph (or just: graph) is a tuple G = (V, E) where

V = {A1, . . . , An}

represents a finite set of vertices (or nodes) and

E ⊆ (V × V ) \ {(A, A) | A ∈ V }

denotes the set of edges.
It is called simple since there are no self-loops and no multiple edges.



Edge Types
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Let G = (V, E) be a graph. An edge e = (A, B) is
called

• directed if (A, B) ∈ E ⇒ (B, A) /∈ E
Notation: A→ B

• undirected if (A, B) ∈ E ⇒ (B,A) ∈ E
Notation: A−B or B − A

(Un)directed Graph

A graph with only (un)directed edges is called an
(un)directed graph.

Adjacency Set

Let G = (V, E) be a graph. The set of nodes that
is accessible via a given node A ∈ V is called the
adjacency set of A:

adj(A) = {B ∈ V | (A, B) ∈ E}

A B

C D E

F G

A B

C D E

F G

adj(D)



Paths
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Let G = (V, E) be a graph. A series ρ of r pairwise
different nodes

ρ =
〈
Ai1, . . . , Air

〉

is called a path from Ai to Aj if

• Ai1 = Ai, Air = Aj

• Aik+1
∈ adj(Aik), 1 ≤ k < r

A path with only undirected edges is called an undi-
rected path

ρ = Ai1 − · · · −Air

whereas a path with only directed edges is referred
to as a directed path

ρ = Ai1 → · · · → Air

A B

C D E

F G

If there is a directed path ρ
from node A to node B in a
directed graph G we write

A 
ρ

G B.

If the path ρ is undirected we
denote this with

A!
ρ

G B.



Graph Types
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Loop

Let G = (V, E) be an undirected graph. A path

ρ = X1 − · · · −Xk

with Xk −X1 ∈ E is called a loop.

Cycle

Let G = (V, E) be a directed graph. A path

ρ = X1 → · · · → Xk

with Xk → X1 ∈ E is called a cycle.

Directed Acyclic Graph (DAG)

A directed graph G = (V, E) is called acyclic if
for every path X1 → · · · → Xk in G the condition
Xk → X1 /∈ E is satisfied, i. e. it contains no cycle.

A B

C D E

F G

Cycle

A B

C D E

F G

Loop



Parents, Children and Families
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Let G = (V, E) be a directed graph. For every node
A ∈ V we define the following sets:

• Parents:

parentsG(A) = {B ∈ V | B → A ∈ E}

• Children:

childrenG(A) = {B ∈ V | A→ B ∈ E}

• Family:

familyG(A) = {A} ∪ parentsG(A)

If the respective graph is clear from the context, the
index G is omitted.

A B

C D

E F G

H J K

L M

parents(F ) = {C, D}
children(F ) = {J, K}

family(F ) = {C, D,F}



Ancestors, Descendants, Non-Descendants
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Let G = (V, E) be a DAG. For every node A ∈ V
we define the following sets:

• Ancestors:

ancsG(A) = {B ∈ V | ∃ρ : B  
ρ

G A}

• Descendants:

descsG(A) = {B ∈ V | ∃ρ : A 
ρ

G B}

• Non-Descendants:

non-descsG(A) = V \ {A} \ descsG(A)

If the respective graph is clear from the context, the
index G is omitted.

A B

C D

E F G

H J K

L M

ancs(F ) = {A, B, C,D}
descs(F ) = {J, K, L, M}

non-descs(F ) = {A, B, C,D,E,G, H}



Operations on Graphs
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Let G = (V, E) be a DAG.

The Minimal Ancestral Subgraph of G given
a set M ⊆ V of nodes is the smallest subgraph that
contains all ancestors of all nodes in M .

The Moral Graph of G is the undirected graph
that is obtained by

1. connecting nodes that share a common child
with an arbitrarily directed edge and,

2. converting all directed edges into undirected
ones by dropping the arrow heads.

A B

C D

E F G

H J K

L M

Moral graph of ancestral graph
induced by the set {E, F,G}.



u-Separation
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A B

C D

E

F

G

H

J

X Z Y

Let G = (V, E) be an undirected graph and X,Y, Z ⊆ V three disjoint
subsets of nodes. We agree on the following separation criteria:

1. Z u-separates X from Y — written as

X ⊥⊥G Y | Z,

if every possible path from a node in X to a node in Y is blocked.

2. A path is blocked if it contains one (or more) blocking nodes.

3. A node is a blocking node if it lies in Z.



u-Separation
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A B

C D

E

F

G

H

J

X Z Y

E. g. path A − B − E − G − H is blocked by E ∈ Z. It can be easily
verified, that every path from X to Y is blocked by Z. Hence we have:

{A, B,C,D} ⊥⊥G {G, H, J} | {E,F}



u-Separation
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A B

C D

E

F

G

H

J

X Z Y

Another way to check for u-separation: Remove the nodes in Z from the
graph (and all the edges adjacent to these nodes). X and Y are u-separated
by Z if the remaining graph is disconnected with X and Y in separate
subgraphs.



d-Separation
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Now: Separation criterion for directed graphs.

We use the same priciples as for u-separation. Two modifications are necessary:

• Directed paths may lead also in reverse to the arrows.

• The blocking node condition is more sophisticated.

Blocking Node (in a directed path)

A node A is blocked if its edge directions along the path

• are of type 1 and A ∈ Z, or

• are of type 2 and neither A nor one of its descendants is in Z.

serial, head-to-tail

serial, head-to-tail

diverging, tail-to-tail

Type 1

converging, head-to-head

Type 2



d-Separation
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A C

B D

E

F

G

H

J

X Z = ∅

Y

Checking path A→ C → E ← D:

• C is serial and not in Z: non-blocking

• E is converging and not in Z, neither is F, G,H or J : blocking

⇒ Path is blocked

A⊥⊥D | ∅



d-Separation
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A C

B D

E

F

G

H

J

X

Z

Y

Checking path A→ C → E ← D:

• C is serial and not in Z: non-blocking

• E is converging and in Z: non-blocking

⇒ Path is not blocked

A⊥6⊥D | E



d-Separation
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A C

B D

E

F

G

H

J

X

ZY

Checking path A→ C → E ← D:

• C is serial and not in Z: non-blocking

• E is converging and not in Z but one of its descendants (J) is in Z:
non-blocking

⇒ Path is not blocked

A⊥6⊥D | J



d-Separation
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A C

B D

E

F

G

H

J

X Z = ∅

Y

Checking path A→ C → E → F → H :

• C is serial and not in Z: non-blocking

• E is serial and not in Z: non-blocking

• F is serial and not in Z: non-blocking

⇒ Path is not blocked

A⊥6⊥H | ∅



d-Separation
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A C

B D

E

F

G

H

J

X

Z

Y = {B, H}

Checking path A→ C → E → F → H :

• C is serial and not in Z: non-blocking

• E is serial and in Z: blocking

• F is serial and not in Z: non-blocking

⇒ Path is blocked



d-Separation
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A C

B D

E

F

G

H

J

X

Z

Y = {B, H}

Checking path A→ C → E ← D → B:

• C is serial and not in Z: non-blocking

• E is converging and in Z: non-blocking

• D is serial and in Z: blocking

⇒ Path is blocked

A⊥⊥H,B | D,E



d-Separation: Alternative Way for Checking
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A C

B D

E

F

G

H

J

X

Z

Y = {B, H}

Steps

• Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.



d-Separation: Alternative Way for Checking

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 52

A C

B D

E

F H

X

Z

Y = {B, H}

Steps

• Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.

• Moralize that subgraph.



d-Separation: Alternative Way for Checking
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A C

B D

E

F H

X

Z

Y = {B, H}

Steps:

• Create the minimal ancestral subgraph induced by X ∪ Y ∪ Z.

• Moralize that subgraph.

• Check for u-Separation in that undirected graph.

A⊥⊥H,B | D,E
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Decomposition



Example
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Example World Relation

color shape size
small
medium
small
medium
medium
large
medium
medium
medium
large

• 10 simple geometric objects

• 3 attributes



Example
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Relation

color shape size
small
medium
small
medium
medium
large
medium
medium
medium
large

Geometric Representation



Object Representation
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• Universe of Discourse: Ω

• ω ∈ Ω represents a single abstract object.

• A subset E ⊆ Ω is called an event.

• For every event we use the function R to determine whether E is possible or not.

R : 2Ω → {0, 1}

• We claim the following properties of R:

1. R(∅) = 0

2. ∀E1, E2 ⊆ Ω : R(E1 ∪ E2) = max{R(E1), R(E2)}

• For example:

R(E) =





0 if E = ∅

1 otherwise



Object Representation
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• Attributes or Properties of these objects are introduced by functions:
(later referred to as random variables)

A : Ω→ dom(A)

where dom(A) is the domain (i. e., set of all possible values) of A.

• A set of attibutes U = {A1, . . . , An} is called an attribute schema.

• The preimage of an attribute defines an event:

∀a ∈ dom(A) : A−1(a) = {ω ∈ Ω | A(ω) = a} ⊆ Ω

• Abbreviation: A−1(a) = {ω ∈ Ω | A(ω) = a} = {A = a}

• We will index the function R to stress on which events it is defined.
RAB will be short for R{A,B}.

RAB :
⋃

a∈dom(A)

⋃

b∈dom(B)

{
{A = a,B = b}

}
→ {0, 1}



Formal Representation
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A = color B = shape C = size
a1 = b1 = c1 = small
a1 = b1 = c2 = medium
a2 = b1 = c1 = small
a2 = b1 = c2 = medium
a2 = b3 = c2 = medium
a2 = b3 = c3 = large
a3 = b2 = c2 = medium
a4 = b2 = c2 = medium
a4 = b3 = c2 = medium
a4 = b3 = c3 = large

RABC(A = a,B = b, C = c)

= RABC({A = a,B = b, C = c})

= RABC({ω ∈ Ω | A(ω) = a∧

B(ω) = b∧

C(ω) = c)}

=





0 if there is no tuple (a, b, c)

1 else

R serves as an indicator function.
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Projection / Marginalization

Let RAB be a relation over two attributes A and B. The projection (or marginaliza-
tion) from schema {A, B} to schema {A} is defined as:

∀a ∈ dom(A) : RA(A = a) = max
∀b∈dom(B)

{RAB(A = a,B = b)}

This principle is easily generalized to sets of attributes.
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Cylindrical Extention

Let RA be a relation over an attribute A. The cylindrical extention RAB from {A}
to {A, B} is defined as:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RAB(A = a,B = b) = RA(A = a)

This principle is easily generalized to sets of attributes.
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Intersection

Let R
(1)
AB and R

(2)
AB be two relations with attribute schema {A, B}. The intersection

RAB of both is defined in the natural way:

∀a ∈ dom(A) : ∀b ∈ dom(B) :

RAB(A = a,B = b) = min{R
(1)
AB(A = a,B = b), R

(2)
AB(A = a,B = b)}

This principle is easily generalized to sets of attributes.
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Conditional Relation

Let RAB be a relation over the attribute schema {A, B}. The conditional relation of
A given B is defined as follows:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RA(A = a | B = b) = RAB(A = a,B = b)

This principle is easily generalized to sets of attributes.
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(Unconditional) Independence

Let RAB be a relation over the attribute schema {A, B}. We call A and B relationally
independent (w. r. t. RAB) if the following condition holds:

∀a ∈ dom(A) : ∀b ∈ dom(B) : RAB(A = a,B = b) = min{RA(A = a), RB(B = b)}

This principle is easily generalized to sets of attributes.



Object Representation

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 65

(Unconditional) Independence

Intuition: Fixing one (possible) value of A does not
restrict the (possible) values of B and vice versa.

Conditioning on any possible value of B always re-
sults in the same relation RA.

Alternative independence expression:

∀b ∈ dom(B) : RB(B = b) = 1 :

RA(A = a | B = b) = RA(A = a)



Decomposition

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 66

• Obviously, the original two-dimensional relation can be reconstructed from the
two one-dimensional ones, if we have (unconditional) independence.

• The definition for (unconditional) independence already told us how to do so:

RAB(A = a,B = b) = min{RA(A = a), RB(B = b)}

• Storing RA and RB is sufficient to represent the information of RAB.

• Question: The (unconditional) independence is a rather strong restriction. Are
there other types of independence that allow for a decomposition as well?
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Clearly, A and C are unconditionally dependent, i. e.
the relation RAC cannot be reconstructed from RA
and RC .
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However, given all possible values of B, all respective
conditional relations RAC show the independence of
A and C.

RAC(a, c | b) = min{RA(a | b), RC(c | b)}

With the definition of a conditional relation, the de-
composition description for RABC reads:

RABC(a, b, c) = min{RAB(a, b), RBC(b, c)}
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Again, we reconstruct the initial relation from
the cylindrical extentions of the two relations
formed by the attributes A, B and B,C.

It is possible since A and C are (relationally)
independent given B.
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Probability Foundations



Reminder: Probability Theory
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• Goal: Make statements and/or predictions about
results of physical processes.

• Even processes that seem to be simple at first sight
may reveal considerable difficulties when trying to predict.

• Describing real-world physical processes always calls
for a simplifying mathematical model.

• Although everybody will have some intuitive notion about
probability, we have to formally define the underlying
mathematical structure.

• Randomness or chance enters as the incapability of precisely
modelling a process or the inability of measuring the initial conditions.

◦ Example: Predicting the trajectory of a billard ball over more than 9 banks
requires more detailed measurement of the initial conditions (ball location,
applied momentum etc.) than physically possible according to Heisenberg’s
uncertainty principle.
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• We conduct an experiment that has a set Ω of possible outcomes.
E. g.:

◦ Rolling a die (Ω = {1, 2, 3, 4, 5, 6})

◦ Arrivals of phone calls (Ω = N0)

◦ Bread roll weights (Ω = R+)

• Such an outcome is called an elementary event.

• All possible elementary events are called the frame of discernment Ω
(or sometimes universe of discourse).

• The set representation stresses the following facts:

◦ All possible outcomes are covered by the elements of Ω.
(collectively exhaustive).

◦ Every possible outcome is represented by exactly one element of Ω.
(mutual disjoint).
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• Often, we are interested in higher-level events
(e. g. casting an odd number, arrival of at least 5 phone calls or
purchasing a bread roll heavier than 80 grams)

• Any subset A ⊆ Ω is called an event which occurs, if the outcome ω0 ∈ Ω of
the random experiment lies in A:

Event A ⊆ Ω occurs ⇔
∨

ω∈A

(ω = ω0) = true ⇔ ω0 ∈ A

• Since events are sets, we can define for two events A and B:

◦ A ∪B occurs if A or B occurs; A ∩B occurs if A and B occurs.

◦ A occurs if A does not occur (i. e., if Ω\A occurs).

◦ A and B are mutually exclusive, iff A ∩B = ∅.
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• A family of sets E = {E1, . . . , En} is called an event algebra,
if the following conditions hold:

◦ The certain event Ω lies in E .

◦ If E ∈ E , then E = Ω\E ∈ E .

◦ If E1 and E2 lie in E , then E1 ∪ E2 ∈ E and E1 ∩ E2 ∈ E .

• If Ω is uncountable, we require the additional property:

For a series of events Ei ∈ E , i ∈ N, the events
∞⋃

i=1

Ei and
∞⋂

i=1

Ei are also in E .

E is then called a σ-algebra.

Side remarks:

• Smallest event algebra: E = {∅, Ω}

• Largest event algebra (for finite or countable Ω): E = 2Ω = {A ⊆ Ω | true}
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• Given an event algebra E , we would like to assign every event E ∈ E its
probability with a probability function P : E → [0, 1].

• We require P to satisfy the so-called Kolmogorov Axioms:

◦ ∀E ∈ E : 0 ≤ P (E) ≤ 1

◦ P (Ω) = 1

◦ If E1, E2 ∈ E are mutually exclusive, then P (E1 ∪ E2) = P (E1) + P (E2).

• From these axioms one can conclude the following (incomplete) list of properties:

◦ ∀E ∈ E : P (E) = 1− P (E)

◦ P (∅) = 0

◦ For pairwise disjoint events E1, E2, . . . ∈ E holds:

P (
∞⋃

i=1

Ei) =
∞∑

i=1

P (Ei)

Note that for |Ω| <∞ the union and sum are finite also.
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Question 1: How to calculate P ?

Question 2: Are there “default” event algebras?

• Idea for question 1: We have to find a way of distributing (thus the
notion distribution) the unit mass of probability over all elements ω ∈ Ω.

◦ If Ω is finite or countable a probability mass function p is used:

p : Ω→ [0, 1] and
∑

ω∈Ω

p(ω) = 1

◦ If Ω is uncountable (i. e., continuous) a probability density
function f is used:

f : Ω→ R and
∫

Ω
f(ω) dω = 1
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• Idea for question 2 (“default” event algebras) we have to distinguish
again between the cardinalities of Ω:

◦ Ω finite or countable: E = 2Ω

◦ Ω uncountable, e. g. Ω = R: E = B(R)

• B(R) is the Borel Algebra, i. e., the smallest σ-algebra
that contains all closed intervals [a, b] ⊂ R with a < b.

• B(R) also contains all open intervals and single-item sets.

• It is sufficient to note here, that all intervals are contained

{[a, b] , ]a, b] , ]a, b[ , [a, b[ ⊂ R | a < b} ⊂ B(R)

because the event of a bread roll having a weight between
80 g and 90 g is represented by the interval [80, 90].
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• For a sample space A, an event algebra B (over A)
and a probability function C, we call the triple

(A, B,C)

a probability space.

Real World Model

(Ξ,X , Q) (Ω, E , P )
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• Let f : D →M be a function that assigns to every value of D a value in M .

• For every value of y ∈M we can ask which values of x ∈ D are mapped to y:

D ⊇ {x ∈ D | f(x) = y}
Def
= f−1(y)

• f−1(y) is called the preimage of y under f , denoted also as {f = y}.

• The notion can be generalized from y ∈M to sets B ⊆M :

D ⊇ {x ∈ D | f(x) ∈ B}
Def
= f−1(B)

• If f is bijective then ∀y ∈M :
∣∣∣f−1(y)

∣∣∣ = 1.

• Examples:

◦ sin−1(0) = {k · π | k ∈ Z}

◦ exp−1(1) = {0}

◦ sgn−1(1) = (0, +∞) ⊂ R
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We still need a means of mapping real-world outcomes in Ξ to our space Ω.

• A function X : D →M is called a random variable
iff the preimage of any value of M is an event (in some probability space).

• If X maps Ξ onto Ω, we define

PX(X ∈ A) = Q({ξ ∈ Ξ | X(ξ) ∈ A}).

• X may also map from Ω to another domain: X : Ω→ dom(X).
We then define:

PX(X ∈ A) = P ({ω ∈ Ω | X(ω) ∈ A}).

• If X is numeric, we call F (x) with

F (x) = P (X ≤ x)

the distribution function of X .
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Ω = {1, 2, 3, 4, 5, 6} X = id

p1(ω) = 1
6 F1(x) = P (X ≤ x)

1 2 3 4 5 6

1

6

ω

p1(ω)

1 2 3 4 5 6

1

0.5

x

F1(x)

∑

ω∈Ω

p1(ω) =
6∑

i=1

p1(ωi)

=
6∑

i=1

1

6
= 1

P (X ≤ x) =
∑

x′≤x

P (X = x′)

P (a < X ≤ b) = F1(b)− F1(a)

P (X = x) = P ({X = x}) = P (X−1(x)) = P ({ω ∈ Ω | X(ω) = x})
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Applied Probability Theory



Why (Kolmogorov) Axioms?
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• If P models an objectively observable probability, these axioms
are obviously reasonable.

• However, why should an agent obey formal axioms when modeling
degrees of (subjective) belief?

• Objective vs. subjective probabilities

• Axioms constrain the set of beliefs an agent can abide.

• Finetti (1931) gave one of the most plausible arguments why
subjective beliefs should respect axioms:

“When using contradictory beliefs, the agent will eventually fail.”
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• P (A) designates the unconditioned or a priori probability
that A ⊆ Ω occurs if no other additional information is present.

For example:

P (cavity) = 0.1

Note: Here, cavity is a proposition.

• A formally different way to state the same would be via
a binary random variable Cavity:

P (Cavity = true) = 0.1

• A priori probabilities are derived from statistical surveys or general rules.
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• In general a random variable can assume more than two values:

P ( Weather = sunny ) = 0.7

P ( Weather = rainy ) = 0.2

P ( Weather = cloudy) = 0.02

P ( Weather = snowy ) = 0.08

P (Headache = true ) = 0.1

• P (X) designates the vector of probabilities for the
(ordered) domain of the random variable X :

P (Weather) = 〈0.7, 0.2, 0.02, 0.08〉

P (Headache) = 〈0.1, 0.9〉

• Both vectors define the respective probability distributions
of the two random variables.
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• New evidence can alter the probability of an event.

• Example: The probability for cavity increases if information
about a toothache arises.

• With additional information present, the a priori knowledge
must not be used!

• P (A | B) designates the conditional or a posteriori probability
of A given the sole observation (evidence) B.

P (cavity | toothache) = 0.8

• For random variables X and Y P (X | Y ) represents the
set of conditional distributions for each possible value of Y .



Conditional Probabilities
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• P (Weather | Headache) consists of the following table:

h =̂ Headache = true ¬h =̂ Headache = false

Weather = sunny P (W = sunny | h) P (W = sunny | ¬h)

Weather = rainy P (W = rainy | h) P (W = rainy | ¬h)

Weather = cloudy P (W = cloudy | h) P (W = cloudy | ¬h)

Weather = snowy P (W = snowy | h) P (W = snowy | ¬h)

• Note that we are dealing with two distributions now!
Therefore each column sums up to unity!

• Formal definition:

P (A | B) =
P (A ∧B)

P (B)
if P (B) > 0



Conditional Probabilities
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P (A | B) =
P (A ∧B)

P (B)

• Product Rule: P (A ∧B) = P (A | B) · P (B)

• Also: P (A ∧B) = P (B | A) · P (A)

• A and B are independent iff

P (A | B) = P (A) and P (B | A) = P (B)

• Equivalently, iff the following equation holds true:

P (A ∧B) = P (A) · P (B)



Interpretation of Conditional Probabilities
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Caution! Common misinterpretation:

“P (A | B) = 0.8 means, that P (A) = 0.8, given B holds.”

This statement is wrong due to (at least) two facts:

• P (A) is always the a-priori probability,
never the probability of A given that B holds!

• P (A | B) = 0.8 is only applicable as long as no other evidence except B is present.
If C becomes known, P (A | B ∧ C) has to be determined.

In general we have:

P (A | B ∧ C) 6= P (A | B)

E. g. C → A might apply.
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• Let X1, . . . , Xn be random variables over the same framce of descernment Ω and
event algebra E . Then ~X = (X1, . . . , Xn) is called a random vector with

~X(ω) = (X1(ω), . . . , Xn(ω))

• Shorthand notation:

P ( ~X = (x1, . . . , xn)) = P (X1 = x1, . . . , Xn = xn) = P (x1, . . . , xn)

• Definition:

P (X1 = x1, . . . , Xn = xn) = P
({

ω ∈ Ω |
n∧

i=1

Xi(ω) = xi

})

= P
( n⋂

i=1

{Xi = xi}
)
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• Example: P (Headache, Weather) is the joint probability distribution of both
random variables and consists of the following table:

h =̂ Headache = true ¬h =̂ Headache = false

Weather = sunny P (W = sunny ∧ h) P (W = sunny ∧ ¬h)

Weather = rainy P (W = rainy ∧ h) P (W = rainy ∧ ¬h)

Weather = cloudy P (W = cloudy ∧ h) P (W = cloudy ∧ ¬h)

Weather = snowy P (W = snowy ∧ h) P (W = snowy ∧ ¬h)

• All table cells sum up to unity.
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All desired probabilities can be computed from a joint probability distribution.

toothache ¬toothache

cavity 0.04 0.06

¬cavity 0.01 0.89

• Example: P (cavity ∨ toothache) = P ( cavity ∧ toothache)

+ P (¬cavity ∧ toothache)

+ P ( cavity ∧ ¬toothache) = 0.11

• Marginalizations: P(cavity) = P ( cavity ∧ toothache)

+ P ( cavity ∧ ¬toothache) = 0.10

• Conditioning:

P (cavity | toothache) =
P (cavity ∧ toothache)

P (toothache)
=

0.04

0.04 + 0.01
= 0.80



Problems

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 94

• Easiness of computing all desired probabilities comes at an unaffordable price:

Given n random variables with k possible values each, the joint probability
distribution contains kn entries which is infeasible in practical applications.

• Hard to handle.

• Hard to estimate.

Therefore:

1. Is there a more dense representation of joint probability distributions?

2. Is there a more efficient way of processing this representation?

• The answer is no for the general case, however, certain dependencies and inde-
pendencies can be exploited to reduce the number of parameters to a practical
size.



Stochastic Independence
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• Two events A and B are stochastically independent iff

P (A ∧B) = P (A) · P (B)

⇔

P (A | B) = P (A) = P (A | B)

• Two random variables X and Y are stochastically independent iff

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : P (X = x, Y = y) = P (X = x) · P (Y = y)

⇔

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : P (X = x | Y = y) = P (X = x)

• Shorthand notation: P (X, Y ) = P (X) · P (Y ).

Note the formal difference between P (A) ∈ [0, 1] and P (X) ∈ [0, 1]|dom(X)|.
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• Let X , Y and Z be three random variables. We call X and Y conditionally
independent given Z, iff the following condition holds:

∀x ∈ dom(X) : ∀y ∈ dom(Y ) : ∀z ∈ dom(Z) :

P (X = x, Y = y | Z = z) = P (X = x | Z = z) · P (Y = y | Z = z)

• Shorthand notation: X ⊥⊥P Y | Z

• Let X = {A1, . . . , Ak}, Y = {B1, . . . , Bl} and Z = {C1, . . . , Cm} be three
disjoint sets of random variables. We call X and Y conditionally independent
given Z, iff

P (X,Y | Z) = P (X | Z) · P (Y | Z)⇔ P (X | Y ,Z) = P (X | Z)

• Shorthand notation: X ⊥⊥P Y | Z



Conditional Independence
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• The complete condition for X ⊥⊥P Y | Z would read as follows:

∀a1 ∈ dom(A1) : · · · ∀ak ∈ dom(Ak) :

∀b1 ∈ dom(B1) : · · · ∀bl ∈ dom(Bl) :

∀c1 ∈ dom(C1) : · · · ∀cm ∈ dom(Cm) :

P (A1 = a1, . . . , Ak = ak, B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

= P (A1 = a1, . . . , Ak = ak | C1 = c1, . . . , Cm = cm)

· P (B1 = b1, . . . , Bl = bl | C1 = c1, . . . , Cm = cm)

• Remarks:

1. If Z = ∅ we get (unconditional) independence.

2. We do not use curly braces ({}) for the sets if the context is clear. Likewise,
we use X instead of X to denote sets.
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(Weak) Dependence in the entire dataset: X and Y dependent.
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No Dependence in Group 1: X and Y conditionally independent given Group 1.
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No Dependence in Group 2: X and Y conditionally independent given Group 2.
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• dom(G) = {mal, fem} Geschlecht (gender)
• dom(S) = {sm, sm} Raucher (smoker)
• dom(M) = {mar, mar} Verheiratet (married)
• dom(P ) = {preg, preg} Schwanger (pregnant)

pGSMP
G = mal G = fem

S = sm S = sm S = sm S = sm

M = mar
P = preg 0 0 0.01 0.05

P = preg 0.04 0.16 0.02 0.12

M = mar
P = preg 0 0 0.01 0.01

P = preg 0.10 0.20 0.07 0.21
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P (G= fem) = P (G=mal) = 0.5 P (P=preg) = 0.08

P (S= sm) = 0.25 P (M=mar) = 0.4

• Gender and Smoker are not independent:

P (G= fem | S= sm) = 0.44 6= 0.5 = P (G= fem)

• Gender and Marriage are marginally independent but
conditionally dependent given Pregnancy:

P (fem, mar | preg) ≈ 0.152 6= 0.169 ≈ P (fem | preg) · P (mar | preg)



Bayes Theorem
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• Product Rule (for events A and B):

P (A ∩B) = P (A | B)P (B) and P (A ∩B) = P (B | A)P (A)

• Equating the right-hand sides:

P (A | B) =
P (B | A)P (A)

P (B)

• For random variables X and Y :

∀x∀y : P (Y =y | X =x) =
P (X =x | Y =y)P (Y =y)

P (X =x)

• Generalization concerning background knowledge/evidence E:

P (Y | X, E) =
P (X | Y, E)P (Y | E)

P (X | E)
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P (toothache | cavity) = 0.4

P (cavity) = 0.1 P (cavity | toothache) =
0.4 · 0.1

0.05
= 0.8

P (toothache) = 0.05

Why not estimate P (cavity | toothache) right from the start?

• Causal knowledge like P (toothache | cavity) is more robust than diagnostic
knowledge P (cavity | toothache).

• The causality P (toothache | cavity) is independent of the a priori
probabilities P (toothache) and P (cavity).

• If P (cavity) rose in a caries epidemic, the causality P (toothache | cavity) would
remain constant whereas both P (cavity | toothache) and P (toothache) would
increase according to P (cavity).

• A physician, after having estimated P (cavity | toothache), would not know a rule
for updating.



Relative Probabilities
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Assumption:
We would like to consider the probability of the diagnosis GumDisease as well.

P (toothache | gumdisease) = 0.7

P (gumdisease) = 0.02

Which diagnosis is more probable?

If we are interested in relative probabilities only (which may be sufficient for some
decisions), P (toothache) needs not to be estimated:

P (C | T )

P (G | T )
=

P (T | C)P (C)

P (T )
·

P (T )

P (T | G)P (G)

=
P (T | C)P (C)

P (T | G)P (G)
=

0.4 · 0.1

0.7 · 0.02

= 28.57



Normalization
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If we are interested in the absolute probability of P (C | T ) but do not know P (T ),
we may conduct a complete case analysis (according C) and exploit the fact that
P (C | T ) + P (¬C | T ) = 1.

P (C | T ) =
P (T | C)P (C)

P (T )

P (¬C | T ) =
P (T | ¬C)P (¬C)

P (T )

1 = P (C | T ) + P (¬C | T ) =
P (T | C)P (C)

P (T )
+

P (T | ¬C)P (¬C)

P (T )

P (T ) = P (T | C)P (C) + P (T | ¬C)P (¬C)



Normalization
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• Plugging into the equation for P (C | T ) yields:

P (C | T ) =
P (T | C)P (C)

P (T | C)P (C) + P (T | ¬C)P (¬C)

• For general random variables, the equation reads:

P (Y =y | X =x) =
P (X =x | Y =y)P (Y =y)

∑

∀y′∈dom(Y )

P (X =x | Y =y′)P (Y =y′)

• Note the “loop variable” y′. Do not confuse with y.
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• The patient complains about a toothache. From this first evidence the dentist
infers:

P (cavity | toothache) = 0.8

• The dentist palpates the tooth with a metal probe which catches into a fracture:

P (cavity | fracture) = 0.95

• Both conclusions might be inferred via Bayes rule. But what does the combined
evidence yield? Using Bayes rule further, the dentist might want to determine:

P (cavity | toothache ∧ fracture) =
P (toothache ∧ fracture | cavity) · P (cavity)

P (toothache ∧ fracture)



Multiple Evidences
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Problem:
He needs P (toothache∧catch | cavity), i. e. diagnostics knowledge for all combinations
of symptoms in general. Better incorporate evidences step-by-step:

P (Y | X, E) =
P (X | Y, E)P (Y | E)

P (X | E)

Abbreviations:

• C — cavity

• T — toothache

• F — fracture

C

T F

Objective:
Computing P (C | T, F ) with just causal statements of the form P ( · | C) and under
exploitation of independence relations among the variables.



Multiple Evidences
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• A priori: P (C)

• Evidence toothache: P (C | T ) = P (C)
P (T | C)

P (T )

• Evidence fracture: P (C | T, F ) = P (C | T )
P (F | C, T )

P (F | T )

T ⊥⊥ F | C ⇔ P (F | C, T ) = P (F | C)

P (C | T, F ) = P (C)
P (T | C)

P (T )

P (F | C)

P (F | T )

Seems that we still have to cope with symptom inter-dependencies?!



Multiple Evidences
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• Compound equation from last slide:

P (C | T, F ) = P (C)
P (T | C) P (F | C)

P (T ) P (F | T )

= P (C)
P (T | C) P (F | C)

P (F, T )

• P (F, T ) is a normalizing constant and can be computed
if P (F | ¬C) and P (T | ¬C) are known:

P (F, T ) = P (F, T | C)︸ ︷︷ ︸
P (F |C)P (T |C)

P (C) + P (F, T | ¬C)︸ ︷︷ ︸
P (F |¬C)P (T |¬C)

P (¬C)

• Therefore, we finally arrive at the following solution...



Multiple Evidences
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P (C | F, T ) =
P (C) P (T | C) P (F | C)

P (F | C) P (T | C) P (C) + P (F | ¬C) P (T | ¬C) P (¬C)

Note that we only use causal probabilities P ( · | C) together with the a priori
(marginal) probabilities P (C) and P (¬C).
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Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 113

Multiple evidences can be treated by reduction on

• a priori probabilities

• (causal) conditional probabilities for the evidence

• under assumption of conditional independence

General rule:

P (Z | X,Y ) = α P (Z) P (X | Z) P (Y | Z)

for X and Y conditionally independent given Z and with normalizing constant α.
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Marylin Vos Savant in her riddle column in the New York Times:

You are a candidate in a game show and have to choose between three doors. Behind
one of them is a Porsche, whereas behind the other two there are goats. After you chose
a door, the host Monty Hall (who knows what is behind each door) opens another (not
your chosen one) door with a goat. Now you have the choice between keeping your
chosen door or choose the remaining one.

Which decision yields the best chance of winning the Porsche?



Monty Hall Puzzle
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G You win the Porsche.

R You revise your decision.

A Behind your initially chosen door is (and remains) the Porsche.

P (G | R) = P (G,A | R) + P (G,A | R)

= P (G | A, R)P (A | R) + P (G | A, R)P (A | R)

= 0 · P (A | R) + 1 · P (A | R)

= P (A | R) = P (A) =
2

3

P (G | R) = P (G,A | R) + P (G,A | R)

= P (G | A, R)P (A | R) + P (G | A, R)P (A | R)

= 1 · P (A | R) + 0 · P (A | R)

= P (A | R) = P (A) =
1

3



Simpson’s Paradox
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Example: C = Patient takes medication, E = patient recovers

E ¬E
∑

Recovery rate
C 20 20 40 50%
¬C 16 24 40 40%∑

36 44 80

Men E ¬E
∑

Rec.rate Women E ¬E
∑

Rec.rate
C 18 12 30 60% C 2 8 10 20%
¬C 7 3 10 70% ¬C 9 21 30 30%

25 15 40 11 29 40

P (E | C) > P (E | ¬C)

but P (E | C,M) < P (E | ¬C,M)

P (E | C,W ) < P (E | ¬C,W )
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• Probabilistic reasoning is difficult and may be problematic:

◦ P (A ∧B) is not determined simply by P (A) and P (B):
P (A) = P (B) = 0.5 ⇒ P (A ∧B) ∈ [0, 0.5]

◦ P (C | A) = x, P (C | B) = y ⇒ P (C | A ∧B) ∈ [0, 1]
Probabilistic logic is not truth functional !

• Central problem: How does additional information affect the current knowledge?
I. e., if P (B | A) is known, what can be said about P (B | A ∧ C)?

• High complexity: n propositions → 2n full conjunctives

• Hard to specify these probabilities.



Summary
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• Uncertainty is inevitable in complex and dynamic scenarios
that force agents to cope with ignorance.

• Probabilities express the agent’s inability to vote for a
definitive decision. They model the degree of belief.

• If an agent violates the axioms of probability, it may exhibit
irrational behavior in certain circumstances.

• The Bayes rule is used to derive unknown probabilities from
present knowledge and new evidence.

• Multiple evidences can be effectively included into computations
exploiting conditional independencies.
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Probabilistic Causal Networks



The Big Objective(s)

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 120

In a wide variety of application fields two main problems need to be addressed over
and over:

1. How can (expert) knowledge of complex domains be efficiently rep-
resented?

2. How can inferences be carried out within these representations?

3. How can such representations be (automatically) extracted from
collected data?

We will deal with all three questions during the lecture.
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Available information

• “Engine type e1 can only be combined with transmission t2 or t5.”

• “Transmission t5 requires crankshaft c2.”

• “Convertibles have the same set of radio options as SUVs.”

Possible questions/inferences:

• “Can a station wagon with engine e4 be equipped with tire set y6?”

• “Supplier S8 failed to deliver on time. What production line
has to be modified and how?”

• “Are there any peculiarties within the set of cars that suffered
an aircondition failure?”



Example 2: Medical reasoning
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Available information:

• “Malaria is much less likely than flu.”

• “Flu causes cough and fever.”

• “Nausea can indicate malaria as well as flu.”

• “Nausea never indicated pneunomia before.”

Possible questions/inferences

• “The patient has fever. How likely is he to have malaria?”

• “How much more likely does flu become if we can exclude malaria?”



Common Problems
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Both scenarios share some severe problems:

• Large Data Space
It is intractable to store all value combinations, i. e. all car part combinations or
inter-disease dependencies.

(Example: VW Bora has 10200 theoretical value combinations∗)

• Sparse Data Space
Even if we could handle such a space, it would be extremely sparse, i. e. it would
be impossible to find good estimates for all the combinations.

(Example: with 100 diseases and 200 symptoms, there would be about 1062 dif-
ferent scenarios for which we had to estimate the probability.∗)

∗ The number of particles in the observable universe is estimated to be between 1078 and 1085.
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• Given: A large (high-dimensional) distribution δ representing the
domain knowledge.

• Desired: A set of smaller (lower-dimensional) distributions {δ1, . . . , δs}
(maybe overlapping) from which the original δ could be
reconstructed with no (or as few as possible) errors.

• With such a decomposition we can draw any conclusions from {δ1, . . . , δs} that
could be inferred from δ — without, however, actually reconstructing it.
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• Let us consider a car configuration is described by three attributes:

◦ Engine E, dom(E) = {e1, e2, e3}

◦ Breaks B, dom(B) = {b1, b2, b3}

◦ Tires T , dom(T ) = {t1, t2, t3, t4}

• Therefore the set of all (theoretically) possible car configurations is:

Ω = dom(E)× dom(B)× dom(T )

• Since not all combinations are technically possible (or wanted by marketing) a set
of rules is used to cancel out invalid combinations.



Example: Car Manufacturing
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Possible car configurations
• Every cube designates a valid

value combination.

• 10 car configurations in our model.

• Different colors are intended to
distinguish the cubes only.



Example
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2-D projections
• Is it possible to reconstruct δ from

the δi?



Example: Reconstruction of δ with δBE and δET
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Example: Reconstruction of δ with δBE and δET
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• Lecture theatre in winter: Waiting for Mr. K and Mr. B.
Not clear whether there is ice on the roads.

• 3 variables:

◦ E road condition: dom(E) = {ice,¬ice}

◦ K K had an accident: dom(K) = {yes, no}

◦ B B had an accident: dom(B) = {yes, no}

• Ignorance about these states is modelled via the observer’s belief.

E

K B

6 6 ↓ E influences K and B

(the more ice the more accidents)

↑ Knowledge about accident increases belief in ice



Example
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A priori knowledge Evidence Inferences
E unknown B has accident ⇒ E = ice more likely

⇒ K has accident more likely
E = ¬ice B has accident ⇒ no change in belief about E

⇒ no change in belief about accident of K

E unknown K and B dependent
E known K and B independent

E

K B



Causal Dependence vs. Reasoning
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Rule: A entails B with certainty x: A
x
→ B

• Deduction (→):
A and A

x
→ B, therefore B more likely as effect (causality)

• Abduction (←):
B and A

x
→ B, therefore A more likely as cause (no causality)

For this reason, the notion “dependency model” is to be preferred to “causal network”.
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Is it possible to exploit local constraints (wherever they may come from — both struc-
tural and expert knowledge-based) in a way that allows for a decomposition of the large
(intractable) distribution P (X1, . . . , Xn) into several sub-structures {C1, . . . , Cm}
such that:

• The collective size of those sub-structures is much smaller than that of the original
distribution P .

• The original distribution P is recomposable (with no or at least as few as possible
errors) from these sub-structures in the following way:

P (X1, . . . , Xn) =
m∏

i=1

Ψi(ci)

where ci is an instantiation of Ci and Ψi(ci) ∈ R
+ a factor potential.



The Big Picture / Lecture Roadmap
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Probabilistic Causal Networks
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Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes rep-
resent propositions or variables and the directed edges model a direct causal dependence
between the connected nodes. The strength of dependence is defined by conditional
probabilities.

X1

X2 X3

X4 X5

X6

In general (according chain rule):

P (X1, . . . , X6) = P (X6 | X5, . . . , X1)·

P (X5 | X4, . . . , X1)·

P (X4 | X3, X2, X1)·

P (X3 | X2, X1)·

P (X2 | X1)·

P (X1)
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Probabilistic causal networks are directed acyclic graphs (DAGs) where the nodes rep-
resent propositions or variables and the directed edges model a direct causal dependence
between the connected nodes. The strength of dependence is defined by conditional
probabilities.

X1

X2 X3

X4 X5

X6

According graph (independence structure):

P (X1, . . . , X6) = P (X6 | X5)·

P (X5 | X2, X3)·

P (X4 | X2)·

P (X3 | X1)·

P (X2 | X1)·

P (X1)



Formal Framework
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Nomenclature for the next slides:

• X1, . . . , Xn Variables
(properties, attributes, random variables, propositions)

• Ω1, . . . , Ωn respective finite domains
(also designated with dom(Xi))

• Ω =
n

×
i=1

Ωi Universe of Discourse (tuples that characterize objects
described by X1, . . . , Xn)

• Ωi = {x
(1)
i , . . . , x

(ni)
i } n = 1, . . . , n, ni ∈ N
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• Let Ω∗ be the real universe of objects under consideration (e. g. population of
people, collection of cars, customer transactions, etc.). Then the random vector
~X = (X1, . . . , Xn) describes each element ω∗ ∈ Ω∗ in terms of the universe of
discourse Ω:

~X : Ω∗ → Ω with ~X(ω∗) = (X1(ω∗), . . . , Xn(ω∗))

• If (Ω∗, E , Q) is an intrinsic probability space acting in the background, then it
induces — in combination with ~X — a probability measure P over Ω:

∀(x1, . . . , xn) ∈ Ω :

P ({(x1, . . . , xn)}) = P (X1 = x1, . . . , Xn = xn)

= Q({ω∗ ∈ Ω∗ |
n∧

i=1

Xi = xi})



Formal Framework
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• The product space (Ω, 2Ω, P ) is unique iff P ({(x1, . . . , xn)}) is specified

for all xi ∈ {x
(1)
i , . . . , x

(ni)
i }, i = 1, . . . , n.

• When the distribution P (X1, . . . , Xn) is given in tabular form, then
∏n

i=1 |Ωi|
entries are necessary.

• For variables with |Ωi| ≥ 2 at least 2n entries.

• The application of DAGs allows for the representation of existing (in)dependencies.



Constructing a DAG
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input P (X1, . . . , Xn)
output a unique DAG G

1: Set the nodes of G to {X1, . . . , Xn}.

2: Choose a total ordering on the set of variables
(e. g. X1 ≺ X2 ≺ · · · ≺ Xn)

3: For Xi find the smallest (uniquely determinable) set Si ⊆ {X1, . . . , Xn} sucht
that P (Xi | Si) = P (Xi | X1 . . . , Xi−1).

4: Connect all nodes in Si with Xi and store P (Xi | Si) as quantization of the
dependencies for that node Xi (given its parents).

5: return G



Belief Network
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• A Belief Network (V, E, P ) consists of a set V = {X1, . . . , Xn} of random
variables and a set E of directed edges between the variables.

• Each variable has a finite set of mutual exclusive and collectively exhaustive states.

• The variables in combination with the edges form a directed, acyclich graph.

• Each variable with parent nodes B1, . . . , Bm is assigned a
potential table P (A | B1, . . . , Bm).

• Note, that the connections between the nodes not necessarily express a causal
relationship.

• For every belief network, the following equation holds:

P (V ) =
∏

v∈V :P (c(v))>0

P (v | c(v))

with c(v) being the parent nodes of v.



Example
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• Let a1, a2, a3 be three blood groups and b1, b2, b3 three indications of a blood
group test.

Variables: A (blood group) B (indication)

Domains: ΩA = {a1, a2, a3} ΩB = {b1, b2, b3}

• It is conjectured that there is a causal relationship between the variables.

• A and B constitute random variables w. r. t. (Ω∗, E , Q).

Ω = ΩA × ΩB A : Ω∗→ ΩA, B : Ω∗→ ΩB

• A, B and (Ω∗, E , Q) induce the probability space (Ω, 2Ω, P ) with

P
(
{(a, b)}

)
= Q

(
{ω∗ ∈ Ω∗ | A(ω∗) = a ∧B(ω∗) = b}

)
:

P ({(ai, bj)}) b1 b2 b3
∑

a1 0.64 0.08 0.08 0.8
a2 0.01 0.08 0.01 0.1
a3 0.01 0.01 0.08 0.1∑

0.66 0.17 0.17 1

A B

P (A, B) = P (B | A) · P (A)

We are dealing with a belief net-
work.
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Choice of universe of discourse

Variable Domain
A metastatic cancer {a1, a2}

B increased serum calcium {b1, b2}

C brain tumor {c1, c2}

D coma {d1, d2}

E headache {e1, e2}

(·1 — present,·2 — absent)

Ω = {a1, a2} × · · · × {e1, e2}

|Ω| = 32

Analysis of dependencies
A

B C

D E
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Choice of probability parameters

P (a, b, c, d, e)
abbr.

= P (A = a,B = b, C = c,D = d,E = e)

= P (e | c)P (d | b, c)P (c | a)P (b | a)P (a)
6

Shorthand notation

• 11 values to store instead of 31

• Consult experts, textbooks, case studies, surveys, etc.

Calculation of conditional probabilities

Calculation of marginal probabilities



Crux of the Matter
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• Knowledge acquisition (Where do the numbers come from?)
→ learning strategies

• Computational complexities
→ exploit independencies

Problem:

• When does the independency of X and Y given Z hold in (V, E, P )?

• How can we determine P (X, Y | Z) = P (X | Z)P (Y | Z) solely using the graph
structure?
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Converging Connection

A B

C

Meal quality

A quality of ingredients

B cook’s skill

C meal quality

• If C is not instantiated (i. e., no value specified/observed), A and B are marginally
independent.

• After instantiation (observation) of C the variables A and B become conditionally
dependent given C.

• Evidence can only be transferred over a converging connection if the variable in
between (or one of its successors) is initialized.
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Diverging Connection

A B

C

Diagnosis

A body temperature

B cough

C disease

• If C is unknown, knowledge about A ist relevant for B and vice versa, i. e. A and
B are marginally dependent.

• However, if C is observed, A and B become conditionally independent given C.

• A influences B via C. If C is known it in a way blocks the information from
flowing from A to B, thus rendering A and B (conditionally) independent.
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Serial Connection

A B

C

Accidents

A rain

B accident risk

C road conditions

• Analog scenario to case 2

• A influences C and C influences B. Thus, A influences B.
If C is known, it blocks the path between A and B.
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A B

C

Converging Connection: Marginal Independence

• Decomposition according to graph:

P (A, B,C) = P (C | A,B) · P (A) · P (B)

• Embedded Independence:

P (A, B,C) =
P (A, B,C)

P (A, B)
· P (A) · P (B) with P (A, B) 6= 0

P (A, B) = P (A) · P (B)

⇒ A⊥⊥B | ∅
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A B

C

Diverging Connection: Conditional Independence

• Decomposition according to graph:

P (A, B,C) = P (A | C) · P (B | C) · P (C)

• Embedded Independence:

P (A, B | C) = P (A | C) · P (B | C)

⇒ A⊥⊥B | C

• Alternative derivation:

P (A, B,C) = P (A | C) · P (B, C)

P (A | B,C) = P (A | C)

⇒ A⊥⊥B | C
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A B

C

Serial Connection: Conditional Independence

• Decomposition according to graph:

P (A, B,C) = P (B | C) · P (C | A) · P (A)

• Embedded Independence:

P (A, B,C) = P (B | C) · P (C,A)

P (B | C,A) = P (B | C)

⇒ A⊥⊥B | C
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Trivial Cases:

• Marginal Independence:

A B P (A, B) = P (A) · P (B)

• Marginal Dependence:

A B P (A, B) = P (B | A) · P (A)
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Question: Are X2 and X3 independent given X1?

X1

X2 X3

X4 X5

X6

evidence X1 = x1
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Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 155

Let G = (V, E) a DAG and X, Y, Z ∈ V three nodes.

a) A set S ⊆ V \{X, Y } d-separates X and Y , if S blocks all
paths between X and Y . (paths may also route in opposite edge direction)

b) A path π is d-separated by S if at least one pair of consecutive edges along π is
blocked. There are the following blocking conditions:

1. X ← Y → Z tail-to-tail

2.
X ← Y ← Z

head-to-tail
X → Y → Z

3. X → Y ← Z head-to-head

c) Two edges that meet tail-to-tail or head-to-tail in node Y are blocked if Y ∈ S.

d) Two edges meeting head-to-head in Y are blocked if neither Y nor its successors
are in S.
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If S ⊆ V \{X, Y } d-separates X and Y in a Belief network (V, E, P ) then X and Y
are conditionally independent given S:

P (X, Y | S) = P (X | S) · P (Y | S)

Application to the previous example:

X1

X2 X3

X4 X5

X6

Paths: π1 = 〈X2−X1−X3〉, π2 = 〈X2−X5−X3〉
π3 = 〈X2−X4−X1−X3〉, S = {X1}

π1 X2←X1→X3 tail-to-tail
X1 ∈ S ⇒ π1 is blocked by S

π2 X2→X5←X3 head-to-head
X5, X6 /∈ S ⇒ π2 is blocked by S

π3 X4←X1→X3 tail-to-tail
X2→X4←X1 head-to-head
both connections are blocked ⇒ π3 is blocked
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• Answer: X2 and X3 are d-separated via {X1}. Therefore X2 and X3 become
conditionally independent given X1.

S = {X1, X4} ⇒ X2 and X3 are d-separated by S

S = {X1, X6} ⇒ X2 and X3 are not d-separated by S
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A B C

D E F G

H I J

K L

M

Are A and L conditionally independent given {B,M}?
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Question: Is it possible to use a formal scheme to infer new
conditional independence (CI) statements from
a set of initial CIs?

Repetition

Let (Ω, E , P ) be a probability space and W, X, Y, Z disjoint subsets of variables. If X
and Y are conditionally independent given Z we write:

X ⊥⊥P Y | Z

Often, the following (equivalent) notation is used:

IP (X | Z | Y ) or IP (X, Y | Z)

If the underlying space is known the index P is omitted.
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Let (Ω, E , P ) be a probability space and W, X, Y and Z four disjoint subsets of random
variables (over Ω). Then the propositions

a) Symmetry: (X ⊥⊥P Y | Z) ⇒ (Y ⊥⊥P X | Z)

b) Decomposition: (W ∪X ⊥⊥P Y | Z) ⇒ (W ⊥⊥P Y | Z) ∧ (X ⊥⊥P Y | Z)

c) Weak Union: (W ∪X ⊥⊥P Y | Z) ⇒ (X ⊥⊥P Y | Z ∪W )

d) Contraction: (X ⊥⊥P Y | Z ∪W ) ∧ (W ⊥⊥P Y | Z) ⇒ (W ∪X ⊥⊥P Y | Z)

are called the Semi-Graphoid Axioms. The above propositions and

e) Intersection: (W ⊥⊥P Y | Z∪X)∧(X ⊥⊥P Y | Z∪W ) ⇒ (W∪X ⊥⊥P Y | Z)

are called the Graphoid Axioms.
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Y

Z

W X

Y

Z

W X

Y

Z

W X

⇒ ∧

Drawings adapted from [Castillo et al. 1997].



Weak Union

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 162

Y

Z

W X

Y

Z

W X

Y

Z

W X

⇒ ∧

Learning irrelevant information W cannot render ir-
relevant information X relevant.

Drawings adapted from [Castillo et al. 1997].
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Y

Z

W X

Y

Z

W X

Y

Z

W X

∧ ⇒

If X is irrelevant (to Y) after having learnt some
irrelevant information W, then X must have been
irrelevant before.

Drawings adapted from [Castillo et al. 1997].
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Y

Z

W X

Y

Z

W X

Y

Z

W X

∧ ⇒

Unless W affects Y when X is known or X affects
Y when W is known, neither X nor W nor their
combination can affect Y .

Drawings adapted from [Castillo et al. 1997].
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Proposition: B⊥⊥C | A

Proof: D⊥⊥A, C | ∅ ∧ B⊥⊥C | A, D

w. union
=⇒ D⊥⊥C | A ∧ B⊥⊥C | A,D

symm.
⇐⇒ C ⊥⊥D | A ∧ C ⊥⊥B | A,D

contr.
=⇒ C ⊥⊥B,D | A

decomp.
=⇒ C ⊥⊥B | A

symm.
⇐⇒ B⊥⊥C | A

D

A

E

B

C
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Propagation in Belief Networks
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• Given: Belief network (V, E, P ) with tree structure and P (V ) > 0.
Set W ⊆ V of instantiated variables where
a priori knowledge W 6= ∅ is allowed

• Desired: P (B | W ) for all B ∈ V

• Notation: W−B subset of those variables of W that belong
to the subtree of (V, E) that has root B

W+
B = W\W−B

s(B) set of direct successors of B

ΩB domain of B

b∗ value that B is instantiated with



Example

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 168

H

G A

F K

J C M N

B

LW+
B = {F,K} W−B = {L,M}

s(B) = {C,M,N}

W = {F,K, L, M}
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P (B = b |W ) = P (b | W−B ∪W+
B ) with B 6∈W

=
P (W−B ∪W+

B | b) P (b)

P (W−B ∪W+
B )

=
P (W−B | b) P (W+

B | b) P (b)

P (W−B ∪W+
B )

=
P (W−B | b) P (b | W+

B )

P (W−B ∪W+
B ) P (W+

B )

= βB,W P (W−B | b)
︸ ︷︷ ︸

Evidence from ”‘below”’

P (b | W+
B )

︸ ︷︷ ︸
Evidence from ”‘above”’
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Since we ignore the constant βB,W for the derivations below, the following designations
are used instead of P (·):

π-values and λ-values

Let B ∈ V be a variable and b ∈ ΩB a value of its domain. We define the π- and
λ-values as follows:

λ(b) =






P (W−B | b) if B 6∈ W

1 if B ∈ W ∧ b∗ = b

0 if B ∈ W ∧ b∗ 6= b

π(b) = P (b | W+
B )
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λ(b) =
∏

C∈s(B)

P (W−C | b) if B ∈ W

λ(b) = 1 if B leaf in (V, E)

π(b) = P (b) if B root in (V, E)

P (b | W ) = αB,W · λ(b) · π(b)
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λ-message

Let B ∈ V be an attribute and C ∈ s(B) its direct children with the respective
domains dom(B) = {B1, . . . , bi, . . . , bk} and dom(C) = {c1, . . . , cj, . . . , cm}.

λC→B(bi)
Def
=

m∑

j=1

P (cj | bi) · λ(cj), i = 1, . . . , k

The vector

~λC→B
Def
=

(
λC→B(bi)

)k

i=1

is called λ-message from C to B.
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Let B ∈ V an attribute an b ∈ dom(B) a value of its domain.
Then

λ(b) =






ρB,W ·
∏

C∈s(B)

λC(b) if B /∈W

1 if B ∈W ∧ b = b∗

0 if B ∈W ∧ b 6= b∗

with ρB,W being a positive constant.
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π-message

Let B ∈ V be a non-root node in (V, E) and A ∈ V its parent
with domain dom(A) = {a1, . . . , aj, . . . , am}.

j = 1, . . . , m :

πA→B(aj)
Def
=






π(aj) ·
∏

C∈s(A)\{B}

λC(aj) if A /∈ W

1 if A ∈ W ∧ a = a∗

0 if A ∈ W ∧ a 6= a∗

The vector

~πA→B
Def
=

(
πA→B(aj)

)m

j=1

is called π-message from A to B.
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Let B ∈ V be a non-root node in (V, E) and A the parent node of B.
Further let b ∈ dom(B) be a value of B’s domain.

π(b) = µB,W ·
∑

a∈dom(A)

P (b | a) · πA→B(a)

Let A /∈W a non-instantiated attribute and P (V ) > 0.

πA→B(aj) = π(aj) ·
∏

C∈s(A)\{B}

λC→A(aj)

= τB,W ·
P (aj | W )

λB→A(aj)
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Belief Tree:

A

B D

C

π λ P
a1
a2

π λ P
d1
d2

π λ P
b1
b2

π λ P
c1
c2

πA→D

λD→A

πA→B

λB→A

λC→B

πB→C

Parameters:

P (a1) = 0.1 P (b1 | a1) = 0.7

P (b1 | a2) = 0.2

P (d1 | a1) = 0.8 P (c1 | b1) = 0.4

P (d1 | a2) = 0.4 P (c1 | b2) = 0.001

Desired:
∀X ∈ {A, B,C,D} : P (X | ∅) = ?



Propagation in Belief Trees (2)

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 177

Belief Tree:

A

B D

C

π λ P
a1 1
a2 1

π λ P
d1 1
d2 1

π λ P
b1 1
b2 1

π λ P
c1 1
c2 1

(
a1
1 ,

a2
1 )

(
a1
1 ,

a2
1 )

(
b1
1 ,

b2
1 )

Initialization Phase:

• Set all λ-messages and
λ-values to 1.
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 1
d2 1

π λ P
b1 1
b2 1

π λ P
c1 1
c2 1

(
a1
1 ,

a2
1 )

(
a1
1 ,

a2
1 )

(
b1
1 ,

b2
1 )

Initialization Phase:

• Set all λ-messages and
λ-values to 1.
• π(a1) = P (a1) and

π(a2) = P (a2)
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 1
d2 1

π λ P
b1 1
b2 1

π λ P
c1 1
c2 1

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
b1
1 ,

b2
1 )

Initialization Phase:

• Set all λ-messages and
λ-values to 1.
• π(a1) = P (a1) and

π(a2) = P (a2).
• A sends π-messages to

B and D.
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 0.44 1 0.44
d2 0.56 1 0.56

π λ P
b1 0.25 1 0.25
b2 0.75 1 0.75

π λ P
c1 1
c2 1

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
b1
1 ,

b2
1 )

Initialization Phase:

• Set all λ-messages and
λ-values to 1.
• π(a1) = P (a1) and

π(a2) = P (a2).
• A sends π-messages to

B and D.
• B and D update their

π-values.
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 0.44 1 0.44
d2 0.56 1 0.56

π λ P
b1 0.25 1 0.25
b2 0.75 1 0.75

π λ P
c1 1
c2 1

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
b1

0.25,
b2

0.75)

(
b1
1 ,

b2
1 )

Initialization Phase:

• Set all λ-messages and
λ-values to 1.
• π(a1) = P (a1) and

π(a2) = P (a2).
• A sends π-messages to

B and D.
• B and D update their

π-values.
• B sends π-message to C.
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 0.44 1 0.44
d2 0.56 1 0.56

π λ P
b1 0.25 1 0.25
b2 0.75 1 0.75

π λ P
c1 0.10075 1 0.10075
c2 0.89925 1 0.89925

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
b1

0.25,
b2

0.75)

(
b1
1 ,

b2
1 )

Initialization Phase:

• Set all λ-messages and
λ-values to 1.
• π(a1) = P (a1) and

π(a2) = P (a2).
• A sends π-messages to

B and D.
• B and D update their

π-values.
• B sends π-message to C.
• C updates it π-value.



Propagation in Belief Trees (8)
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Belief Tree:

A

B D

C

π λ P
a1 0.1 1 0.1
a2 0.9 1 0.9

π λ P
d1 0.44 1 0.44
d2 0.56 1 0.56

π λ P
b1 0.25 1 0.25
b2 0.75 1 0.75

π λ P
c1 0.10075 1 0.10075
c2 0.89925 1 0.89925

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
a1
0.1,

a2
0.9)

(
a1
1 ,

a2
1 )

(
b1

0.25,
b2

0.75)

(
b1
1 ,

b2
1 )

Initialization Phase:

• Set all λ-messages and
λ-values to 1.
• π(a1) = P (a1) and

π(a2) = P (a2).
• A sends π-messages to

B and D.
• B and D update their

π-values.
• B sends π-message to C.
• C updates it π-value.
• Initialization finished.



Larger Network (1): Parameters
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A

B C

D E F G

H I

P (A) ∅
a1 0.4
a2 0.6

P (B | A) a1 a2
b1 0.2 0.3
b2 0.8 0.7

P (C | A) a1 a2
c1 0.1 0.25
c2 0.9 0.75

P (D | B) b1 b2
d1 0.5 0.35
d2 0.5 0.65

P (E | B) b1 b2
e1 0.15 0.45
e2 0.85 0.55

P (F | C) c1 c2
f1 0.3 0.6
f2 0.7 0.4

P (G | C) c1 c2
g1 0.25 0.1
g2 0.75 0.9

P (H | F ) f1 f2
h1 0.65 0.2
h2 0.35 0.8

P (I | F ) f1 f2
i1 0.25 0.5
i2 0.75 0.5



Larger Network (2): After Initialization
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A

B C

D E F G

H I

A π λ P
a1 0.4 1 0.4
a2 0.6 1 0.6

B π λ P
b1 0.26 1 0.26
b2 0.74 1 0.74

C π λ P
c1 0.19 1 0.19
c2 0.81 1 0.81

D π λ P
d1 0.389 1 0.389
d2 0.611 1 0.611

E π λ P
e1 0.372 1 0.327
e2 0.628 1 0.628

F π λ P
f1 0.543 1 0.543
f2 0.457 1 0.457

G π λ P
g1 0.1285 1 0.1285
g2 0.8715 1 0.8715

H π λ P
h1 0.4444 1 0.4444
h2 0.5556 1 0.5556

I π λ P
i1 0.3643 1 0.3643
i2 0.6357 1 0.6357



Larger Network (3): Set Evidence e1, g1, h1
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A

B C

D E F G

H I

A π λ P
a1 0.4 1 0.4
a2 0.6 1 0.6

B π λ P
b1 0.26 1 0.26
b2 0.74 1 0.74

C π λ P
c1 0.19 1 0.19
c2 0.81 1 0.81

D π λ P
d1 0.389 1 0.389
d2 0.611 1 0.611

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 1 0.543
f2 0.457 1 0.457

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3643 1 0.3643
i2 0.6357 1 0.6357



Larger Network (4): Propagate Evidence
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A

B C

D E F G

H I

(
b1
1.0,

b2
1.0)

(
b1

0.15,
b2

0.45)
(

c1
1.0,

c2
1.0)

(
c1

0.25,
c2
0.1)

(
f1

0.65,
f2
0.2)

(
f1
1.0,

f2
1.0)

A π λ P
a1 0.4 1 0.4
a2 0.6 1 0.6

B π λ P
b1 0.26 1 0.26
b2 0.74 1 0.74

C π λ P
c1 0.19 1 0.19
c2 0.81 1 0.81

D π λ P
d1 0.389 1 0.389
d2 0.611 1 0.611

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 1 0.543
f2 0.457 1 0.457

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3643 1 0.3643
i2 0.6357 1 0.6357



Larger Network (5): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
b1
1.0,

b2
1.0)

(
b1

0.15,
b2

0.45)
(

c1
1.0,

c2
1.0)

(
c1

0.25,
c2
0.1)

(
f1

0.65,
f2
0.2)

(
f1
1.0,

f2
1.0)

A π λ P
a1 0.4 1 0.4
a2 0.6 1 0.6

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.25 0.3696
c2 0.81 0.1 0.6304

D π λ P
d1 0.389 1 0.389
d2 0.611 1 0.611

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 0.65 0.7943
f2 0.457 0.2 0.2057

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3643 1 0.3643
i2 0.6357 1 0.6357



Larger Network (6): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1

0.39,
a2

0.36)

(
b1

0.1048,
b2

0.8952)

(
c1

0.335,
c2

0.47)

(
f1

0.7943,
f2

0.2057)

A π λ P
a1 0.4 1 0.4
a2 0.6 1 0.6

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.25 0.3696
c2 0.81 0.1 0.6304

D π λ P
d1 0.389 1 0.389
d2 0.611 1 0.611

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 0.65 0.7943
f2 0.457 0.2 0.2057

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3643 1 0.3643
i2 0.6357 1 0.6357



Larger Network (7): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1

0.39,
a2

0.36)

(
b1

0.1048,
b2

0.8952)

(
c1

0.335,
c2

0.47)

(
f1

0.7943,
f2

0.2057)

A π λ P
a1 0.4 0.39 0.4194
a2 0.6 0.36 0.5806

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.0838 0.2948
c2 0.81 0.047 0.7052

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 0.65 0.7943
f2 0.457 0.2 0.2057

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3014 1 0.3014
i2 0.6986 1 0.6986



Larger Network (8): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1

0.0507,
a2

0.0562)

(
c1

0.3696,
c2

0.6304)

A π λ P
a1 0.4 0.39 0.4194
a2 0.6 0.36 0.5806

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.0838 0.2948
c2 0.81 0.047 0.7052

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.543 0.65 0.7943
f2 0.457 0.2 0.2057

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3014 1 0.3014
i2 0.6986 1 0.6986



Larger Network (9): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1

0.0507,
a2

0.0562)

(
c1

0.3696,
c2

0.6304)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.0838 0.2948
c2 0.81 0.047 0.7052

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.4891 0.65 0.7568
f2 0.5109 0.2 0.2432

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3014 1 0.3014
i2 0.6986 1 0.6986



Larger Network (10): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1

1.0115,
a2

1.6819) (
a1

0.4194,
a2

0.5806)

(
f1

0.7568,
f2

0.2432)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.26 0.15 0.1048
b2 0.74 0.45 0.8952

C π λ P
c1 0.19 0.0838 0.2948
c2 0.81 0.047 0.7052

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.4891 0.65 0.7568
f2 0.5109 0.2 0.2432

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3014 1 0.3014
i2 0.6986 1 0.6986



Larger Network (11): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
a1

1.0115,
a2

1.6819) (
a1

0.4194,
a2

0.5806)

(
f1

0.7568,
f2

0.2432)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.7077 0.15 0.1061
b2 1.9865 0.45 0.8939

C π λ P
c1 0.1871 0.0838 0.2910
c2 0.8129 0.047 0.7090

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.4891 0.65 0.7568
f2 0.5109 0.2 0.2432

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3108 1 0.3108
i2 0.6892 1 0.6892



Larger Network (12): Propagate Evidence, cont.

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 195

A

B C

D E F G

H I

(
b1

0.1048,
b2

0.8952) (
c1

0.8687,
c2

1.5085)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.7077 0.15 0.1061
b2 1.9865 0.45 0.8939

C π λ P
c1 0.1871 0.0838 0.2910
c2 0.8129 0.047 0.7090

D π λ P
d1 0.3657 1 0.3657
d2 0.6343 1 0.6343

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 0.4891 0.65 0.7568
f2 0.5109 0.2 0.2432

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3108 1 0.3108
i2 0.6892 1 0.6892



Larger Network (13): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
b1

0.1048,
b2

0.8952) (
c1

0.8687,
c2

1.5085)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.7077 0.15 0.1061
b2 1.9865 0.45 0.8939

C π λ P
c1 0.1871 0.0838 0.2910
c2 0.8129 0.047 0.7090

D π λ P
d1 0.3659 1 0.3659
d2 0.6341 1 0.6341

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 1.1657 0.65 0.7577
f2 1.2115 0.2 0.2423

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3108 1 0.3108
i2 0.6892 1 0.6892



Larger Network (14): Propagate Evidence, cont.
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A

B C

D E F G

H I

(
f1

0.7577,
f2

0.2423)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.7077 0.15 0.1061
b2 1.9865 0.45 0.8939

C π λ P
c1 0.1871 0.0838 0.2910
c2 0.8129 0.047 0.7090

D π λ P
d1 0.3659 1 0.3659
d2 0.6341 1 0.6341

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 1.1657 0.65 0.7577
f2 1.2115 0.2 0.2423

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3108 1 0.3108
i2 0.6892 1 0.6892



Larger Network (15): Finished
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A

B C

D E F G

H I

(
f1

0.7577,
f2

0.2423)

A π λ P
a1 0.4 0.0198 0.3945
a2 0.6 0.0202 0.6055

B π λ P
b1 0.7077 0.15 0.1061
b2 1.9865 0.45 0.8939

C π λ P
c1 0.1871 0.0838 0.2910
c2 0.8129 0.047 0.7090

D π λ P
d1 0.3659 1 0.3659
d2 0.6341 1 0.6341

E π λ P
e1 1 1
e2 0 0

F π λ P
f1 1.1657 0.65 0.7577
f2 1.2115 0.2 0.2423

G π λ P
g1 1 1
g2 0 0

H π λ P
h1 1 1
h2 0 0

I π λ P
i1 0.3106 1 0.3106
i2 0.6894 1 0.6894

————————————————————
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Propagation in Clique Trees



Problems
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• The propagation algorithm as presented can only deal with trees.

• Can be extended to polytrees (i. e. singly connected graphs with multiple parents
per node).

• However, it cannot handle networks that contains loops.



Idea
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• Combine nodes of the original (primary) graph structure

• These groups form the nodes of a secondary structure

• Find a transformation that yields tree structure



Prerequisites
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Complete Graph

An undirected Graph G = (V, E) is called complete, if every pair of (distinct) nodes
is connected by an edge.

Induced Subgraph

Let G = (V, E) be an undirected graph and W ⊆ V a selection of nodes. Then,
GW = (W, EW ) is called the subgraph of G induced by W with EW being

EW = {(u, v) ∈ E | u, v ∈ W}.

A B

C D

E

Incomplete graph

A B

C

E

Subgraph (W, EW )
with W = {A, B,C,E}

A B

C D

Complete (sub)graph



Prerequisites (2)
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Complete Set, Clique

Let G = (V, E) be an undirected graph. A set W ⊆ V is called complete iff it induces
a complete subgraph. It is further called a clique, iff W is maximal, i. e. it is not
possible to add a node to W without violating the completeness condition.

a) W is complete ⇔ W induces a complete subgraph

b) W is a clique ⇔ W is complete and maximal

A B

C D

E F

3 cliques

C3 = {E,F}

C2 = {B,D,E}

C1 = {A, B,C,D}



Prerequisites (3)
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Perfect Ordering

Let G = (V, E) be an undirected graph with n nodes and α = 〈v1, . . . , vn〉 a total
ordering on V . Then, α is called perfect, if the following sets

adj(vi) ∩ {v1, . . . , vi−1} i = 1, . . . , n

are complete, where adj(vi) = {w | (vi, w) ∈ E} returns the adjacent nodes of vi.

A B

C D E

G F H

1 6

2 3 5

48 7

α = 〈A, C, D, F, E, B, H, G〉

i adj(vi) adj(vi) ∩ {v1, . . . , vi−1}
1 {C} {C} ∩ ∅ = ∅ complete
2 {A, D,F} {A} ∩ {A, D,F} = {A} complete
3 {C,B, E, F} {A, C} ∩ {C,B, E, F} = {C} complete
4 {G, C,D,E, H} {A, C,D} ∩ {G, C,D,E,H} = {C, D} complete
5 {B, D,F,H} {A, C,D, F} ∩ {B,D, F,H} = {D, F} complete
6 {D, E} {A, C,D, F,E} ∩ {D,E} = {D, E} complete
7 {F, E} {A, C,D, F,E, B} ∩ {F, E} = {F, E} complete
8 {F} {A, C,D, F,E, B,H} ∩ {F} = {F} complete

α is a perfect ordering



Prerequisites (4)
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Running Intersection Property

Let G = (V, E) be an undirected graph with p cliques. An ordering of these cliques
has the running intersection property (RIP), if for every j > 1 there exists an i < j
such that:

Cj ∩
(
C1 ∪ · · · ∪ Cj−1

)
⊆ Ci

ξ = 〈C1, C2, C3, C4, C5, C6〉

j i
2 C2 ∩ C1 = {C} ⊆ C1 1
3 C3 ∩ (C1 ∪ C2) = {D,F} ⊆ C2 2
4 C4 ∩ (C1 ∪ C2 ∪ C3) = {D,E} ⊆ C3 3
5 C5 ∩ (C1 ∪ C2 ∪ C3 ∪ C4) = {E,F} ⊆ C3 3
6 C6 ∩ (C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5) = {F} ⊆ C5 5

ξ has running intersection property



Prerequisites (5)
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If a node ordering α of an undirected graph G = (V, E) is perfect and the cliques of
G are ordered according to the highest rank (w. r. t. α) of the containing nodes, then
this clique ordering has RIP.

Clique Rank
{A, C} max{α(A), α(C)} = 2 → C1
{C,D,F} max{α(C), α(D), α(F )} = 4 → C2
{D, E, F} max{α(D), α(E), α(F )} = 5 → C3
{B, D,E} max{α(B), α(D), α(E)} = 6 → C4
{F,E,H} max{α(F ), α(E), α(H)} = 7 → C5
{F,G} max{α(F ), α(G)} = 8 → C6

How to get a perfect ordering?



Triangulated Graphs
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Triangulated Graph

An undirected graph is called triangulated if every simple loop (i. e. path with identical
start and end node but with any other node occurring at most once) of length greater
3 has a chord.

A

B C

D

not triangulated

A

B C

D

triangulated

A

B C

E

D

not triangulated

A

B C

E

D

no chord for 〈A,B, E,C〉



Triangulated Graphs (2)
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Maximum Cardinality Search

Let G = (V, E) be an undirected graph. An ordering according maximum cardinality
search (MCS) is obtained by first assigning 1 to an arbitray node. If n numbers
are assigned the node that is connected to most of the nodes already numbered gets
assigned number n + 1.

A B

C D E

G F H

1 6

2 3 5

48 7

3 can be assigned to D or F

6 can be assigned to H or B



Triangulated Graphs (3)
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An undirected graph is triangulated iff the ordering obtained by MCS is perfect.

To check whether a graph is triangulated is efficient to implement. The optimization
problem that is related to the triangulation task is NP-hard. However, there are good
heuristics.

Moral Graph (Repetition)

Let G = (V, E) be a directed acyclic graph. If u,w ∈ W are parents of v ∈ V connect
u and w with an (arbitrarily oriented) edge. After the removal of all edge directions
the resulting graph Gm = (V, E′) is called the moral graph of G.



Join-Tree Construction (1)
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A BC D

EF

G H

Given directed graph.



Join-Tree Construction (2)
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A BC D

EF

G H

• Moral graph



Join-Tree Construction (3)
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A BC D

EF

G H

• Moral graph

• Triangulated graph



Join-Tree Construction (4)
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A BC D

EF

G H

1 62 3

54

8 7

• Moral graph

• Triangulated graph

• MCS yields perfect ordering



Join-Tree Construction (5)
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• Moral graph

• Triangulated graph

• MCS yields perfect ordering

• Clique order has RIP



Join-Tree Construction (6)
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• Moral graph

• Triangulated graph

• MCS yields perfect ordering

• Clique order has RIP

• Form a join-tree

Two cliques can be connected if
they have a non-empty intersec-
tion. The generation of the tree
follows the RIP. In case of a tie,
connect cliques with the largest in-
tersection. (e. g. DBE—FED in-
stead of DBE—CFD) Break re-
maining ties arbitrarily.



Propagation on Cliques (1)
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A

B C

D E

Example: Metastatic Cancer

Dependencies

A

B C

D E

Moralization/Triangulation MCS, hyper graph

Clique tree with separator sets



Propagation on Cliques (2)
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Quantitative knowledge:

(a, b, c) P (a, b, c)
a1, b1, c1 0.032
a2, b1, c1 0.008

... ...
a2, b2, c2 0.608

(b, c, d) P (b, c, d)
b1, c1, d1 0.032
b2, c1, d1 0.032

... ...
b2, c2, d2 0.608

(c, e) P (b, c, d)
c1, e1 0.064
c2, e1 0.552
c1, e2 0.016
c2, e2 0.368

Potential representation:

P (A, B,C,D,E, ) = P (A | ∅)P (B | A)P (C | A)P (B | BC)P (E | C)

=
P (A, B, C)P (B,C,D), P (C,E)

P (BC)P (C)



Propagation on Cliques (3)
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Propagation:

• P (d1) = 0.32, evidence E = e1, desired: P ∗(. . .) = P (· | {e1})

P ∗(c) = P (c | e1) conditional marginal distribution

P ∗(b, c, d) =
P (b, c, d)

P (c)
P ∗(c) multipl./division with separation prob.

P (b, c), P ∗(b, c) calculate marginal distributions

P ∗(a, b, c) =
P (a, b, c)

P (b, c)
P ∗(b, c) multipl./division with separation prob.

P ∗(d1) = P (d1 | e1) = 0.33



Factorization
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Potential Representation

Let V = {Xj} be a set of random variables Xj : Ω → dom(Xj) and P the joint
distribution over V . Further, let

{Wi |Wi ⊆ V, 1 ≤ i ≤ p}

a family of subsets of V with associated functions

Ψi : ×
Xj∈Wi

dom(Xj)→ R

It is said that P (V ) factorizes according
(
{W1, . . . , Wp}, {Ψ1, . . . , Ψp}

)
if P (V ) can

be written as:

P (v) = k ·
p∏

i=1

Ψi(wi)

where k ∈ R, wi is a realization of Wi that meets the values of v.



Example
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V = {A, B,C}, W1 = {A, B}, W2 = {B,C}

dom(A) = {a1, a2}
dom(B) = {b1, b2}
dom(C) = {c1, c2}

P (a, b, c) = 1
8

Ψ1 : {a1, a2} × {b1, b2} → R

Ψ2 : {b1, b2} × {c1, c2} → R

Ψ1(a, b) = 1
4

Ψ2(b, c) = 1
2

({W1,W2}, {Ψ1, Ψ2}) is a potential representa-
tion of P .
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Let (V, E, P ) be an belief network and {C1, . . . , Cp} the cliques of the join tree. For
every node v ∈ V choose a clique C such that v and all of its parents are contained in
C, i. e. {v} ∪ c(v) ⊆ C. The chosen clique is designated as f(v).

To arrive at a factorization ({C1, . . . , Cp}, {Ψ1, . . . , Ψp}) of P the factor potentials
are:

Ψi(ci) =
∏

v:f(v)=Ci

P (v | c(v))

Separator Sets and Residual Sets

Let {C1, . . . , Cp} be a set of cliques w. r. t. V . The sets

Si = Ci ∩ (C1 ∪ · · · ∪ Ci−1), i = 1, . . . , p, S1 = ∅

are called separator sets with their corresponding residual sets

Ri = Ci\Si
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S1 = ∅ R1 = {A, B, C}

S2 = {B,C} R2 = {D}

S3 = {C} R3 = {E}

f(A) = C1
f(B) = C1
f(C) = C1
f(D) = C2
f(E) = C3

ABC

BCD

CE

C1

C2

C3

S1

S2

S3

Ψ1(C1) = P (A, B,C | ∅) = P (A) · P (C | A) · P (B|A)

Ψ2(C2) = P (D | B,C)

Ψ3(C3) = P (E | C)

Propagation is accomplished by sending π- and λ-
messages across the cliques in the tree. The emerging
potentials are maintained by each clique.
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Learning Graphical Models
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What does lerning mean?

• Given: A database D with samples over a set of attributes V .

• Desired: A network over V for which D is maximal probable,
i. e. that describes best the data.

Alternative definition of a Bayesian network:

B = (BS, BP )

BS Structure: The graph encoding the (in)dependencies

BP Parameters: The entries of the potential tables, i. e.
the conditional probabilities.
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• V = {G, M, F}

• dom(G) = {g, g}

• dom(M) = {m, m}

• dom(F) = {f, f}

• The potential tables’ layout is determined by the graph structure.

• The parameters (i. e. the table entries) can be easily estimated from the database,
e. g.:

P̂ (f | g, m) =
#(F = f, G = g, M = m)

#(G = g, M = m)
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Flu G g g g g g g g g

Malaria M m m m m m m m m

Fever F f f f f f f f f

# 34 6 2 8 16 24 0 10

Database D with 100 en-
tries for 3 attributes.

P (D | BS, BP ) =
100∏

h=1

P (ch | BS, BP )

=

Case 1︷ ︸︸ ︷
P (g, m, f) · · · · ·

Case 10︷ ︸︸ ︷
P (g, m, f)︸ ︷︷ ︸

10 times

· · ·

Case 51︷ ︸︸ ︷
P (g, m, f) · · · · ·

Case 58︷ ︸︸ ︷
P (g, m, f)︸ ︷︷ ︸

8 times

· · ·

Case 67︷ ︸︸ ︷
P (g, m, f) · · · · ·

Case 100︷ ︸︸ ︷
P (g, m, f)︸ ︷︷ ︸

34 times

=

‖︷ ︸︸ ︷
P (g, m, f)10
︸ ︷︷ ︸

‖

· · ·

‖︷ ︸︸ ︷
P (g, m, f)8
︸ ︷︷ ︸

‖

· · ·

‖︷ ︸︸ ︷
P (g, m, f)34
︸ ︷︷ ︸

‖

=
︷ ︸︸ ︷
P (f | g, m)10P (g)10P (m)10 · · ·

︷ ︸︸ ︷
P (f | g, m)8P (g)8P (m)8 · · ·

︷ ︸︸ ︷
P (f | g, m)34P (g)34P (m)34
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P (D | BS, BP ) =
100∏

h=1

P (ch | BS, BP )

= P (f | g, m)10P (f | g, m)0P (f | g, m)24P (f | g, m)16

· P (f | g, m)8P (f | g, m)2P (f | g, m)6P (f | g, m)34

· P (g)50P (g)50P (m)20P (m)80

The last equation shows the principle of reordering the factors:

• First, we sort by attributes (here: F, G then M).

• Within the same attributes, factors are grouped by the parent attributes’ values
combinations (here: for F: (g, m), (g, m), (g, m) and (g, m)).

• Finally, it is sorted by attribute values (here: for F: first f, then f).
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General likelihood of a database D:

P (D | BS, BP ) =
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
αijk
ijk

General potential table:
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Back to our inital question: How to find the structure that yields the highest likelihood
of the database D?

B̂S = arg max
BS∈BV

P (D | BS, BP )

BV designates the set of all directed, acyclic graphs with V as the set of nodes.

Flaws of this approch:

• Inserting edges cannot lower the likelihood, i. e. the result of a maximum likelihood
approch will always be a fully connected graph.

• The set BV grows over-exponentially in |V |.

⇒ Assumptions and heuristics needed!
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(A) Test whether a candidate graph decomposes the distribution/relation

(B) Conditional independence tests

(C) Measure marginal independence strengths

Since the search space BV is too large, we cannot exhaustively enumerate all candidate
graphs.

⇒ Search algorithms needed, consisting of

• an evaluation measure (to measure the “fitness” of the current solution candidate)

• a search heuristic to traverse BV , e. g.:

◦ random-guided search (e. g. generic algorithms)

◦ greedy search (presented later)
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Given a solution candidate BS ∈ BV , how good does it explain the database D?

• Compare the distribution defined by BS with the given
empirical distribution of D.

• If both are identical, a solution BS has been found.

However, in most (real) cases, there is no exact decomposition, so we have to find the
candidate BS that approximates best the distribution of D.

⇒ Measure for the quality of approximation between distributions needed.
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Kullback-Leibler cross entropy

Let (Ω, 2Ω, P ) and (Ω, 2Ω, P ∗) be two finite probability spaces. Then

IKLdiv(P, P ∗) =
∑

ω∈Ω

P (ω) · log2
P (ω)

P ∗(ω)

is called the Kullback-Leiber cross entropy of P and P ∗.

Remark:

IKLdiv(P, P ∗) ≥ 0; IKLdiv(P, P ∗) = 0 ⇔ P ≡ P ∗

Where does this this equation come from?
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Information Content

The information content of a message ω that occurs with probability p(ω) is defined
as

Inf(ω) = − log2 p(ω).

Intention:

• Neglect all subjective references to ω and let the information content
be determined by p(ω) only.

• The information of a certain message (p(ω) = 1) is zero.

• The less frequent a message occurs (i. e., the less probable it is), the more inter-
esting is the fact of its occurrence:

p(ω1) < p(ω2) ⇒ Inf(ω1) > Inf(ω2)

• We only use one bit to encode the occurrence of a message with probability 1
2.
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The function Inf fulfills all these requirements.

Inf

P (ω)

1

2

1

• The set of all messages Ω can be considered a set
of elementary events.

• Then Inf becomes a random variable, the expected
value of which can be written as follows:

E(Inf) = −
∑

ω∈Ω

p(ω) · log2 p(ω)
Def
= H(P )
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Shannon Entropy

Let (Ω, 2Ω, P ) be a probability space. Then,

H(Shannon)(P ) = −
∑

ω∈Ω

P (ω) log2 P (ω)

is called the Shannon entropy of P , where 0 · log2 0 = 0 is assumed.

• H(Shannon)(P ) is the expected value (in bits) of the information content that is
related to the occurrence of the elementary events ω ∈ Ω.

H(Shannon)(P ) =
∑

ω∈Ω

P (ω)︸ ︷︷ ︸
Probability of ω

· (− log2 P (ω))︸ ︷︷ ︸
Information content of ω (identi-
fication of outcome ω out of 1

P (ω)

outcomes).
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• We could define D(P,P ∗) as the degree that P is approximated by P ∗ in the
following way:

D(P, P ∗) = H(Shannon)(P ∗) − H(Shannon)(P )

• Assume two variables X and Y with the joint distribution P (X,Y ).

• Further let

P ∗(X, Y ) = P (X) · P (Y )

be the joint distribution in the case of independence.

H(Sh.)(P ) = −
∑

(x,y) ∈ ΩX×ΩY

P (x, y) log2 P (x, y)
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H(Sh.)(P ∗) = −
∑

(x,y) ∈ ΩX×ΩY

P (x)P (y) log2(P (x)P (y))

= −
∑

(x,y) ∈ ΩX×ΩY

P (x)P (y) log2 P (x)−
∑

(x,y) ∈ ΩX×ΩY

P (x)P (y) log2 P (y)

= −
∑

x ∈ ΩX

P (x) log2 P (x)−
∑

y ∈ ΩY

P (y) log2 P (y)

= −
∑

(x,y) ∈ ΩX×ΩY

P (x, y) log2 P (x)−
∑

(x,y) ∈ ΩX×ΩY

P (x, y) log2 P (y)

= −
∑

(x,y) ∈ ΩX×ΩY

P (x, y) log2(P (x)P (y))

Therefore:

D(P,P ∗) = IKLdiv(P, P ∗) =
∑

(x,y) ∈ ΩX×ΩY

P (x, y) · log2
P (x, y)

P (x)P (y)
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• Find an independence map BS of the given database distribution.

• Measure the degree of independence between attributes by using the Kullback-
Leibler cross entropy.

To measure the strength of dependence of two attributes A and B, we simply compare
the joint distribution P (A, B) with the distribution in the case of independence P (A) ·
P (B).

Mutual (Shannon) Information

Let A and B be two attributes and P a strictly positive probability measure. Then

Imut(A, B) =
∑

a∈dom(A)

∑

b∈dom(B)

P (A = a,B = b) log2
P (A = a, B = b)

P (A = a) · P (B = b)

is called the mutual (Shannon) information or (Shannon) cross entropy of A and
B w. r. t. P .
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Note, Imut is also referred to as Shannon information gain.

To measure the strength of conditional independence,
we generalize Imut:

Imut(A, B | C) =
∑

c∈dom(C)

P (c)
∑

a∈dom(A)

∑

b∈dom(B)

P (a, b | c) log2
P (a, b | c)

P (a | c)P (b | c)

We can now use the equation above to estimate attribute
(in)dependencies and use this information while constructing
an independence map.
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• Given: A belief network (V, E, P ) where only V and P (V ) are known.
P (V ) may be estimated from data.

• Desired: Belief tree (V, E∗, P ∗) for which P is approximated best by P ∗.

Steps to determine (V, E∗, P ∗)

1. For tree T = (V, E′) determine (V, E′, PT ) with

D(P,PT ) = min{D(P, P ′) | (V, E′, P ′) is belief tree}

(PT is the projection of P on T )

2. Determine a belief tree (V, E∗, P ∗) with

D(P,P ∗) = min{D(P,PT ) | T is tree with node set V }

(PT is the projection of P on T with ∀X ∈ V : PT (X | c(X)) = P (X | c(X))
where c(X) denotes the direct predecessor (parent) of X .)
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Chow, Liu 1968

D(P, P ∗) is minimal w. r. t. to step 2 of enumeration on the previous slide if P ∗ is a
projection of P on a MWST (maximum weight spanning tree), in which the weight of
every edge (X,Y ) ∈ E∗ is defined by

I(X,Y )
Def
=

∑

(x,y) ∈ ΩX×ΩY

P (x, y) log2
P (x, y)

P (x)P (y)
≥ 0

If (V, E, P ) is a belief tree, then the projection PT on every MWST T = (V, E′)
coincides with P .
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1. Determine P (X, Y ) for all (X, Y ) ∈ V × V , with X 6= Y

2. Calculate all
n(n−1)

2 edge weights I(X,Y )

3. Assign two edges with the highest weights to the tree (V, E∗) under construction.

4. Assign to (V, E∗) an edge not yet assigned with highest weight
without forming a loop.

5. Repeat step 4 until n− 1 egdes have been assigned
(the MWST is then constructed).

6. Determine P ∗ with Chow-Liu theorem.
This results in the desired belief tree (V, E∗, P ∗).
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Remarks:

• MWST construction requires O(|V |2) steps.

• P ∗ is a maximum likelihood estimation of P , if estimated from a given database

• Disadvantage: algorithm only efficient on tree-like structures.
However, after extention polytrees are constructable as well.
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• Proposed by [Cooper and Herskovits 1992]

• Greedy algorithm (category (C))

• Uses the K2 metric to evaluate the quality of a candidate graph

B̂S = arg max
BS

P (BS | D) = arg max
BS

P (BS, D)

P (D)

= arg max
BS

P (BS, D)

⇒ Find an equation for P (BS, D).
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Model Averaging

We first consider P (BS, D) to be the marginalization of P (BS, BP , D) over all possible
parameters BP .

P (BS, D) =
∫

BP

P (BS, BP , D) dBP

=
∫

BP

P (D | BS, BP ) P (BS, BP ) dBP

=
∫

BP

P (D | BS, BP ) f(BP | BS)P (BS) dBP

= P (BS)︸ ︷︷ ︸
A priori prob.

∫

BP

P (D | BS, BP )︸ ︷︷ ︸
Likelihood of D

f(BP | BS)︸ ︷︷ ︸
Parameter densities

dBP
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• The a priori distribution P (BS) can be used to bias the evaluation measure to-
wards user-specific network structures.

• Substitute the likelihood definition:

P (BS, D) = P (BS)
∫

BP




n∏

i=1

qi∏

j=1

ri∏

k=1

θ
αijk
ijk



 f(BP | BS) dBP
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• The parameter densities f(BP | BS) describe the probabilities of the parameters
given a network structure. They are densities of second order (distribution over
distributions)

• For fixed i and j, a vector (θij1, . . . , θijri
) represents a probability distribution,

namely the j-th column of the i-th potential table.

• Assuming mutual independence between the potential tables, we arrive
for f(BP | BS) at the following:

f(BP | BS) =
n∏

i=1

qi∏

j=1

f(θij1, . . . , θijri
)
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Thus, we can further concretize the equation for P (BS, D):

P (BS, D) = P (BS)
∫
· · ·

∫

θijk




n∏

i=1

qi∏

j=1

ri∏

k=1

θ
αijk
ijk



 ·




n∏

i=1

qi∏

j=1

f(θij1, . . . , θijri
)



 dθ111, . . . , dθnqnrn

= P (BS)
n∏

i=1

qi∏

j=1

∫
· · ·

∫

θijk




ri∏

k=1

θ
αijk
ijk



 · f(θij1, . . . , θijri
) dθij1, . . . , dθijri
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A last assumption: for fixed i and j the density f(θij1, . . . , θijri
) is uniform:

f(θij1, . . . , θijri
) = (ri − 1)!

P (BS, D) = P (BS)
n∏

i=1

qi∏

j=1

∫
· · ·

∫

θijk




ri∏

k=1

θ
αijk
ijk



 · (ri − 1)! dθij1, . . . , dθijri

= P (BS)
n∏

i=1

qi∏

j=1

(ri − 1)!
∫
· · ·

∫

θijk

ri∏

k=1

θ
αijk
ijk dθij1, . . . , dθijri

︸ ︷︷ ︸

Dirichlet’s integral =

∏ri
k=1 αijk!

(
∑ri

k=1 αijk + ri − 1)!
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Thus, we finally arrive at an expression for P (BS, D) which we identify with the K2
metric of PS given the data D:

P (BS, D) = K2(BS | D) = P (BS)
n∏

i=1

qi∏

j=1



 (ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

αijk!





with Nij =
ri∑

k=1

αijk
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• Global — Refers to the outer product: the total value of the K2 metric is the
product over all K2 values of attribute families.

• Local — The likelihood equation assumes that given a parents instantiation, the
probabilities for the respective child attribute values are mutual independent. This
is reflected in the product over all qi different parent attributes’ value combinations
of attribute Ai.

We exploit the global property to write the K2 metric as follows:

K2(BS | D) = P (BS)
n∏

i=1

K2local(Ai | D)

with

K2local(Ai | D) =
qi∏

j=1



 (ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

αijk!




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Prerequisites:

• Choose a topological order on the attributes (A1, . . . , An)

• Start out with a network that consists of n isolated nodes.

• Let qi be the quality of the i-th attribute given parent attributes M :

qi(M) = K2local(Ai | D) with parents(Ai) = M
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Execution:

1. Determine for the parentless node Ai the quality measure qi(∅)

2. Evaluate for every predecessor {A1, . . . , Ai−1} whether inserted as parent of Ai,
the quality measure would increase. Let Y be the node that yields the highest
quality.

Y = arg max
1≤l≤i−1

qi({Al})

This best quality measure be g = qi({Y }).

3. If g is better than qi(∅), Y is inserted permanently as a
parent node: parents(Ai) = {Y }

4. Repeat steps 2 und 3 to increase the parent set until no quality increase can be
achieved or no nodes are left or a predefined maximum number of parent nodes
per node is reached.



K2 Algorithm

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 254

1: for i← 1 . . . n do // Initialization
2: parents(Ai)← ∅
3: end for

4: for i← n . . . 1 do // Iteration
5: repeat

6: Select Y ∈ {A1, . . . , Ai−1} \ parents(Ai),
which maximizes g = qi(parents(Ai) ∪ {Y })

7: δ ← g − qi(parents(Ai))

8: if δ > 0 then

9: parents(Ai)← parents(Ai) ∪ {Y }
10: end if

11: until δ ≤ 0 or parents(Ai) = {A1, . . . , Ai−1} or |parents(Ai)| = nmax

12: end for
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Step 1 – Edgeless
graph

Step 2 – Insert M

temporarily.
Step 3 – Insert KA

temporarily.
Step 4 – Node L

maximizes K2 value
and thus is added
permantently.
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Step 5 – Insert M

temporarily.
Step 6 – KA is
added as second par-
ent node of KV.

Step 7 – M does not
increase the quality
of the network if in-
sertes as third parent
node.

Step 8 – Insert KA

temporarily.
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Step 9 – Node L be-
comes perent node
of M.

Step 10 – Adding
KA does not in-
crease overall net-
work quaility.

Step 11 – Node L

becomes parent node
of KA.

Result
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Decision Graphs / Influence Diagrams
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Up to now, we used Bayesian networks for

• modeling (in)dependence relations between random/chance variables

• quantifying the strength of these relations by assigning (conditional) probabilities

• update these probabilities after evidence observations

However, in practical, this is only a part of a more complex task: decision making
under uncertainty.

If a set of actions solves a problem, we have to choose one particular action based on
predefined criteria, e. g. costs and/or gains.

Therefore, we will now augment the current framework with special nodes that serve
these purposes.
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Flu Fever Sleepy

A

T

T . . . Temperature

A. . . Aspirine

• Rectangular nodes: intervening actions/decisions

• Triangular nodes: test actions/observations

• Observations may change probabilities of nodes
that are causes:

Observing T = 37◦C decreases probability of
Fever and Flu (and, of course, Sleepy).

• The impact of intervening actions can only follow
the direction of the (causal) edges:

Taking Aspirine (A) decreases the probability of
Fever and Sleepy and may result in an alike ob-
servation for T . However, it cannot change the
state for Flu since Aspirine only eases the pain
and does not kill viruses.
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Mildew Fungus Infestation (dt. Mehltau-Befall)

Before the harvest, a farmer checks the state of his crop and decides whether to apply
a fungi treatment or not.

• Q — Quality of the crop

• M — Mildew infestation severity

• H — Harvest quality

• A — Action to be taken

• M∗ — Mildew infestation after action A

• U — Utility function of the harvest (i. e. the benefit)

• C — Utility functon of the action (i. e. the treatment costs)

edges leading to chance nodes

edges leading to decision nodes

edges leading to utility nodes
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Q M

M∗ A

H

U C

• Diamond-shaped nodes: utility functions
(costs/benefits)

• Given the quality of the crops and the mildew state,
which action maximizes the benefit?

• C(A) < 0

• U (H) ≥ 0

• Expected total utility of action A = a:

E(U (a | q, m)) = C(a) +
∑

h

U (h) · P (h | a, q, m)
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A single-action model consists of

• a Bayesian network representing the chance nodes

• one decision (action) node

• a set of utility nodes

• decision nodes can affect chance and utility nodes

• utility nodes can be affected by chance and decision nodes

D
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Given n utility nodes U1, . . . , Un and assuming they all depend on only one respective
chance node Xi, the total expected utility given a decision D = d and (chance node)
evidence e is defined as:
vskip-2mm

E(U (d | e)) =
n∑

i=1

∑

x∈dom(Xi)

U1(x1) · P (x1 | d, e)

The optimal decision d∗ is then chosen:

d∗ = arg max
d∈dom(D)

E(U (d | e))
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An influence diagram consists of a directed acyclic graph over chance nodes, decision
nodes and utility nodes that obey the following structural properties:

• there is a directed path comprising all decision nodes

• utility nodes cannot have children

• decision and chance nodes are discrete

• utility nodes do not have states

• chance nodes are assigned potential tables given their parents (including decision
nodes)

• each utility node U gets assigned a real-valued utility function over its parents

U : ×
X∈parents(U)

dom(X)→ R
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• Links into decision nodes carry no quantitative information, they only introduce
a temporal ordering.

• The required path between the decision nodes induces a temporal partition of the
chance nodes:

If there are n decision nodes, then for 1 ≤ i < n the set Ii represents all chance
nodes that have to be observed after decision Di but before decision Di+1.

• I0 is the set of chance nodes to be observed before any decision.

• In is the set of chance nodes that are not observed.
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A

B

C

D

E

F

G

I

H

L

J

K
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A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3
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A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3
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A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3
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A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3
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I0 I1

I3

I4

I2 = ∅

A

B

D1

V1

C

D

E

F

G

D2

D4

I

H

D3

L

J

K

V4

V2

V3



d-Separation in Influence Diagrams

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 273

To be able to use the d-separation, we need to preprocess the graphical structure of an
influence diagram as follows:

• remove all utility nodes (and the edges towards them)

• remove edges that point to decision nodes

D1

A

V1

B

T

D2

C V2

D1

A B

T

D2

C

⇒

For example: C ⊥⊥ T | B or {A, T}⊥⊥D2 | ∅.
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The semantics of an influence diagram disallow some probabilities:

• P (D) for a decision node D has no meaning

• P (A | D) has no meaning unless a decision d ∈ dom(D) has been chosen

Given an influence diagram G with UC being the set of chance nodes and UD being
the set of decision nodes, we can factorize P as follows:

P (UC | UD) =
∏

X∈UC

P (X | parents(X))
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• Given: an influence diagram

• Desired: a strategy which decision(s) to make

Policy

A policy for decision Di is a mapping σi, which for any configuration of the past of
Di yields a decision for Di, i. e.

σi(I0, D1, I1, . . . , Di−1, Ii−1) ∈ dom(Di)

Strategy

A strategy for an influence diagram is a set of policies, one for each decision node.

Solution

A solution to an influence diagram is a strategy maximizing the expected utility.
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Assume, we are given an influence diagram G over U = UC ∪ UD and UV .

• UC . . . set of chance nodes

• UD . . . set of decision nodes and

• UV = {Vi} . . . set of utility nodes

Further, we know the following temporal order:

I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dn ≺ In

The total utility V be defined as the sum of all utility nodes: V =
∑

i Vi
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• An optimal policy for Di is

σi(I0, D1, . . . , Ii−1) = arg max
di

∑

Ii

max
di+1

· · ·max
dn

∑

In

P (UC | UD) · V

where dx ∈ dom(Dx).

• The expected utility from following policy σi (and acting optimally in the future)
is

ρi(I0, D1, . . . , Ii−1) =
maxdi

∑
Ii

maxdi+1
· · ·maxdn

∑
In

P (UC | UD) · V

P (I0, . . . , Ii−1 | D1, . . . , Di−1)

where dx ∈ dom(Dx).
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• An optimal strategy yields the maximum expected utility of

MEU(G) =
∑

I0

max
d1

∑

I1

max
d2

· · ·max
dn

∑

In

P (UC | UD) · V

•
∑

Ii

means (sum-)marginalizing over all nodes in Ii

• max
di

means taking the maximum over all di ∈ dom(Di) and thus (max-)marginalizing

over Di

• Everytime Ii is marginalized out, the result is used to determine a policy for Di.

• Marginalization in reverse temporal order

• ⇒ use simplification techniques from the Bayesian network realm to simplify the
joint probability distribution P (UC | UD)
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D1

A

V1

B

T

D2

C V2

P (A | D1) d
(1)
1 d

(2)
1

y 0.2 0.8
n 0.8 0.2

P (B | A) y n
y 0.8 0.2
n 0.2 0.8

P (T | A, B) y, y y, n n, y n, n
y 0.9 0.5 0.5 0.1
n 0.1 0.5 0.5 0.9

P (C | B,D2) y, d
(1)
2 y, d

(2)
2 n, d

(1)
2 n, d

(2)
2

y 0.9 0.5 0.5 0.9
n 0.1 0.5 0.5 0.1

Chance potentials

V1(A, D2) d
(1)
2 d

(2)
2

y 3 0
n 0 2

V2(C)
y 10
n 0

Utility functions
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For D2 we can read from the graph:

I0 = ∅ I1 = {T} I2 = {A, B,C}

Thus, σ2 can be solved to the following strategy:

σ2(∅, D1, {T}) d
(1)
1 d

(2)
1

y d
(1)
2 d

(1)
2

n d
(2)
2 d

(2)
2

ρ2(∅, D1, {T}) d
(1)
1 d

(2)
1

y 9.51 11.29
n 10.34 8.97

Finally, σ1 = d
(2)
1 and MEU(G) = 10.58.
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Frameworks of Imprecision and Uncertainty
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Representation of Ignorance (dt. Unwissen)

• We are given a die with faces 1, . . . , 6
What is the certainty of showing up face i ?

◦ Conduct a statistical survey (roll the die 10000 times) and estimate the relative
frequency: P ({i}) = 1

6

◦ Use subjective probabilities (which is often the normal case): We do not know
anything (especially and explicitly we do not have any reason to assign unequal
probabilities), so the most plausible distribution is a uniform one.

⇒ Problem: Uniform distribution because of ignorance or extensive statistical
tests

• Experts analyze aircraft shapes: 3 aircraft types A, B,C
“It is type A or B with 90% certainty. About C, I don’t have any clue and I do
not want to commit myself. No preferences for A or B.”

⇒ Problem: Propositions hard to handle with Bayesian theory
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“A ⊆ X being an imprecise date” means: the true value x0 lies in A but there are no
preferences on A.

Ω set of possible elementary events

Θ = {ξ} set of observers

λ(ξ) importance of observer ξ

Some elementary event from Ω occurs and every observer ξ ∈ O shall announce which
elementary events she personally considers possible. This set is denoted by Γ(ξ) ⊆ Ω.
Γ(ξ) is then an imprecise date.

λ : 2Θ → [0, 1] probability measure

(interpreted as importance measure)

(Θ, 2Θ, λ) probability space

Γ : Θ→ 2Ω set-valued mapping
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Let A ⊆ Ω:

a) Γ∗(A)
Def
= {ξ ∈ Θ | Γ(ξ) ∩ A 6= ∅}

b) Γ∗(A)
Def
= {ξ ∈ Θ | Γ(ξ) 6= ∅ and Γ(ξ) ⊆ A}

Remarks:

a) If ξ ∈ Γ∗(A), then it is plausible for ξ that the occurred elementary
event lies in A.

b) If ξ ∈ Γ∗(A), then it is certain for ξ that the event lies in A.

c) {ξ | Γ(ξ) 6= ∅} = Γ∗(Ω) = Γ∗(Ω)

Let λ(Γ∗(Ω)) > 0. Then we call

P ∗(A) =
λ(Γ∗(A))

λ(Γ∗(Ω))
the upper, and P∗(A) =

λ(Γ∗(A))

λ(Γ∗(Ω))
the lower

probability w. r. t. λ and Γ.
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Θ = {a, b, c, d} λ : a 7→ 1/6 Γ: a 7→ {1}

Ω = {1, 2, 3} b 7→ 1/6 b 7→ {2}

Γ∗(Ω) = {a, b, d} c 7→ 2/6 c 7→ ∅

λ(Γ∗(Ω)) = 4/6 d 7→ 2/6 d 7→ {2, 3}

A Γ∗(A) Γ∗(A) P ∗(A) P∗(A)
∅ ∅ ∅ 0 0

{1} {a} {a} 1
4

1
4

{2} {b, d} {b} 3
4

1
4

{3} {d} ∅ 1
2 0

{1, 2} {a, b, d} {a, b} 1 1
2

{1, 3} {a, d} {a} 3
4

1
4

{2, 3} {b, d} {b, d} 3
4

3
4

{1, 2, 3} {a, b, d} {a, b, d} 1 1

One can consider P ∗(A) and P∗(A) as upper and lower probability bounds.
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Some properties of probability bounds:

a) P ∗ : 2Ω→ [0, 1]

b) 0 ≤ P∗ ≤ P ∗ ≤ 1, P∗(∅) = P ∗(∅) = 0, P∗(Ω) = P ∗(Ω) = 1

c) A ⊆ B ⇒ P ∗(A) ≤ P ∗(B) and P∗(A) ≤ P∗(B)

d) A ∩ B = ∅ 6⇒ P ∗(A) + P ∗(B) = P ∗(A ∪B)

e) P∗(A ∪B) ≥ P∗(A) + P∗(B)− P∗(A ∩B)

f) P ∗(A ∪B) ≤ P ∗(A) + P ∗(B)− P ∗(A ∩B)

g) P∗(A) = 1− P ∗(Ω\A)
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One can prove the following generalized equation:

P∗(
n⋃

i=1

Ai) ≥
∑

∅6=I :I⊆{1,...,n}

(−1)|I|+1 · P∗(
⋂

i∈I

Ai)

These set functions also play an important role in theoretical physics (capacities, Cho-
quet, 1955). Shafer did generalize these thoughts and developed a theory of belief
functions.
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How is new knowledge incoporated?

Every observer announces the location of the ship in form of a subset of all possible ship
locations. Given these set-valued mappings, we can derive upper and lower probabilities
with the help of the observer importance measure. Let us assume the ship is certainly
at sea.

How do the upper/lower probabilities change?
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a) Geometric Conditioning
(observers that give partial or full wrong information are discarded)

P∗(A | B) =
λ({ξ ∈ Θ | Γ(ξ) ⊆ A and Γ(ξ) ⊆ B})

λ({ξ ∈ Θ | Γ(ξ) ⊆ B})
=

P∗(A ∩B)

P∗(B)

P ∗(A | B) =
λ({ξ ∈ Θ | Γ(ξ) ⊆ B and Γ(ξ) ∩ A 6= ∅})

λ({ξ ∈ Θ | Γ(ξ) ⊆ B})
=

P ∗(A ∪B)− P ∗(B)

1− P ∗(B)
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b) Data Revision
(the observed data is modified such that they fit the certain information)

(P∗)B(A) =
P∗(A ∪B)− P∗(B)

1− P∗(B)

(P ∗)B(A) =
P ∗(A ∩B)

P ∗(B)

These two concepts have different semantics. There are several more belief revision
concepts.
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Let x0 be the true value but assume there is no information about P (A) to decide
whether x0 ∈ A. There are only probability boundaries.

Let L be a set of probability measures. Then we call

(PL)∗ : 2Ω→ [0, 1] , A 7→ inf{P (A) | P ∈ L} the lower and

(PL)∗ : 2Ω→ [0, 1] , A 7→ sup{P (A) | P ∈ L} the upper

probability of A w. r. t. L.

a) (PL)∗(∅) = (PL)∗(∅) = 0; (PL)∗(Ω) = (PL)∗(Ω) = 1

b) 0 ≤ (PL)∗(A) ≤ (PL)∗(A) ≤ 1

c) (PL)∗(A) = 1− (PL)∗(A)

d) (PL)∗(A) + (PL)∗(B) ≤ (PL)∗(A ∪B)

e) (PL)∗(A ∩B) + (PL)∗(A ∪B) 6≥ (PL)∗(A) + (PL)∗(B)
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Let B ⊆ Ω and L a class of probabilities. The we call

A ⊆ Ω : (PL)∗(A | B) = inf{P (A | B) | P ∈ L ∧ P (B) > 0} the lower and

A ⊆ Ω : (PL)∗(A | B) = sup{P (A | B) | P ∈ L ∧ P (B) > 0} the upper

conditional probability of A given B.

A class L of probability measures on Ω = {ω1, . . . , ωn} is of type 1, iff there exist
functions R1 and R2 from 2Ω into [0, 1] with:

L = {P | ∀A ⊆ Ω : R1(A) ≤ P (A) ≤ R2(A)}
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Intuition: P is determined by P ({ωi}), i = 1, . . . , n which corresponds to a point in
R

n with coordinates
(
P ({ω1}), . . . , P ({ωn})

)
.

If L is type 1, it holds true that:

L ⇔
{

(r1, . . . , rn) ∈ R
n | ∃P : ∀A ⊆ Ω:

(PL)∗(A) ≤ P (A) ≤ (PL)∗(A)

and ri = P ({ωi}), i = 1, . . . , n
}
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Ω = {ω1, ω2, ω3}

L = {P | 1
2 ≤ P ({ω1, ω2}) ≤ 1, 1

2 ≤ P ({ω2, ω3}) ≤ 1, 1
2 ≤ P ({ω1, ω3}) ≤ 1}

general restriction:

0 ≤ P ({ωi}) ≤ 1

P ({ω1}) + P ({ω2}) + P ({ω3}) = 1

{P | 1
2 ≤ P ({ω1, ω2}) ≤ 1}

Let A1 = {ω1, ω2}, A2 = {ω2, ω3}, A3 = {ω1, ω3}

P∗(A1)+P∗(A2)+P∗(A3)−P∗(A1∩A2)−P∗(A2∩A3)−P∗(A1∩A3)+P∗(A1∩A2∩A3)

=
1

2
+

1

2
+

1

2
− 0− 0− 0 + 0 =

3

2
> 1 = P (A1 ∪ A2 ∪ A3)
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If L is type 1 and (PL)∗(A ∪B) ≥ (PL)∗(A) + (PL)∗(B)− (PL)∗(A ∩B), then

(PL)∗(A | B) =
(PL)∗(A ∩B)

(PL)∗(A ∩B) + (PL)∗(B ∩ A)

and

(PL)∗(A | B) =
(PL)∗(A ∩B)

(PL)∗(A ∩B) + (PL)∗(B ∩ A)

Let L be a class of type 1. L is of type 2, iff

(PL)∗(A1 ∪ · · · ∪ An) ≥
∑

I :∅6=I⊆{1,...,n}

(−1)|I|+1 · (PL)∗(
⋂

i∈I

Ai)
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Motivation

(Θ, Q) Sensors

Ω possible results, Γ : Θ→ 2Ω

Γ, Q induce a probability m on 2Ω

m : A 7→ Q({θ ∈ Θ | Γ(θ) = A}) mass distribution

Bel : A 7→
∑

B:B⊆A m(B) Belief (lower probability)

Pl : A 7→
∑

B:B∩A6=∅m(B) Plausibility (upper probability)

• Random sets: Dempster (1968)

• Belief functions: Shafer (1974)
Development of a completely new uncertainty calculus
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The function Bel : 2Ω → [0, 1] is called belief function, if it possesses the following
properties:

• Bel(∅) = 0

• Bel(Ω) = 1

• ∀n ∈ N : ∀A1, . . . , An ∈ 2Ω :
Bel(A1 ∪ · · · ∪ An) ≥

∑
∅6=I⊆{1,...,n}(−1)|I|+1 · Bel(

⋂
i∈I Ai)

If Bel is a belief function then for m : 2Ω → R with m(A) =
∑

B:B⊆A(−1)|A\B| ·
Bel(B) the following properties hold:

• 0 ≤ m(A) ≤ 1

• m(∅) = 0

•
∑

A⊆Ω m(A) = 1
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Let |Ω| <∞ and f, g : 2Ω → [0, 1].

∀A ⊆ Ω: (f(A) =
∑

B:B⊆A

g(B))

⇔

∀A ⊆ Ω: (g(A) =
∑

B:B⊆A

(−1)|B| · f(B))

(g is called the Möbius transformed of f)

The mapping m : 2Ω→ [0, 1] is called a mass distribution, if the following properties
hold:

• m(∅) = 0

•
∑

A⊆Ω m(A) = 1
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A ∅ {1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}

m(A) 0 1/4
1/4 0 0 0 2/4 0

Bel(A) 0 1/4
1/4 0 2/4

1/4
3/4 1

Belief =̂ lower probability with modified semantic

Bel({1, 3}) = m(∅) + m({1}) + m({3}) + m({1, 3})

m({1, 3}) = Bel({1, 3})− Bel({1})− Bel({3})

m(A) measure of the trust/belief that exactly A occurs

Belm(A) measure of total belief that A occurs

Plm(A) measure of not being able to disprove A (plausibility)

Plm(A) =
∑

B:A∩B 6=∅

m(B) = 1− Bel(A)

Given one of m, Bel or Pl, the other two can be efficiently computed.
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m(Ω) = 1, m(A) = 0 else total ignorance

m({ω0}) = 1, m(A) = 0 else value (ω0) known

m({ωi}) = pi,
∑n

i=1 pi = 1 Bayesian analysis

Further intermediate steps can be modeled.
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• Data Revision:

◦ Mass of A flows onto A ∩B.

◦ Masses are normalized to 1 (∅-mass is destroyed)

• Geometric Conditioning:

◦ Masses that do not lie completely inside B, flow off

◦ Normalize

There is a mass flow from t to s (written: s ⊑ t) iff for every A ⊆ Ω there exist
functions hA : 2Ω→ [0, 1] such that the following properties hold:

•
∑

B:B⊆Ω hA(B) = t(A) for all A

• h(A(B) 6= 0 ⇒ B ⊆ A for all A, B

• s(B) =

∑
A:A⊆Ω hA(B)

1−
∑

A:A⊆Ω hA(∅)
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A s(A) t(A) u(A)
∅ 0 0 0
{1} 0 0 0.1
{2} 0.4 0.4 0
{3} 0.1 0 0
{1, 2} 0.2 0.5 0.1
{1, 3} 0 0 0.4
{2, 3} 0.3 0.1 0.4

Ω 0 0 0

The following relations hold:
s ⊑ t, t ⊑ s, s ⊑ u, t ⊑ u, t ⊑ t, u 6⊑ s
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Let (Ω, 2Ω) be a space of events. Further be (O1, 2O1, λ1) and (O2, 2O2, λ2) spaces of
independent observers.

We call (O1 ×O2, λ1 · λ2) the product space of observers and

Γ : O1 ×O2→ 2Ω, Γ(x1, x2) = Γ1(x1) ∩ Γ2(x2)

the combined observer function.

We obtain with

(PL)∗(A) =
(λ1 · λ2)({(x1, x2) | Γ(x1, x2) 6= ∅ ∧ Γ(x1, x2) ⊑ A})

(λ1 · λ2)({(x1, x2 | Γ(x1, x2) 6= ∅)})

the lower probability of A that respects both observations.
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Ω = {1, 2, 3} λ1 : {a} 7→ 1/3 λ2 : {c} 7→ 1/2

{b} 7→ 2/3 λ2 : {d} 7→ 1/2

O1 = {a, b} Γ1 : a 7→ {1, 2} Γ2 : c 7→ {1}

O2 = {c, d} b 7→ {2, 3} d 7→ {2, 3}

Combination:

O1 ×O2 = {ac, bc, ad, bd}

λ : {ac} 7→ 1/6 Γ: ac 7→ {1} Γ∗(Ω) = {(x1, x2) | Γ(x1, x2) 6= ∅}

{ad} 7→ 1/6 ad 7→ {2} = {ac, ad, bd}

{bc} 7→ 2/6 bc 7→ ∅

{bd} 7→ 2/6 bd 7→ {2, 3} λ(Γ∗(Ω)) = 4/6
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A m1(A) (P∗)Γ1
(A) m2(A) (P∗)Γ2

(A) m(A) (P∗)Γ(A)
∅ 0 0 0 0 0 0

{1} 0 0 1/2
1/2

1/4 =
1/6/4/6

1/4

{2} 0 0 0 0 1/4
1/4

{3} 0 0 0 0 0 0

{1, 2} 1/3
1/3 0 1/2 0 1/2

{1, 3} 0 0 0 1/2 0 1/4

{2, 3} 2/3
2/3

1/2
1/2

1/2
3/4

{1, 2, 3} 0 1 0 1 0 1
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Motivation: Combination of m1 and m2

m1(Ai) ·m2(Bj) : Mass attached to Ai ∩Bj,
if only Ai or Bj are concerned

∑
i,j:Ai∩Bj=A m1(Ai) ·m2(Bj) : Mass attached to A (after combination)

This consideration only leads to a mass distribution,
if

∑
i,j:Ai∩Bj=∅m1(Ai) ·m2(Bj) = 0.

If this sum is > 0 normalization takes place.



Combination Rule

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 307

If m1 and m2 are mass distributions over Ω with belief functions Bel1 and Bel2 and
does further hold

∑
i,j:Ai∩Bj=∅m1(Ai) ·m2(Bj) < 1, then the

function m : 2Ω→ [0, 1] ,m(∅) = 0

m(A) =

∑
B,C:B∩C=A m1(B) ·m2(C)

1−
∑

B,C:B∩C=∅m1(B) ·m2(C)

is a mass distribution. The belief function of m is denoted as comb(Bel1, Bel2) or
Bel1⊕Bel2. The above formula is called the combination rule.
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m1({1, 2}) = 1/3 m2({1}) = 1/2

m1({2, 3}) = 2/3 m2({2, 3}) = 1/2

m = m1 ⊕m2 :

{1} 7→
1/6
4/6

= 1/4

{2} 7→
1/6
4/6

= 1/4

∅ 7→ 0

{2, 3} 7→
2/6
4/6

= 1/2
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Remarks:

a) The result from the combination rule and the analysis of random sets is identical

b) There are more efficient ways of combination

c) Bel1⊕Bel2 = Bel2⊕Bel1

d) ⊕ is associative

e) Bel1⊕Bel1 6= Bel1 (in general)

f) Bel2 : 2Ω → [0, 1] ,m2(B) = 1

Bel2(A) =





1 ifB ⊆ A

0 otherwise

The combination of Bel1 and Bel2 yields the data revision of m1 with B.
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Classical description of concepts/properties:

Example: concept “two-digit number”

a) as a set: {10, 11, . . . , 99} = M

b) as predicate two-digit(x) =





true if 10 ≤ x ≤ 99

false else

Connection between a) and b):

M = {x ∈ N | two-digit(x)}; two-digit(x)⇔ x ∈M

Both concepts are not suited for defining concepts like:

• “large”

• “old”

• “heavy”
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“Set” of sizes (in cm) at which a child would be regarded “tall”.

characteristic function of the concept “tall”
(=̂ {x | x ≥ 110 cm})

The saltus at 110 cm from 0 to 1 is not intuitive. Therefore:

membership degree function
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A fuzzy set over a basic set X is a mapping

µX : X → [0, 1]

µX(x) ∈ [0, 1] is the degree of membership of x to the fuzzy set µX .
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Combination of concepts like “tall”, “approx. 110 cm”, . . .

a) The child is “tall” and “approx. 110 cm (tall)”

b) The child is “tall” or “approx. 110 cm (tall)”

c) The child is not “tall”

a) =̂ Intersection: classical: x ∈ A ∩B ⇔ x ∈ A ∧ x ∈ B

b) =̂ Union: classical: x ∈ A ∪B ⇔ x ∈ A ∨ x ∈ B

c) =̂ Complement: classical: x ∈ A ⇔ ¬(x ∈ A)

Postulate:

µtall∧approx. 110 cm(x) = µtall(x)⊤µapprox. 110 cm(x)

I. e., we need a mapping ⊤ : [0, 1]2 → [0, 1]
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A t-norm is a mapping ⊤ : [0, 1]2 → [0, 1] with

(T1) ⊤(a, 1) = a

(T2) a ≤ a′⇒ ⊤(a, b) ≤ ⊤(a′, b)

(T3) ⊤(a, b) = ⊤(b, a)

(T4) ⊤(⊤(a, b), c) = ⊤(a,⊤(b, c)

Examples:

min{a, b}, a · b, max{a + b− 1, 0}

@
@@I

largest t-norm, the only idempotent t-norm (i. e., ⊤(a, a) = a)

0 ≤ ⊤(0, 0)
(T2)
≤ ⊤(1, 0)

(T3)
= ⊤(0, 1)

(T1)
= 0; ⊤(1, 1)

(T1)
= 1

Reasonable claim: µtall(x)⊤µtall(x) = µtall(x) ⇒ ⊤ idempotent
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standard conjunction: ⊤min(a, b) = min{a, b}

algebraic product: ⊤prod(a, b) = a · b

 Lukasiewicz: ⊤ Luka(a, b) = max{0, a + b− 1}

drastic product: ⊤−1(a, b) =






a, if b = 1,

b, if a = 1,

0, otherwise.
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X = {c1, c2, c3} Set of computers

µcheap Fuzzy set of cheap computers

µfast Fuzzy set of fast computers

µgoodvalue µcheap⊤µfast

Computer Price Speed µcheap µfast µgoodvalue (⊤ = ⊤min) (⊤ = ⊤prod)

c1 2000 20 1.0 0.4 0.4 0.40

c2 2500 40 0.6 0.8 0.6 0.48

c3 2500 50 0.6 0.9 0.6 0.54
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A t-conorm is a mapping ⊥ : [0, 1]2 → [0, 1] with

(S1) ⊥(a, 0) = a

(S2) a ≤ a′⇒ ⊥(a, b) ≤ ⊥(a′, b)

(S3) ⊥(a, b) = ⊥(b, a)

(S4) ⊥(⊥(a, b), c) = ⊥(a,⊥(b, c)

Examples:

max{a, b}, a + b− a · b, min{a + b, 1}

@
@@I

smallest t-conorm, the only idempotent t-conorm (i. e., ⊥(a, a) = a)
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standard disjunction: ⊥max(a, b) = max{a, b}

algebraic sum: ⊥sum(a, b) = a + b− a · b

 Lukasiewicz: ⊥ Luka(a, b) = min{1, a + b}

drastic sum: ⊥−1(a, b) =






a, if b = 0,

b, if a = 0,

1, otherwise.
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A negation operator is a mapping ∼: [0, 1]→ [0, 1] with

(N1) ∼0 = 1

(N2) a ≤ b ⇒ ∼b ≤ ∼a

(N3) ∼ (∼a) = a

From (N1) and (N3) follows: ∼1 = 0

Relation between t-norms and t-conorms:

⊤ t-norm ⇔ ⊥∼ t-conorm: ⊥∼(a, b) = ∼ (⊤(∼a,∼b))
(
a ∨ b =̂ ¬(¬a ∧ ¬b)

)

⊥ t-conorm ⇔ ⊤∼ t-norm: ⊤∼(a, b) = ∼ (⊥(∼a,∼b))
(
a ∧ b =̂ ¬(¬a ∨ ¬b)

)
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standard negation: ∼a = 1− a

threshold negation: ∼ (a; θ) =





1, if x ≤ θ,

0, otherwise.

cosine negation: ∼a = 1
2(1 + cos πa)

Sugeno negation: ∼ (a; λ) =
1− a

1 + λa

Yager negation: ∼ (a; λ) = (1− aλ)
1
λ
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Motivation:

modus ponens (mp):
A→ B,A

B
, modus tollens (mt):

A→ B,¬B

¬A

Generalization of mp and mt on [0, 1]-valued propositions, e. g.:

µtall(x)
0.8
−→ µheavy(x), µtall(x) ≥ 0.9 ⇒ µheavy ≥ ?



Reasoning with Uncertainty Module (2)

Rudolf Kruse, Matthias Steinbrecher Bayesian Networks 322

Modus Ponens: J·K fulfillment degree

• Given: JA→ BK ≥ γ; JAK ≥ α

• Desired: JBK ≥ β = β(γ, α)

• JBK ≥ JA ∧ (A→ B)K = ⊤(JAK, JA→ BK) ≥ ⊤(α, γ) = β

Modus Tollens:

• Given: JBK ≤ β,JA→ BK ≥ γ

• Desired: JAK ≤ α = α(β, γ)

• J¬AK ≥ J¬B ∧ (A→ B)K = ⊤(∼ (/B/), JA→ BK) ≥ ⊤(∼ (β), γ)

⇒ JAK = J¬¬AK =∼ (J¬AK) ≤∼ (⊤(∼ (β), γ)) = ⊥(β,∼ (γ))
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a) The vague concept “cloudy” is modeled by the fuzzy set µcloudy:

Vagueness

b) There exists a true but unknown value x0. Every x is assigned a degree to which
extent x = x0 is considered possible.

Uncertainty
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π(x) is a possibility degree

π(x) = 0 x = x0 impossible

π(x) = 1 x = x0 without restriction possible

π(x) ∈ (0, 1) x = x0 gradually possible

A possibility distribution π over Ω is a function π : Ω→ [0, 1] for which the condition

∃ω ∈ Ω : π(ω) = 1

holds.
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Let π be a possibility distribution over Ω.

• The possibility measure Poss induced by π is defined as

Poss : 2Ω → [0, 1] , A 7→ sup{π(x) | x ∈ A}

• The necessity measure Nec induced by π is defined as

Nec : 2Ω → [0, 1] , A 7→ 1− Poss(A)
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The functions Poss and Nec fulfill the following properties:

Poss(∅) = 0, Poss(Ω) = 1, Poss(A ∪B) = max{Poss(A), Poss(B)}

Nec(∅) = 0, Nec(Ω) = 1, Nec(A ∩B) = min{Nec(A), Nec(B)}

In general:

Poss(A ∩B) 6= min{Poss(A), Poss(B)}

Nec(A ∪B) 6= max{Nec(A), Nec(B)} but

Nec(A ∪B) ≥ max{Nec(A), Nec(B)}

Nec(A) = 0 and Poss(A) = 1 represent complete ignorance.
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A mass distribution

m : 2Ω → [0, 1]

with

∑

A:A⊆Ω

m(A) = 1, m(∅) = 0

is called consonant, if all sets A with m(A) > 0 (the so-called focal elements) form an
inclusion chain, i. e. there exists for all such sets an enumeration such that:

A1 ⊆ A2 ⊆ · · · ⊆ Am
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If m is consonant, then the corresponding belief function

Belm : 2Ω→ [0, 1] ; A 7→
∑

B:B⊆A

m(B)

has the properties of a necessity measure:

Belm(∅) = 0, Belm(Ω) = 1, Belm(A ∩B) = min{Belm(A), Belm(B)}

If m is consonant, then the corresponding plausibility function

Plm : 2Ω → [0, 1] ; A 7→
∑

B:B∩A6=∅

m(B)

has the properties of a possibility measure.
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