Chapter 9: **Recurrent Networks**

Recurrent Networks: Cooling Law

A body of temperature ϑ_0 that is placed into an environment with temperature ϑ_A .

The cooling/heating of the body can be described by **Newton's cooling law**:

$$\frac{\mathrm{d}\vartheta}{\mathrm{d}t} = \dot{\vartheta} = -k(\vartheta - \vartheta_A).$$

Exact analytical solution:

$$\vartheta(t) = \vartheta_A + (\vartheta_0 - \vartheta_A)e^{-k(t - t_0)}$$

Approximate solution with Euler-Cauchy polygon courses:

$$\vartheta_1 = \vartheta(t_1) = \vartheta(t_0) + \dot{\vartheta}(t_0)\Delta t = \vartheta_0 - k(\vartheta_0 - \vartheta_A)\Delta t.$$

$$\vartheta_2 = \vartheta(t_2) = \vartheta(t_1) + \dot{\vartheta}(t_1)\Delta t = \vartheta_1 - k(\vartheta_1 - \vartheta_A)\Delta t.$$

General recursive formula:

$$\vartheta_i = \vartheta(t_i) = \vartheta(t_{i-1}) + \dot{\vartheta}(t_{i-1})\Delta t = \vartheta_{i-1} - k(\vartheta_{i-1} - \vartheta_A)\Delta t$$

Recurrent Networks: Cooling Law

Euler-Cauchy polygon courses for different step widths:

The thin curve is the exact analytical solution.

Recurrent neural network:

$$\frac{-k\Delta t}{\bigcirc}$$

$$\frac{-k\Delta t}{\bigcirc}$$

$$-k\vartheta_A\Delta t}$$

$$\frac{-k\partial_A\Delta t}{\partial_A\Delta t}$$

Recurrent Networks: Cooling Law

More formal derivation of the recursive formula:

Replace differential quotient by forward difference

$$\frac{\mathrm{d}\vartheta(t)}{\mathrm{d}t} \approx \frac{\Delta\vartheta(t)}{\Delta t} = \frac{\vartheta(t+\Delta t) - \vartheta(t)}{\Delta t}$$

with sufficiently small Δt . Then it is

$$\vartheta(t + \Delta t) - \vartheta(t) = \Delta \vartheta(t) \approx -k(\vartheta(t) - \vartheta_A)\Delta t$$

$$\vartheta(t+\Delta t) - \vartheta(t) = \Delta \vartheta(t) \approx -k \Delta t \vartheta(t) + k \vartheta_A \Delta t$$

and therefore

$$\vartheta_i \approx \vartheta_{i-1} - k\Delta t \vartheta_{i-1} + k \vartheta_A \Delta t.$$

Governing physical laws:

- Hooke's law: $F = c\Delta l = -cx$ (c is a spring dependent constant)
- Newton's second law: $F = ma = m\ddot{x}$ (force causes an acceleration)

Resulting differential equation:

$$m\ddot{x} = -cx$$
 or $\ddot{x} = -\frac{c}{m}x$.

General analytical solution of the differential equation:

$$x(t) = a\sin(\omega t) + b\cos(\omega t)$$

with the parameters

$$\omega = \sqrt{\frac{c}{m}}, \qquad a = x(t_0)\sin(\omega t_0) + v(t_0)\cos(\omega t_0),$$
$$b = x(t_0)\cos(\omega t_0) - v(t_0)\sin(\omega t_0).$$

With given initial values $x(t_0) = x_0$ and $v(t_0) = 0$ and the additional assumption $t_0 = 0$ we get the simple expression

$$x(t) = x_0 \cos\left(\sqrt{\frac{c}{m}} t\right).$$

Turn differential equation into two coupled equations:

$$\dot{x} = v$$
 and $\dot{v} = -\frac{c}{m}x$.

Approximate differential quotient by forward difference:

$$\frac{\Delta x}{\Delta t} = \frac{x(t+\Delta t) - x(t)}{\Delta t} = v \qquad \text{and} \qquad \frac{\Delta v}{\Delta t} = \frac{v(t+\Delta t) - v(t)}{\Delta t} = -\frac{c}{m}x$$

Resulting recursive equations:

$$x(t_i) = x(t_{i-1}) + \Delta x(t_{i-1}) = x(t_{i-1}) + \Delta t \cdot v(t_{i-1})$$
 and

$$v(t_i) \ = \ v(t_{i-1}) + \Delta v(t_{i-1}) \ = \ v(t_{i-1}) - \frac{c}{m} \Delta t \cdot x(t_{i-1}).$$

Neuron
$$u_1$$
: $f_{\text{net}}^{(u_1)}(v, w_{u_1 u_2}) = w_{u_1 u_2} v = -\frac{c}{m} \Delta t \ v$ and $f_{\text{act}}^{(u_1)}(\text{act}_{u_1}, \text{net}_{u_1}, \theta_{u_1}) = \text{act}_{u_1} + \text{net}_{u_1} - \theta_{u_1},$

Neuron
$$u_2$$
: $f_{\text{net}}^{(u_2)}(x, w_{u_2u_1}) = w_{u_2u_1}x = \Delta t \ x$ and $f_{\text{act}}^{(u_2)}(\text{act}_{u_2}, \text{net}_{u_2}, \theta_{u_2}) = \text{act}_{u_2} + \text{net}_{u_2} - \theta_{u_2}$.

Some computation steps of the neural network:

t	v	x
0.0	0.0000	1.0000
0.1	-0.5000	0.9500
0.2	-0.9750	0.8525
0.3	-1.4012	0.7124
0.4	-1.7574	0.5366
0.5	-2.0258	0.3341
0.6	-2.1928	0.1148

- The resulting curve is close to the analytical solution.
- The approximation gets better with smaller step width.

Recurrent Networks: Differential Equations

General representation of explicit n-th order differential equation:

$$x^{(n)} = f(t, x, \dot{x}, \ddot{x}, \dots, x^{(n-1)})$$

Introduce n-1 intermediary quantities

$$y_1 = \dot{x}, \qquad y_2 = \ddot{x}, \qquad \dots \qquad y_{n-1} = x^{(n-1)}$$

to obtain the system

$$\begin{array}{rcl} \dot{x} & = & y_1, \\ \dot{y}_1 & = & y_2, \\ & \vdots \\ \dot{y}_{n-2} & = & y_{n-1}, \\ \dot{y}_{n-1} & = & f(t, x, y_1, y_2, \dots, y_{n-1}) \end{array}$$

of n coupled first order differential equations.

Recurrent Networks: Differential Equations

Replace differential quotient by forward distance to obtain the recursive equations

$$\begin{array}{rcl} x(t_i) & = & x(t_{i-1}) + \Delta t \cdot y_1(t_{i-1}), \\ y_1(t_i) & = & y_1(t_{i-1}) + \Delta t \cdot y_2(t_{i-1}), \\ & \vdots \\ y_{n-2}(t_i) & = & y_{n-2}(t_{i-1}) + \Delta t \cdot y_{n-3}(t_{i-1}), \\ y_{n-1}(t_i) & = & y_{n-1}(t_{i-1}) + f(t_{i-1}, x(t_{i-1}), y_1(t_{i-1}), \dots, y_{n-1}(t_{i-1})) \end{array}$$

- Each of these equations describes the update of one neuron.
- The last neuron needs a special activation function.

Recurrent Networks: Differential Equations

Diagonal throw of a body.

Two differential equations (one for each coordinate):

$$\ddot{x} = 0$$

$$\ddot{x} = 0$$
 and $\ddot{y} = -g$,

where $g = 9.81 \,\text{ms}^{-2}$.

Initial conditions $x(t_0) = x_0$, $y(t_0) = y_0$, $\dot{x}(t_0) = v_0 \cos \varphi$ and $\dot{y}(t_0) = v_0 \sin \varphi$.

Introduce intermediary quantities

$$v_x = \dot{x}$$
 and $v_y = \dot{y}$

to reach the system of differential equations:

$$\dot{x} = v_x,$$
 $\dot{v}_x = 0,$ $\dot{y} = v_y,$ $\dot{v}_y = -g,$

from which we get the system of recursive update formulae

$$\begin{split} x(t_i) &= x(t_{i-1}) + \Delta t \ v_x(t_{i-1}), & v_x(t_i) &= v_x(t_{i-1}), \\ y(t_i) &= y(t_{i-1}) + \Delta t \ v_y(t_{i-1}), & v_y(t_i) &= v_y(t_{i-1}) - \Delta t \ g. \end{split}$$

Better description: Use **vectors** as inputs and outputs

$$\ddot{\vec{r}} = -g\vec{e}_y,$$

where $\vec{e}_y = (0, 1)$.

Initial conditions are $\vec{r}(t_0) = \vec{r}_0 = (x_0, y_0)$ and $\dot{\vec{r}}(t_0) = \vec{v}_0 = (v_0 \cos \varphi, v_0 \sin \varphi)$.

Introduce one **vector-valued** intermediary quantity $\vec{v} = \dot{\vec{r}}$ to obtain

$$\dot{\vec{r}} = \vec{v},$$
 $\dot{\vec{v}} = -g\vec{e}_y$

This leads to the recursive update rules

$$\vec{r}(t_i) = \vec{r}(t_{i-1}) + \Delta t \ \vec{v}(t_{i-1}),$$

$$\vec{v}(t_i) = \vec{v}(t_{i-1}) - \Delta t \ g \vec{e}_y$$

Advantage of vector networks becomes obvious if friction is taken into account:

$$\vec{a} = -\beta \vec{v} = -\beta \dot{\vec{r}}$$

 β is a constant that depends on the size and the shape of the body. This leads to the differential equation

$$\ddot{\vec{r}} = -\beta \dot{\vec{r}} - g \vec{e}_y.$$

Introduce the intermediary quantity $\vec{v} = \dot{\vec{r}}$ to obtain

$$\dot{\vec{r}} = \vec{v}, \qquad \qquad \dot{\vec{v}} = -\beta \vec{v} - g \vec{e}_y,$$

from which we obtain the recursive update formulae

$$\vec{r}(t_i) = \vec{r}(t_{i-1}) + \Delta t \ \vec{v}(t_{i-1}),$$

$$\vec{v}(t_i) = \vec{v}(t_{i-1}) - \Delta t \ \beta \ \vec{v}(t_{i-1}) - \Delta t \ g\vec{e}_y.$$

Resulting recurrent neural network:

- There are no strange couplings as there would be in a non-vector network.
- Note the deviation from a parabola that is due to the friction.

Recurrent Networks: Planet Orbit

$$\ddot{\vec{r}} = -\gamma m \frac{\vec{r}}{|\vec{r}|^3}, \qquad \Rightarrow \qquad \dot{\vec{r}} = \vec{v}, \qquad \dot{\vec{v}} = -\gamma m \frac{\vec{r}}{|\vec{r}|^3}.$$

Recursive update rules:

$$\vec{r}(t_i) = \vec{r}(t_{i-1}) + \Delta t \ \vec{v}(t_{i-1}),$$

$$\vec{v}(t_i) = \vec{v}(t_{i-1}) - \Delta t \ \gamma m \frac{\vec{r}(t_{i-1})}{|\vec{r}(t_{i-1})|^3},$$

Recurrent Networks: Backpropagation through Time

Idea: Unfold the network between training patterns, i.e., create one neuron for each point in time.

Example: Newton's cooling law

$$\vartheta(t_0) - \underbrace{\hspace{1cm} \frac{1 - k \Delta t}{\theta} \underbrace{\hspace{1cm} \frac{1 - k \Delta t}{\theta}} \underbrace{\hspace{1cm} \theta} \underbrace{\hspace{1cm} \frac{1 - k \Delta t}{\theta} \underbrace{\hspace{1cm} \theta} \underbrace{\hspace{1cm} \frac{1 - k \Delta t}{\theta}} \underbrace{\hspace{1cm} \theta} \underbrace{\hspace{1cm} \theta} \underbrace{\hspace{1cm} \frac{1 - k \Delta t}{\theta}} \underbrace{\hspace{1cm} \theta} \underbrace{\hspace{1cm} \theta} \underbrace{\hspace{1cm} \frac{1 - k \Delta t}{\theta}} \underbrace{\hspace{1cm} \theta} \underbrace{\hspace{1cm} \theta} \underbrace{\hspace{1cm} \frac{1 - k \Delta t}{\theta}} \underbrace{\hspace{1cm} \frac{1 - k$$

Unfolding into four steps. It is $\theta = -k\vartheta_A \Delta t$.

- Training is standard backpropagation on unfolded network.
- All updates refer to the same weight.
- updates are carried out after first neuron is reached.