Chapter 9:
Recurrent Networks
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Recurrent Networks: Cooling Law

A body of temperature ¥Jj that is placed into an environment with temperature 1.

The cooling/heating of the body can be described by Newton’s cooling law:
do

— =) = k(I — ).
r WA

Exact analytical solution:
J(t) =4+ (g — Uy )e—k(t—to)
Approximate solution with Euler-Cauchy polygon courses:
01 = D(ty) = O(ty) + I(tg) At = ¥g — k(I — 94)At.
Jo = D(ta) = I(t1) + V(t1) At = ¥4 — k(V1 — V4) AL,
General recursive formula:

?]?: = ?'Jl.rfg*l = E)llff'lf_l] -+ ﬂlff_n’—lal‘i"f — ii"g'—l _ ’I"ll:i"]f,—l . ”_l,hiﬂl

EURO

Prof. Dr. Rudolf Kruse 193

uzzy



Recurrent Networks: Cooling Law

Euler—Cauchy polygon courses for different step widths:

ﬁ{]: 1 At =1
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The thin curve is the exact analytical solution.

Recurrent neural networlk:
— kAt
4 j
"

t(tp) —-—{— kily At ) — ¥ (1)

EURO
Prof. Dr. Rudolf Kruse

194 UzZzy



Recurrent Networks: Cooling Law

More formal derivation of the recursive formula:
Replace differential quotient by forward difference

de(t)  Ad(t)  J{t+ At) — D)

Pt —

dt At At

with suthiciently small Af. Then it is
it + At) —O(t) = Ad(t) = —k(D(t) — 4 At,
Ut + At) — Ht) = Ad(t) = —kAtIt) + kI At
and therefore

Tﬂ;; = 'ﬂi—l — I{,f'_‘"\f?j?:_l + :I:ij_i,_"".f
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Recurrent Networks: Mass on a Spring
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Governing physical laws:
e Hooke's law: ' = ¢Al = —cx (¢ is a spring dependent constant )

e Newton’s second law: ' = ma = mz (force causes an acceleration |

Resulting differential equation:

ML = —CT or F = ——1.
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Recurrent Networks: Mass on a Spring

General analytical solution of the differential equation:
z(t) = asin(wt) + b cos(wt)

with the parameters

;"f? a = x(ty) sin(wty) + v(ty) cos(wiy),
N v m b = x(ty) cos(wty) — v(ty) sin(wtp).

With given initial values z(ty) = zg and v(fy) = 0 and
the additional assumption ty = 0 we get the simple expression

fe

x(t) = xgeos ;“% t
' m
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Recurrent Networks: Mass on a Spring

Turn differential equation into two coupled equations:

=7 and = ———7.

Approximate differential quotient by forward difference:

Az z(t+ At) — x(t) Av  v(t + At) —v(t) ¢

= = and = = ——I
At At At At m
Resulting recursive equations:
r(t;) = z(ti_1)+Ax(t,_1) = z(t;_q1) +At-v(t;_q) and

)
ot;) = v(tic) +Ao(tiny) = vlting) — —At- z(tiy).
m
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Recurrent Networks: Mass on a Spring
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m
.[_ul_:l,r 4 t 0 ) —. p
fact. \aCTy ey, Uy ) = a‘:"t'u,l + net ] — Yupe
Neur : (u2) 0 Y — At and
euron uo: Jret (T, Wyguy ) = Wyguy® = At 2 anc
(ug) \
Fact (actyy, nety  8y,,) = acty, +nety, —f;,.
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Recurrent Networks: Mass on a Spring

Some computation steps of the neural network:

t ( T
0.0 0.0000 | 1.0000 T
0.1 [ —0.5000 | 0.9500
0.2 | =0.9750 | 0.8525
0.3 —1.4012|0.7124 _

0.4 | —1.7574 | 0.5366 i ; 3 1
0.5 | —2.0258 | 0.3341
0.6 | —2.1928 | 0.1148

-

e The resulting curve is close to the analytical solution.

e The approximation gets better with smaller step width.
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Recurrent Networks: Difterential Equations

General representation of explicit n-th order differential equation:
2N = ft,x, 2 5, ... =1

Introduce n — 1 intermediary quantities

y=&, =% ...  yYpoy =]
to obtain the system
ro= 1,
y o= o
Un—2 = Yn—1;
Un—1 = fx,91,92,-- -, Un-1)
of n coupled first order differential equations.
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Recurrent Networks: Difterential Equations

Replace differential quotient by forward distance to obtain the recursive equations

r(t;) = x(ti—1) + At y(ti-1),
nit;) = ylti_1) + At-yalt; 1),
Un—alti) = yp—alti—1) + At -yy_alti_1),
Un—1(ti) = yp_1(tiz1) + FlEi—r (i) viltizg)s oo Un—1(fi—1))

e Each of these equations describes the update of one neuron.

e The last neuron needs a special activation function.
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Recurrent Networks: Difterential Equations
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Recurrent Networks: Diagonal Throw

| Vpeosy
|
M vp Sin Diagonal throw of a body.
I R
' I
)

Two differential equations (one for each coordinate):

=0 and = —q,

where g = 9.81 ms—2.

[nitial conditions z(ty) = g, y(tn) = yo, T(ty) = vgeose and y(ty) = vysin p.
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Recurrent Networks: Diagonal Throw

Introduce infermediary quantities
Vp =% and vy =y
to reach the system of differential equations:
i v =0,
Yy = Uy, Uy = —4,

from which we get the system of recursive update formulae

x(t;) = x(t;_1) + At v (t;_q1), vlt;) = vt

y(t;) = y(Ei_1) + At vy (Fi_1), vy(t;) = vy(ti—

— At g.
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Recurrent Networks: Diagonal Throw

Better description: Use vectors as inputs and outputs
= —géy,

where €, = (0,1).

Initial conditions are r{tg) = ry = (7, yo) and rlty) = vy = (vgcos g, vgsin ).

Introduce one vector-valued intermediary quantity ¢ = 7" to obtain

F =7, U= —gﬁy

This leads to the recursive update rules

ﬁrffg:l = Flf_f..,;_l;'l + Af Ul(ti_1),
ult;) = ulti—q1) — At gey
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Recurrent Networks: Diagonal Throw

Advantage of vector networks becomes obvious if friction 1s taken into account:
= —JTE_‘ = —JT.’_‘
/3 1s a constant that depends on the size and the shape of the body.

This leads to the differential equation

—

r=—0r— ge,.

.
— —

Introduce the intermediary quantity ¢ = 7 to obtain

—

= i = —B7 - gé,,

from which we obtain the recursive update formulae

rt;) = T(ti—1) + At Tt q),
o(t;) = vlti—1) — At S U(t;_q) — At gey.
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Recurrent Networks: Diagonal Throw

Resulting recurrent neural network:

Xl () (1)

El

e There are no strange couplings as there would be in a non-vector network.

e Note the deviation from a parabola that is due to the friction.
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Recurrent Networks: Planet Orbit

. 7 _ _ =
F=—ym—sz. = = U= —ym—s;.
/ —13? ! ! =13
7| 7|
Recursive update rules:
r(t;) = rlt;_1)+ At vlt;_1),
s » . rlti—1)
v(t;) = Ulti—1) — At ym— NEL
|7t 1)
1y
— ' = 1 e
() ~{ 0 - (1)
>~—{ 0.5 -
Y
—ymAt| At
'\ .
_ T
P = GRS S =
L/ o -1 -0.5 0 0.5
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Recurrent Networks: Backpropagation through Time

[dea: Unfold the network between training patterns,
L.e., create one neuron for each point in time.

Example: Newton’s cooling law

o ~1=kAt ~1=kAt ~1—kAt —~ 1—kAt n

Unfolding into four steps. It is # = —kid 4At.

e Training is standard backpropagation on unfolded network.
e All updates refer to the same weight.

e updates are carried out after first neuron is reached.
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