Chapter 8:
Hopfield Networks
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Hopfield Networks

A Hopfield network is a neural network with a graph G = (U, (') that satisfies
the following conditions:

¥
]
Fl

(1) Unidden = 0, Un=Unt="U,

(i) C=UxU —{(u,u) |ueU}.

In a Hopfield network all neurons are input as well as output neurons.

There are no hidden neurons.

Each neuron receives input from all other neurons.

A neuron is not connected to itself.

The connection weights are svmmetric, 1.e.

Yu,v e Uu#uv: Wyy = Wyy-
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Hopfield Networks

The network input function of each neuron is the weighted sum of the outputs of
all other neurons. 1.e.

. ), o, = .
Yuel: f (w,, in,)=d,in, = Z Wy OUL,

net sl
vell —{u}
The activation function of each nenron is a threshold function. i.e.

(u) x, 1, if net, >4,
(net,, d,) = '
> U, —1. otherwise.

YuelU: f

act
The output function of each neuron is the identity, i.e.

. . (1), .
Yuel: f. ']ra("t-,E_J = act,, .

ot
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Hopfield Networks

Alternative activation function

, 1, it net, >0,

. u), . . .

Yue U : f[‘ tjt_net--”.._ 0y, act,) = —1, if net, <40,
act,., if net, =4.

This activation function has advantages w.r.t. the physical interpretation
of a Hopfield network.

General weight matrix of a Hopfield network

0 Wyiug -+ Wuyu,
W= | Wugus 0 o Wy
Wyyw, Wy, --- Y
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Hopfield Networks: Examples

Very simple Hopfield network

11
1 ——(0 )—— Ui
/o 01
" W =
1 10
\_y
1'2 —_— = le—- o
u9

The behavior of a Hopfield network can depend on the update order.

e Computations can oscillate if neurons are updated in parallel,

e Computations always converge if neurons are updated sequentially.
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Hopfield Networks: Examples

Parallel update of neuron activations

iy | uo
input phase | —1 1
work phase 1|-1
—1 1

1| -1

—1 1

1| -1

—1 1

e The computations oscillate, no stable state is reached.

e Output depends on when the computations are terminated.
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Hopfield Networks: Examples

Sequential update of neuron activations

input phase

work phase

e Regardless of the update order a stable state is reached.

Ui | u9
—1 1
1 1

1 1

1 1

1 1

input phase

work phase

e Which state i1s reached depends on the update order.

Uy | ug
—1 1
—1] -1
-1 | -1
—1 | -1
-1 | -1
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Hopfield Networks: Examples

Simplified representation of a Hopfield network

7] (0 ) Y1

1\ _
4 |\ Uy ([}j. |

| 112
AV S
9 _|_H@_|_.. o 9

| |
o\1f \1/
H\l | ug@ 1
.

4

L3 — {0 )— 13

Nug W=

b = O
= 0 =
— = D

e Symimnetric connections between neurons are combined.

e Inputs and outputs are not explicitely represented.
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Hopfield Networks: State Graph

Graph of activation states and transitions

= ARG aing
( G+ G Jug )
Uy 13
o U9
g ]
el TN N\Uy
\iﬁ_) \i)J u3 a_@
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Hopfield Networks: Convergence

Convergence Theorem: If the activations of the neurons of a Hopfield network
are updated sequentially (asynchronously), then a stable state is reached in a finite
number of steps.

[t the neurons are traversed cyclically in an arbitrary, but fixed order, at most n - 2"
steps (updates of individual neurons) are needed, where n is the number of neurons
of the Hopfield network.

The proot 1s carried out with the help of an energy function.

The energy tunction of a Hopfield network with n neurons wuy, ... u,, is
F = -5 act™ Wact + & act
1
= -3 Z w,,, act,, act,, + Z i, act,, .
= u,wel u#v uel
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Hopfield Networks: Convergence

Consider the energy change resulting from an update that changes an activation:

. mew) (old F (new ) (new) .
AE = Eloew) _ plold)  — (_ Z w,,, acty " act, +0, acty, ) _.I
vell—{u}

- old old) .
— (= D> wy acty jaﬂ..r., +4,, a(“t-g,_ ")
vel—{u}
r.'ldx ( i i Y
= (act-?;-f ) _ act-::-,_nm) (), wyyact,—0,).
vell—{u}

= net,,

rd

e net, < 6, Second factor is less than 0.

o old
EL(.‘T-E.’ ““) — 1 and a(‘T-E‘a ]I

Result: AF < 0.

= 1, therefore first factor greater than 0.

e net, > 6, Second factor greater than or equal to 0.

(new (old e
acty " =1 and acty, ) — _1. therefore first factor less than 0.

Result: AF < 0.
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Hopfield Networks: Examples

Arrange states in state graph according to their energy

Energv function for example Hopfield network:

E = — act, ;q act

g —2 act uy 8Ctyy — act,, acty,, .
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Hopfield Networks: Examples

The state graph need not be symmetric

i
5 i

/I
| @ > 3 +—— S
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Hopfield Networks: Physical Interpretation

Physical interpretation: Magnetism

A Hopfhield network can be seen as a (microscopic) model of magnetism

(so-called Ising model, [Ising 1925]).

phvsical

neural

atom

magnetic moment (spin)

strength of outer magnetic field
magnetic coupling of the atoms
Hamilton operator of the magnetic field

neuron

activation state
threshold value
connection weights
energy function

Prof. Dr. Rudolf Kruse

173

E

UzZzy



Hopfield Networks: Associative Memory

Idea: Use stable states to store patterns

First: Store only one pattern p'= ( a.(c’r.gff e _,a:u:t.gi*] = {-1,1}" n > 2,

1
Le., ind weights, so that pattern is a stable state.

Necessary and sufficient condition:
SIWp—40)=p,
where

SR — {-1,1},
r —

with

R o 1, ifx; =0,
Vie{l,...,n}: = { —1, otherwise.
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Hopfield Networks: Associative Memory

=4 —

[f # = 0 an appropriate matrix W can easily be found. It suffices
Wpy=cp  withee RT.
Algebraically: Find a matrix W that has a positive eigenvalue w.r.t. p.
Choose
W=yl —E
where pp' 1 is the so-called outer product.

With this matrix we have

_— S P R ) B, U
Wi = (g5l yp—Epr ¥ 7@@pip) —
! PP ﬁ_' pip-p)—-r
=p =|p 2=p
= np—p = (n—1)p.
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Hopfield Networks: Associative Memory

Hebbian learning rule [Hebb 1949]

Written in individual weights the computation of the weight matrix reads:

0 ifu=w.
A (L 0 ,,[[:j.“]' ()
Wy = , if u #£ v, acty ’ = acty,

—1. otherwise.

e Originally derived from a biological analogy.

e Strengthen connection between neurons that are active at the same time.

Note that this learning rule also stores the complement of the pattern:

With Wp=(n-1)p it 1s also Wi(—p)=(n-=1)—p).
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Hopfield Networks: Associative Memory

Storing several patterns

Choose
Tl Tl
Wp. = Zﬂr.ﬁ.- = rﬁﬁ Ipi | — mEBp;
g L i 7
i=1 \"_'F,"
=P

1
= Z;J (P ;) — m,rf-
If patterns are orthogonal, we have

T - {[}* it 77,

L Dy = .
Pi P n, if 1=j,
and therefore

Wi = (n—m)p;.
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Hopfield Networks: Associative Memory

Storing several patterns
Result: As long as m < n, p'is a stable state of the Hopfield network.

Note that the complements of the patterns are also stored.

-y

With Wpj = (n—m)p; itisalso  W(—p;) = (n—m)(—pj).
But: Capacity is very small compared to the number of possible states (2).

Non-orthogonal patterns:

T
IIT—.'- _.-'. N e —.i.l’—-lT—J"'.
Wp; =(n—m)p; + 2; pi(p;" p;)
1=
17 ]

“disturbance term”
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Associative Memory: Example

Example: Store patterns pj = (+1,+1, =1, —1)7 and p5 = (=1, +1, -1, +1)7T.

where
0 1 -1 -1 0 -1 1 -1
, 1 0 -1 —1I -1 0 11
Wi=l 4 0 o0 1|0 Wes[ 1 1 04
-1 -1 1 0 -1 1 -1 0
The full weight matrix is:
0 0 0 =2
- 0 0 -2 0
WS 0 -2 0 0
-2 0 0 0

Therefore it 1s

Wi = (42,42, -2, -2)7  and  Wpj = (-2,42, -2, +2)T.
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Associative Memory: Example

Example: Storing bit maps of numbers

e Left: Bit maps stored in a Hopfield network.

e Right: Reconstruction of a pattern from a random input.
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Hopfield Networks: Associative Memory

Training a Hopfield network with the Delta rule

Necessary condition for pattern p being a stable state:

s(0

$(Waguy a.tt.-,f,rl

s(w Uy, Uy ﬂ‘fTul T Wy g

with the standard threshold function

+ Wy ug ac’r

aat,,z +o

(p) \ (p)
ot Wy, aﬂt,{ —0y) = :L(Tul :
P . )
A Wy, aﬂt,{n) — Byy) = ech:TEfQ',
—l_ U - QH .I — IL(TEEH] .

it =0,
otherwise.

Prof. Dr. Rudolf Kruse

181

E

uzzy



Hopfield Networks: Associative Memory

Traming a Hopfield network with the Delta rule

Turn weight matrix into a weight vector:

W=\ Wyugr Wygugr ---» Wyguy:

Wygrgs - -3 Wuguy,:

Wy, qig,s |
_‘qul , =t 199 ";'I'r.r.ﬂ -
Construct input vectors for a threshold logic unit
-t F [ i) [?'J" .-rl‘] A
Zo = Ila-‘i-ﬁ"-'[-e{lj. 0,...,0, ELL‘T--r{gj, e a-‘i-('-’r.Ef AP i I RS | B
2 : . 1y - n - ~
n — 2 zeros n — 2 Zeros
Apply Delta rule training until convergence.
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Hopfield Networks: Solving Optimization Problems

Use energy minimization to solve optimization problems

General procedure:

e Transform function to optimize into a function to minimize.

e Transform function into the form of an energy function of a Hopfield network.

e Read the weights and threshold values from the energy function.

e Construct the corresponding Hopfield network.

e Initialize Hopfield network randomly and update until convergence.

e Read solution from the stable state reached.

e Repeat several times and use best solution found.

h
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Hopfield Networks: Activation Transformation

A Hopfield network may be defined either with activations —1 and 1 or with acti-
vations 0 and 1. The networks can be transformed into each other.

From act, € {—1,1} to act,, € {0, 1}:

wr E n = 2 9 L:L-I].(.].
) = 05 + Z W
vel —{u}
From act,, € {0, 1} to act, € {-1,1}:
- L ()
Wyy = - Wy lﬁl]d
— HD 1 ()
b = -~ 3 ud.
2 5
vell—{u}
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Hopfield Networks: Solving Optimization Problems

Cﬂmbmatmn lemma Let two Hophol | networks on the same set [/ of neurons
with weights wy,, ” ; threshold values 6. ) ) and energy functions

E,=— Z Z Wyt a,(’rla,(t + Z Hl,ilac’ru,

HFf vell —{u} uel/

t = 1.2, be given. Furthermore let a,b € R. Then E = aF| + bE5 is the energy

function of the Hopfield network on the neurons in U that has the w eights w,, =

(1) (2) (1 ] [2 |
awy, + bwy, and the threshold values B, = aby " + bby .

Proot: Just do the computations.

[dea: Additional conditions can be formalized separately and incorporated later.
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Hopfield Networks: Solving Optimization Problems

Example: Traveling salesman problem

[dea: Represent tour by a matrix.

city
- g 1 2 3 4
(1)—2
N “‘D 100 0 1.
l [ 0010 2. step
000 1 3.
_ TN
B)— 0100 s

An element a;; of the matrix is 1 if the i-th city is visited in the j-th step and 0

otherwise.

Each matrix element will be represented by a neuron.
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Hopfield Networks: Solving Optimization Problems

Minimization of the tour length

Z Z Z djy jo - Mijy "M mod n)+1,j9°

n=1jo=1i=1

Double summation over steps (index 7) needed:

by = ‘ > . ‘ )3 _ Ajijy * O(iy mod n)+L,iy “ Miyjy * Migjy:
(i1,71)€{1,....n}2 (i, ja) €{1,....n}?

B l, it a=Hh
%ab =173 0. otherwise.

]

where

Symmetric version of the energy function:

1

Er = 9 Z _dflfid II I':E[:il mod n)41,ig T 6i51,[:15;g mod I.t]l-l—ljl “ Mgy 17 Mgy
Ai1.71)€ L)
(ig,j2)€{l,...,n}2
EURO
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Hopfield Networks: Solving Optimization Problems

Additional conditions that have to be satished:

e Each city is visited on exactly one step of the tour:

Tl
Vied{l,...,n}: Zm,_-jzl._
i=1

1.e., each column of the matrix contains exactly one 1.

e On each step of the tour exactly one city 1s visited:
T
Vie{l,...,n}: Zl'r”-;,ij:]..l
lj':

1.e., each row of the matrix contains exactly one 1.

These conditions are incorporated by finding additional functions to optimize.
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Hopfield Networks: Solving Optimization Problems

Formalization of first condition as a minimization problem:

T '/ T 2 Ti
Ef = > ( \Z m?-j-) -2 my + 1)
= i

j=1

i '/ L i i
= Z Z My j Z My | —2 Z mi; + 1
;=L \\ig=l ig=1 i=1
T T i T

L
= Z Z My Mg — 2 Z Z mj; +n.

j=lij=1iy=1 j=li=1

Double summation over cities (index i) needed:

Es = Z Z 05170 * Mgy - Migjy — 2 Z mi;-

[:;51:.;.1'1:@{1,...,13}2 (49,72)€4 1,...,11}2 (1. jF{l....,M}g
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Hopfield Networks: Solving Optimization Problems

Resulting energyv function:

1
fiy — — AL, R .. _ ..
£ 5 2. 204140 " Miyjy - Migjp + D 2m;
- [:il:jljf_:{l,_...,n}g (-.iur']lf_:{l___...w.}g
(ig.j2)e{l,....n}2

Second additional condition is handled in a completely analogous way:

1
n 98 i o . 9.
Eqy= 5 Z ._.fs.l,_l.@ My i * Migjy T Z 2m,;.
- ':.":11-'1"1:19{1:--“-'”-}I‘2 [:'f-':,'.f':]?{l_....:n}g

(ig.j2)€{L,...,n}2

Combining the energy functions:
b«

E =aF+bEy+ cEs where —=—>2 max (e
o a (j)e{l.n2 T
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Hopfield Networks: Solving Optimization Problems

From the resulting energy function we can read the weights

Wiy, g1)(iage) = :adjljg ' ':.fs[:il mod n)+1,ip T 6;51,[:?'2 mod 'rx)+1l:2f}5j1jg:?ﬁfgil-aﬁg
trom 4 from Fo from FEg
and the threshold values:

from Fq from Es from FEgq

Problem: Random initialization and update until convergence not always leads to
a matrix that represents a tour, leave alone an optimal one.
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