Chapter 7: **Self-Organizing Maps**

Self-Organizing Maps

A self-organizing map or Kohonen feature map is a neural network with a graph G = (U, C) that satisfies the following conditions

(i)
$$U_{\text{hidden}} = \emptyset$$
, $U_{\text{in}} \cap U_{\text{out}} = \emptyset$,

(ii)
$$C = U_{\text{in}} \times U_{\text{out}}$$
.

The network input function of each output neuron is a distance function of input and weight vector. The activation function of each output neuron is a radial function, i.e. a monotonously decreasing function

$$f: \mathbb{R}_0^+ \to [0, 1]$$
 with $f(0) = 1$ and $\lim_{x \to \infty} f(x) = 0$.

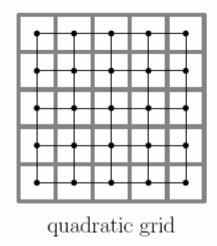
The output function of each output neuron is the identity.

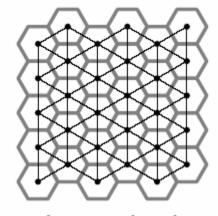
The output is often discretized according to the "winner takes all" principle. On the output neurons a **neighborhood relationship** is defined:

$$d_{\text{neurons}}: U_{\text{out}} \times U_{\text{out}} \to \mathbb{R}_0^+$$
.

Self-Organizing Maps: Neighborhood

Neighborhood of the output neurons: neurons form a grid





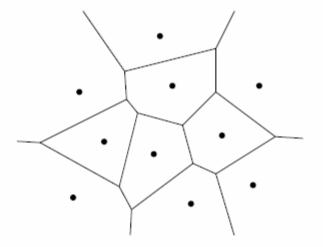
hexagonal grid

- Thin black lines: Indicate nearest neighbors of a neuron.
- Thick gray lines: Indicate regions assigned to a neuron for visualization.

Prof. Dr. Rudolf Kruse

Vector Quantization

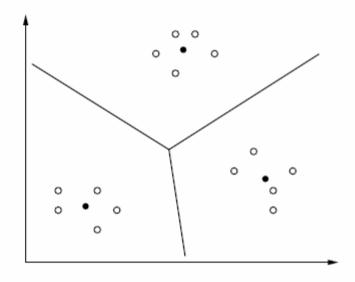
Voronoi diagram of a vector quantization



- Dots represent vectors that are used for quantizing the area.
- Lines are the boundaries of the regions of points that are closest to the enclosed vector.

Learning Vector Quantization

Finding clusters in a given set of data points



- Data points are represented by empty circles (o).
- Cluster centers are represented by full circles (◆).

Learning Vector Quantization

Adaptation of reference vectors / codebook vectors

- For each training pattern find the closest reference vector.
- Adapt only this reference vector (winner neuron).
- For classified data the class may be taken into account.
 (reference vectors are assigned to classes)

Attraction rule (data point and reference vector have same class)

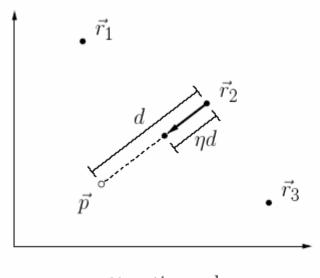
$$\vec{r}^{\,(\mathrm{new})} = \vec{r}^{\,(\mathrm{old})} + \eta(\vec{p} - \vec{r}^{\,(\mathrm{old})}),$$

Repulsion rule (data point and reference vector have different class)

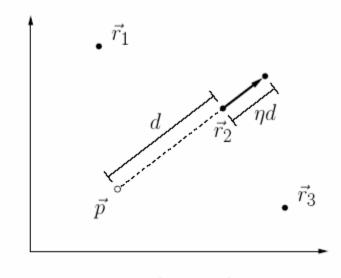
$$\vec{r}^{\,\text{(new)}} = \vec{r}^{\,\text{(old)}} - \eta(\vec{p} - \vec{r}^{\,\text{(old)}}).$$

Learning Vector Quantization

Adaptation of reference vectors / codebook vectors



attraction rule

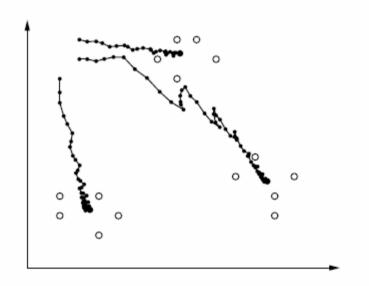


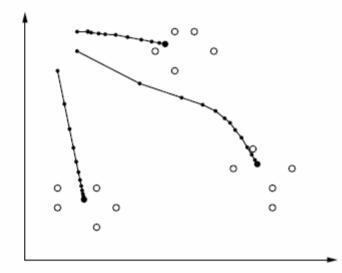
repulsion rule

- \vec{p} : data point, $\vec{r_i}$: reference vector
- $\eta = 0.4$ (learning rate)

Learning Vector Quantization: Example

Adaptation of reference vectors / codebook vectors



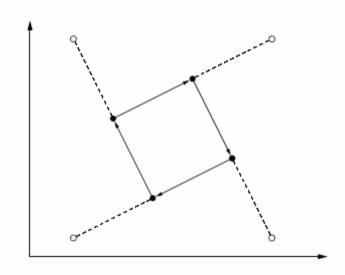


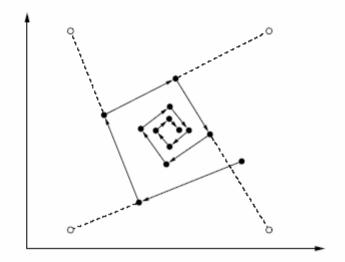
- Left: Online training with learning rate $\eta = 0.1$,
- Right: Batch training with learning rate $\eta = 0.05$.

EURO LUZZV

Learning Vector Quantization: Learning Rate Decay

Problem: fixed learning rate can lead to oscillations





Solution: time dependent learning rate

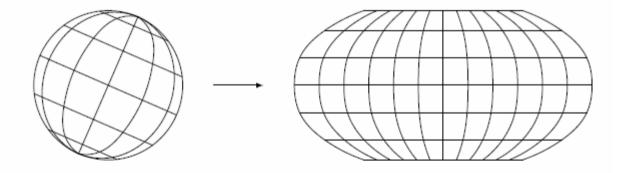
$$\eta(t) = \eta_0 \alpha^t, \quad 0 < \alpha < 1, \quad \text{or} \quad \eta(t) = \eta_0 t^{\kappa}, \quad \kappa > 0.$$

$$\eta(t) = \eta_0 t^{\kappa}, \quad \kappa > 0$$

Topology Preserving Mapping

Images of points close to each other in the original space should be close to each other in the image space.

Example: Robinson projection of the surface of a sphere



Robinson projection is frequently used for world maps.

Self-Organizing Maps: Neighborhood

Find topology preserving mapping by respecting the neighborhood

Reference vector update rule:

$$\vec{r}_u^{\text{(new)}} = \vec{r}_u^{\text{(old)}} + \eta(t) \cdot f_{\text{nb}}(d_{\text{neurons}}(u, u_*), \varrho(t)) \cdot (\vec{p} - \vec{r}_u^{\text{(old)}}),$$

- u_* is the winner neuron (reference vector closest to data point).
- The function $f_{\rm nb}$ is a radial function.

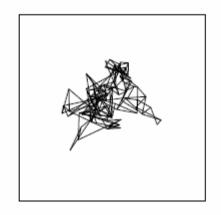
Time dependent learning rate

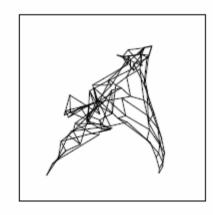
$$\eta(t) = \eta_0 \alpha_\eta^t, \quad 0 < \alpha_\eta < 1, \quad \text{or} \quad \eta(t) = \eta_0 t^{\kappa_\eta}, \quad \kappa_\eta > 0.$$

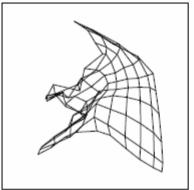
Time dependent neighborhood radius

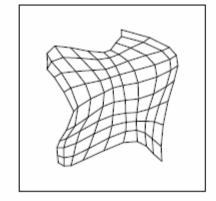
$$\varrho(t) = \varrho_0 \alpha_{\varrho}^t$$
, $0 < \alpha_{\varrho} < 1$, or $\varrho(t) = \varrho_0 t^{\kappa_{\varrho}}$, $\kappa_{\varrho} > 0$.

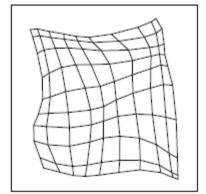
Example: Unfolding of a two-dimensional self-organizing map.



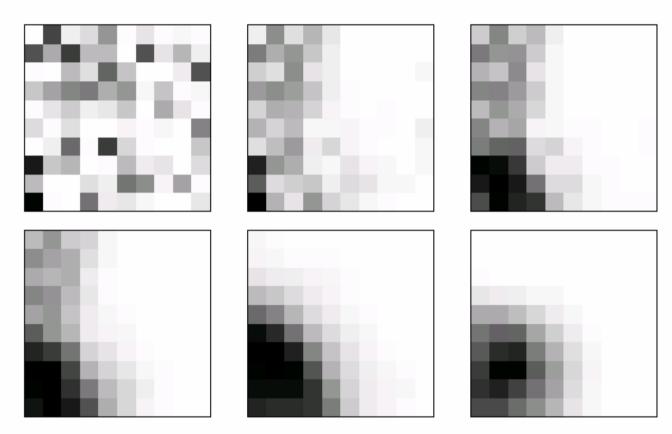




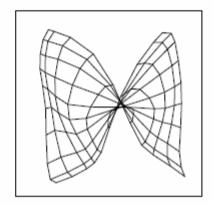




Example: Unfolding of a two-dimensional self-organizing map.



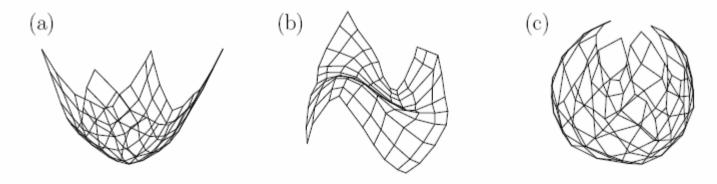
Example: Unfolding of a two-dimensional self-organizing map.



Training a self-organizing map may fail if

- the (initial) learning rate is chosen too small or
- or the (initial) neighbor is chosen too small.

Example: Unfolding of a two-dimensional self-organizing map.



Self-organizing maps that have been trained with random points from (a) a rotation parabola, (b) a simple cubic function, (c) the surface of a sphere.

- In this case original space and image space have different dimensionality.
- Self-organizing maps can be used for dimensionality reduction.