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Chapter 1:

Neural Networks and
Computational Intelligence
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Computational Intelligence (CI)

CI Core Technologies

B Necural Nets (NN)

B Fuzzy Logic (FL)

B Probabilistic Reasoning (PR)
B Genetic Algorithms (GA)

B Hybrid Systems

Related Technologies

B Statistics (Stat.)

B Artificial Intelligence (Al):
® Case-Based Reasoning (CBR)
® Rule-Based Expert Systems (RBR)
® Machine Learning (Induction Trees)
® Bayesian Belief Networks (BBN)

Applications

B (lassification

® Monitoring/Anomaly Detection
® Diagnostics

® Prognostics

® Configuration/Initialization
Prediction

® Quality Assessment

® Equipment Life Estimation
Scheduling

® Time/Resource Assignments
Control

® Machine/Process Control

® Process Initialization

® Supervisory Control
DSS/Auto-Decisioning

® Cost/Risk Analysis

® Revenue Optimization
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Problem Solving Technologies
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Computational Intelligence
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Computational Intelligence: Neural Networks
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Types of Neural Networks

e Introduction
Motivation, Biological Background

e Threshold Logic Units
Definition, Geometric Interpretation, Limitations, Networks of TLUs, Training

e (seneral Neural Networks
Structure, Operation, Traimng

e Multilayer Perceptrons
Definition, Function Approzamation, Gradient Descent, Backpropagation, Variants, Sensitivity Analysis

e Radial Basis Function Networks
Definition, Function Approzmation, Imitialization, Tramning, Generalized Version

e Self-Organizing Maps
Definition, Learning Vector (Quantization, Neighborhood of Output Neurons

e Hopftield Networks

Definition, Convergence, Associative Memory, Solving Optimization Problems

e Recurrent Neural Networks
Differential Equations, Vector Networks, Backpropagation through Time
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Comp Int. : Hybrid Neuro-Fuzzy Systems
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Computational Intelligence : EA Systems

Approximate Functional Approximation/
Reasoning Randomized Search
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Evolutionary Algorithms: Scalar-Valued
Fitness Function Optimization

B Example: Find the maximum of the function z(x,y)

z=1(x, y) = 3*(1-x)"2*exp(-(x2) - (y+1)"2) - 10*(x/5 - X3 - y*5)*exp(-x"2-y*2) -1/3*exp(-(x+1)"2 - y2).

Generation 0 Generation 10

Initialization of By evolving the individuals,

opulation providine a we create a bias in the
Ir)ar?dom Sarrlljple of & sampling and over-sample the

: best region(s) getting “close”
solution space to the optimal point(s
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Soft Computing Applications

Appliances
* Preferred Service Contracts (Stat.)
« Call Center Support (CBR)

Capital Services

» Mortgage Collateral Evaluation
(Fusion/FL/CBR)

Financial Assurance

* GEFA LTC Preferred Customer (Stat./NN)

» GEFA Fixed Life Digital Underwriter

(Stat, CBR, FL, GA)

Plastics

* Automated Color Matching (CBR)

LM Fed. Systems

» Scheduling Maintenance for
Constellation of Satellites (GA)

LM ORSS
* Vessel Management Syst. (Al/GA)

Medical Systems

* SPT Auto Analysis for MRI (FL)

» Reverse Engineering of Picker (FL)
* FE Analysis tool (FL)

» X-Ray error Logs Analysis (CBR)

Aircraft Engines

* Center for Remote Diagn. (CBR)

» Customer Response Center (CBR)

» Anomaly Detection (FL/Stat.)

* IMATE - Maintenance Advisor (NN/FL)
* Resolver Drift - Sensor Fusion (FL)

Transportation Systems

* Log from Transportation DB (CBR)
* Prototype Train Handling Cntrl. (FL/GA)
* Prototype Trend Analysis (Stat.)

» Embedded/Remote Diagnostics (BBN)

Power Gen. Systems

* Remote Anomaly Detection (Stat.)

* Embedded/Remote Diagnostics (BBN)
+ Call Center Problem/Solution (CBR)

Industrial Systems

* Paper Web Breakage Prediction
(NN/Stat./Induction)

 Control Mixing of Cement (FL/GA)




Enabling Soft Computing and Related Technologies
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Chapter 2:
Threshold Logic Units (Perceptrons)
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Motivation: Why (Artificial) Neural Networks?

¢ (Neuro-)Biology / (Neuro-)Physiology / Psychology:

o Exploit similarity to real (biological) neural networks.

o Build models to understand nerve and brain operation by simulation.

e Computer Science / Engineering / Economics

o Mimic certain cognitive capabilities of human beings.

o Solve learning/adaptation, prediction, and optimization problems.

¢ Physics / Chemistry

o Use neural network models to describe physical phenomena.

o Special case: spin glasses (alloys of magnetic and non-magnetic metals).
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Motivation: Why Neural Networks in AI?

Physical-Symbol System Hypothesis [Newell and Simon 1976]

A physical-symbol system has the necessary and sufficient means
for general intelligent action.

Neural networks process simple signals, not symbols.

So why study neural networks in Artificial Intelligence?

e Svmbol-based representations work well for inference tasks,
but fairly bad for perception tasks.

e Symbol-based expert systems tend to get slower with growing knowledge.
human experts tend to get faster.

e Neural networks allow for highly parallel information processing.

e There are several successtul applications in industry and finance.
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Biological Background

Structure of a prototypical biological neuron

L/ |- terminal bouton
/ svnapsls
/ dendrites

r N

cell body

(soma |

cell core
AXO011

myvelin sheath
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Biological Background

(Very) simplified description of neural information processing

Axon terminal releases chemicals, called neurotransmitters.

These act on the membrane of the receptor dendrite to change its polarization.

(The inside is usually 70mV more negative than the outside. )

Decrease in potential difference: excitatory synapse
Increase in potential difference: inhibitory synapse

If there 1s enough net excitatory input. the axon 1s depolarized.

The resulting action potential travels along the axon.
(Speed depends on the degree to which the axon is covered with mvelin).

When the action potential reaches the terminal boutons,
1t triggers the release of neurotransmitters.

Prof. Dr. Rudolf Kruse
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Threshold Logic Units

A Threshold Logic Unit (TLU) is a processing unit for numbers with n inputs
r1,...,7, and one output y. The unit has a threshold ¢ and each input z; is
associated with a weight w;. A threshold logic unit computes the function

T
1, it 7uw= Z w;x; > 0,
y= =1
0, otherwise,

I

&‘
o

Tn
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Threshold Logic Units: Examples

Threshold logic unit for the conjunction zy A 9.

;I.‘l

9 T1 | To | 321+ 229 | ¥
N 0|0 0o |0
— ¥ 110 3 0

/2' 011 2 0

T 11 5 1

Threshold logic unit for the implication 1y — ry.

T . T1 | To | 201 — 229 | ¥
\ 010 0 1

— =y 110 2 1

/ " = |

79 —< 1|1 0 1
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Threshold Logic Units: Examples

Threshold logic unit for (x{ AT3)V (21 A xg) V (Tg A xg).

T

2
9 “—.F@—.F 1
/2’

T3

T1| X9 | XY | Do wiT; | Y
01010 0 0
I {0]0 2 1
0] 110 —2 0
1 0 0 0
0] 011 2 '
I | 0] 1 !

0] 11 0 0
Ly 1] 1 2 1

Prof. Dr. Rudolf Kruse

21

E

UzZzy



Threshold Logic Units: Geometric Interpretation

Review of line representations

Straight lines are usually represented in one of the following forms:

Explicit Form: g = r9=>br1+c
Implicit Form: g = arry+asro+d=0
Point-Direction Form: ¢ = #=pg+kr

Normal Form: g= (f—pni=0

with the parameters:

b: Gradient of the line

c:  Section of the xo axis

p - Vector of a point of the line (base vector)
v Direction vector of the line

n : Normal vector of the line

Prof. Dr. Rudolf Kruse 22
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Threshold Logic Units: Geometric Interpretation

A straight line and its defining parameters.

[ | rg
T
h=-2
T "
i
. n = (a1, a9)
=
_—
n| |1
1 IE}
7 d=—pn
L’:.-"\
.I.']_
()
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Threshold Logic Units: Geometric Interpretation

How to determine the side on which a point 7 lies.
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Threshold Logic Units: Geometric Interpretation

Threshold logic unit for xq A 5.

,']!'.‘1
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A threshold logic unit for o — x7.
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Threshold Logic Units: Geometric Interpretation

Visualization of 3-dimensional (1,1.1)
Boolean functions:
Ty
T9
k 'Tl
(0,0,0)
Threshold logic unit for (x| A7)V (21 A xg) V (T3 A x3).
T
X
9 T3
Iro — - —_— kfg
/?' ]
T3
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Threshold Logic Units: Limitations

The biimplication problem x| <+ 79: There is no separating line.

|
Ty | To |y 14 © ®
0101 o
1100 }
01110 04 e e
111 | .
0 =z 1
Formal proof by reductio ad absurdum:

since (0,0) — 1: 0 >, (1)

since (1,0) — 0: M < f, (2)

since (0, 1) — 0: o < #, (3)

since (1,1) — 1 wy +wo =40, (4)

(2) and (3): wq + wy < 26. With (4): 26 > 6, or § > 0. Contradiction to (1).

EURO

Prof. Dr. Rudolf Kruse 27 uzzY



Threshold Logic Units: Limitations

Total number and number of linearly separable Boolean functions.
([Widner 1960] as cited in [Zell 1994])

inputs | Boolean functions | linearly separable functions
1 4 4
2 16 14
3 256 104
4 65536 1774
5 4.3-109 94572
6 1.8- 1019 5.0-106

e For many inputs a threshold logic unit can compute almost no functions.

e Networks of threshold logic units are needed to overcome the limitations.
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Networks of Threshold Logic Units

Solving the biimplication problem with a network.

1

[dea: Logical Decomposition r1 19 = (1 — X)) N1y — 11

computes iy = x| — I9

. computes y = y; A 9

— = Y =TI Iy

computes yo = 19 — I

Prof. Dr. Rudolf Kruse
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Networks of Threshold Logic Units

Solving the biimplication problem: Geometric interpretation

e The first laver computes new Boolean coordinates for the points.

e After the coordinate transformation the problem is linearly separable.

Prof. Dr. Rudolf Kruse
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Representing Arbitrary Boolean Functions

Let y = f(xy,...,,) be a Boolean function of n variables.

(i) Represent f(xy,...,7,) in disjunctive normal form. That is, determine
Dy = Ky V...V Ky, where all K; are conjunctions of n literals, ie.,
K = Lin Ao AN Ly with [y =y (positive literal) or [;; = —w; (negative
literal ).

(ii) Create a neuron for each conjunction K; of the disjunctive normal form (having
n inputs — one input for each variable), where

2, ifl;= ux;, 1z

| i — ' Jli' LK h . P p— | _ |?...

Wi {_2. if [j; = —as, and 0 =n—-1+ 5 E luﬂ.
. ? 2=

(iii) Create an output neuron (having m inputs — one input for each neuron that
was created in step (ii)), where
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