Neural Networks

Prof. Dr. Rudolf Kruse

University of Magdeburg
Faculty of Computer Science
Magdeburg, Germany
rudolf.kruse@cs.uni-magdeburg.de

Allgemeines

Vorlesung: Neuronale Netze

Termin Do 9:15-10:45 G29-307

Dozent Prof. Dr. Rudolf Kruse

Sprechstunde Mittwochs, 11-12 Uhr, Gebäude 29, Raum 008

bevorzugt erreichbar per Email: kruse@iws.cs.uni-magdeburg.de

Übungen: Neuronale Netze

Frank Rügheimer

Literatur

C. Borgelt, F. Klawonn, R. Kruse, D. Nauck,

Neuro-Fuzzy Systeme, 3.Auflage, Vieweg, 2003 (unter anderem)

Chapter 1: Neural Networks and Computational Intelligence

Computational Intelligence (CI)

CI Core Technologies

- Neural Nets (NN)
- Fuzzy Logic (FL)
- Probabilistic Reasoning (PR)
- Genetic Algorithms (GA)
- Hybrid Systems

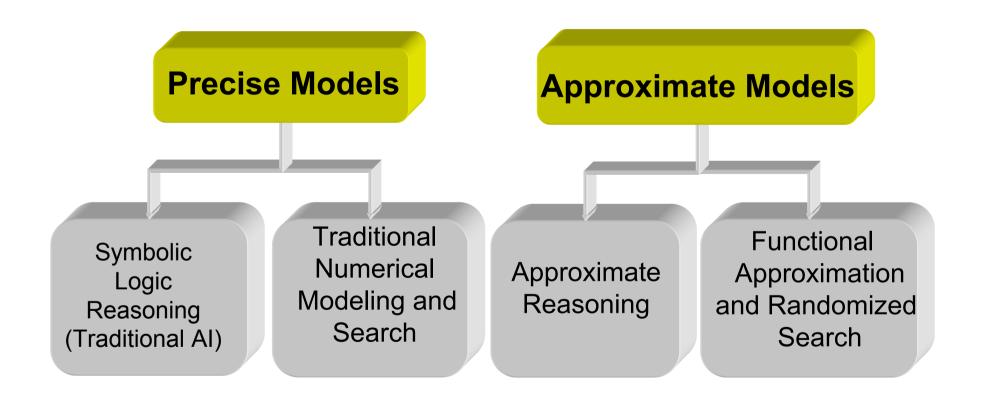
Related Technologies

- Statistics (Stat.)
- Artificial Intelligence (AI):
 - Case-Based Reasoning (CBR)
 - Rule-Based Expert Systems (RBR)
 - Machine Learning (Induction Trees)
 - Bayesian Belief Networks (BBN)

Applications

- Classification
 - Monitoring/Anomaly Detection
 - Diagnostics
 - Prognostics
 - Configuration/Initialization
- Prediction
 - Quality Assessment
 - Equipment Life Estimation
- Scheduling
 - Time/Resource Assignments
- Control
 - Machine/Process Control
 - Process Initialization
 - Supervisory Control
- DSS/Auto-Decisioning
 - Cost/Risk Analysis
 - Revenue Optimization

Problem Solving Technologies



Computational Intelligence

Approximate Reasoning

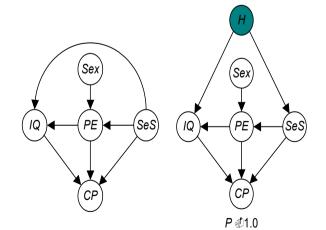
Functional Approximation/ Randomized Search

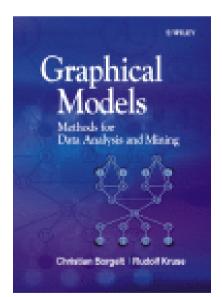
Probabilistic Models

Multivalued & Fuzzy Logics

Neural Networks **Evolutionary Algorithms**

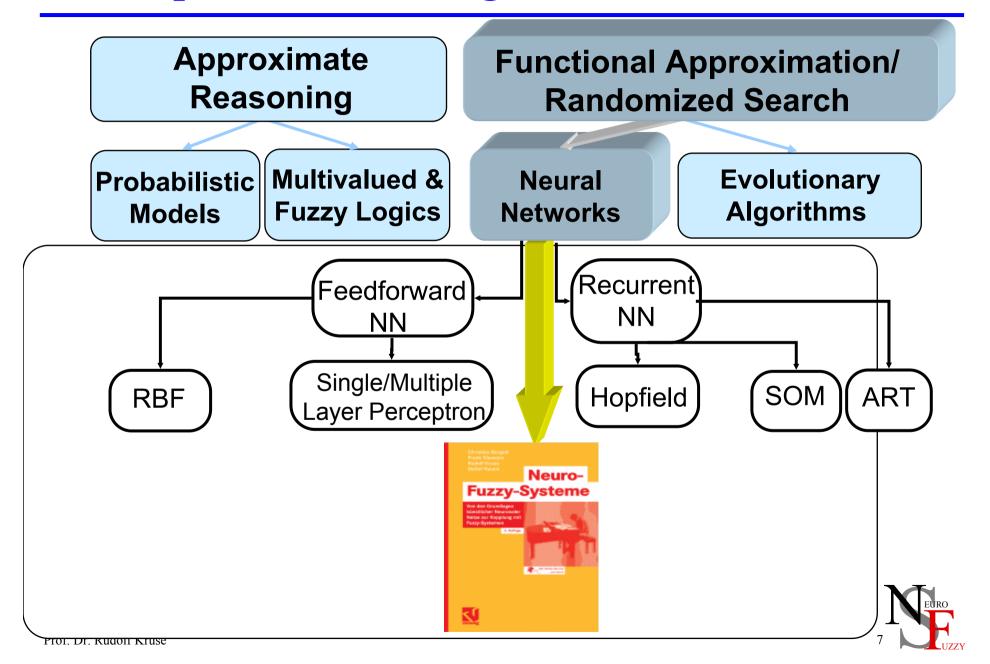
Graphical Models





TUZZY

Computational Intelligence: Neural Networks



Types of Neural Networks

• Introduction

Motivation, Biological Background

• Threshold Logic Units

Definition, Geometric Interpretation, Limitations, Networks of TLUs, Training

• General Neural Networks

Structure, Operation, Training

• Multilayer Perceptrons

Definition, Function Approximation, Gradient Descent, Backpropagation, Variants, Sensitivity Analysis

• Radial Basis Function Networks

Definition, Function Approximation, Initialization, Training, Generalized Version

• Self-Organizing Maps

Definition, Learning Vector Quantization, Neighborhood of Output Neurons

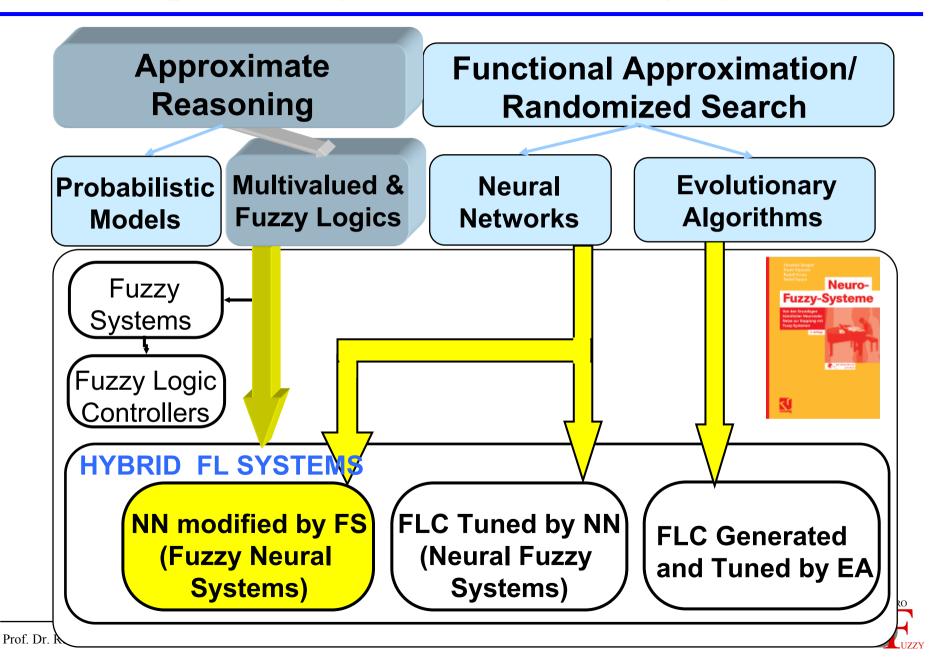
• Hopfield Networks

Definition, Convergence, Associative Memory, Solving Optimization Problems

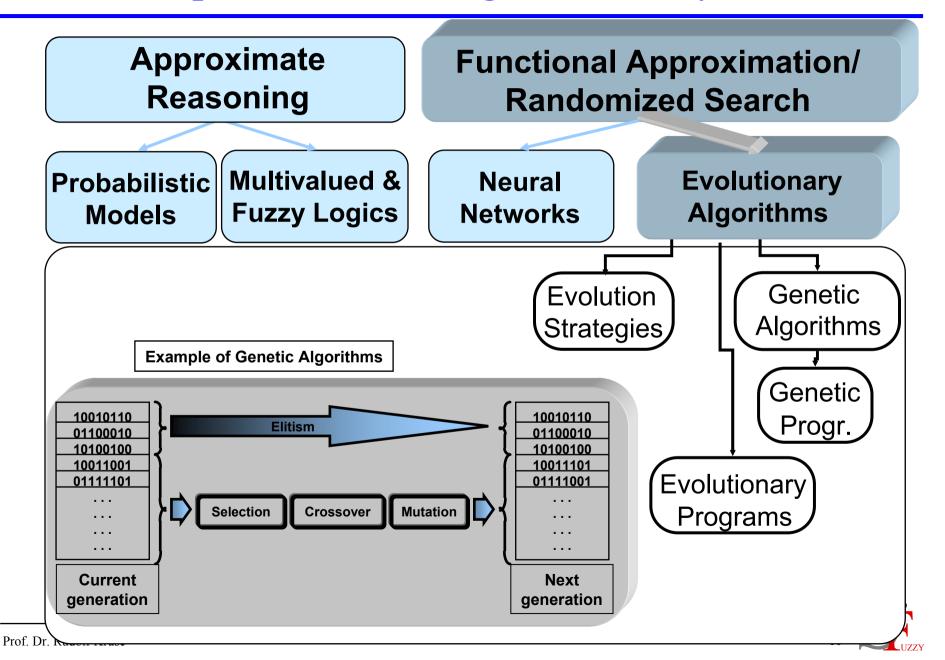
• Recurrent Neural Networks

Differential Equations, Vector Networks, Backpropagation through Time

Comp Int.: Hybrid Neuro-Fuzzy Systems



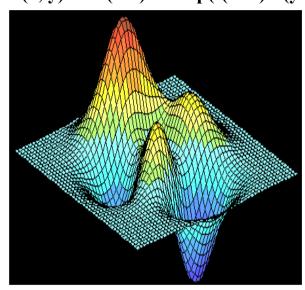
Computational Intelligence : EA Systems

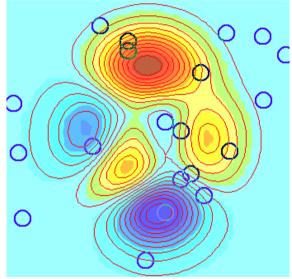


Evolutionary Algorithms: Scalar-Valued Fitness Function Optimization

 \blacksquare Example: Find the maximum of the function z(x,y)

 $z = f(x, y) = 3*(1-x)^2*exp(-(x^2) - (y+1)^2) - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) - 1/3*exp(-(x+1)^2 - y^2).$







Generation 0

Initialization of population providing a random sample of solution space

Generation 10

By evolving the individuals, we create a bias in the sampling and over-sample the best region(s) getting "close" to the optimal point(s) _

Soft Computing Applications

Appliances

- Preferred Service Contracts (Stat.)
- Call Center Support (CBR)

Medical Systems

- SPT Auto Analysis for MRI (FL)
- Reverse Engineering of Picker (FL)
- FE Analysis tool (FL)
- X-Ray error Logs Analysis (CBR)

Capital Services

 Mortgage Collateral Evaluation (Fusion/FL/CBR)

Aircraft Engines

- Center for Remote Diagn. (CBR)
- Customer Response Center (CBR)
- Anomaly Detection (FL/Stat.)
- IMATE Maintenance Advisor (NN/FL)
- Resolver Drift Sensor Fusion (FL)

Financial Assurance

- GEFA LTC Preferred Customer (Stat./NN)
- GEFA Fixed Life Digital Underwriter (Stat, CBR, FL, GA)

Transportation Systems

- Log from Transportation DB (CBR)
- Prototype Train Handling Cntrl. (FL/GA)
- Prototype Trend Analysis (Stat.)
- Embedded/Remote Diagnostics (BBN)

Plastics

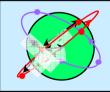
Automated Color Matching (CBR)

LM Fed. Systems

Scheduling Maintenance for

Power Gen. Systems

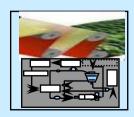
- Remote Anomaly Detection (Stat.)
- Embedded/Remote Diagnostics (BBN)
- Call Center Problem/Solution (CBR)



LM ORSS

Vessel Management Syst. (AI/GA)

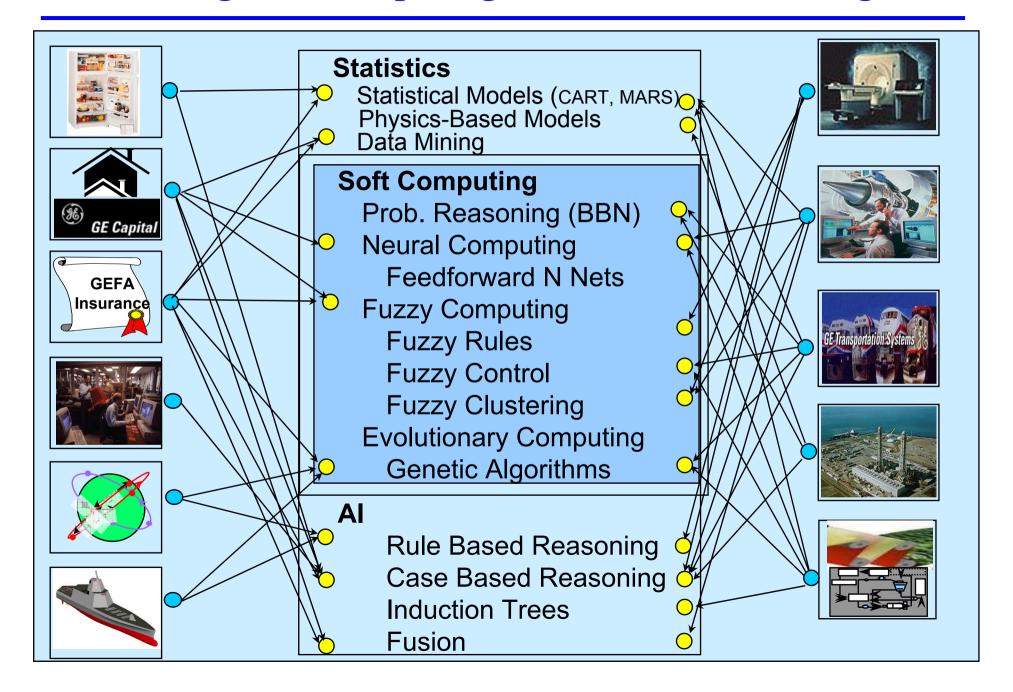
Constellation of Satellites (GA)



Industrial Systems

- Paper Web Breakage Prediction (NN/Stat./Induction)
- Control Mixing of Cement (FL/GA)

Enabling Soft Computing and Related Technologies



Chapter 2:

Threshold Logic Units (Perceptrons)

Motivation: Why (Artificial) Neural Networks?

- (Neuro-)Biology / (Neuro-)Physiology / Psychology:
 - Exploit similarity to real (biological) neural networks.
 - Build models to understand nerve and brain operation by simulation.
- Computer Science / Engineering / Economics
 - Mimic certain cognitive capabilities of human beings.
 - Solve learning/adaptation, prediction, and optimization problems.
- Physics / Chemistry
 - Use neural network models to describe physical phenomena.
 - Special case: spin glasses (alloys of magnetic and non-magnetic metals).

EURO LUZZY

Motivation: Why Neural Networks in AI?

Physical-Symbol System Hypothesis [Newell and Simon 1976]

A physical-symbol system has the necessary and sufficient means for general intelligent action.

Neural networks process simple signals, not symbols.

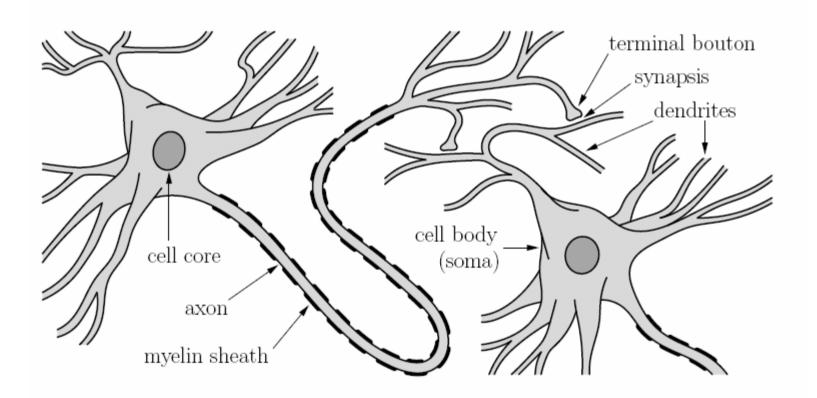
So why study neural networks in Artificial Intelligence?

- Symbol-based representations work well for inference tasks, but fairly bad for perception tasks.
- Symbol-based expert systems tend to get slower with growing knowledge, human experts tend to get faster.
- Neural networks allow for highly parallel information processing.
- There are several successful applications in industry and finance.

6 LUZZY

Biological Background

Structure of a prototypical biological neuron



Biological Background

(Very) simplified description of neural information processing

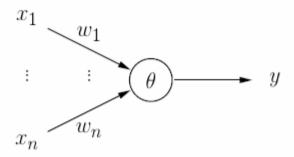
- Axon terminal releases chemicals, called **neurotransmitters**.
- These act on the membrane of the receptor dendrite to change its polarization.
 (The inside is usually 70mV more negative than the outside.)
- Decrease in potential difference: **excitatory** synapse Increase in potential difference: **inhibitory** synapse
- If there is enough net excitatory input, the axon is depolarized.
- The resulting action potential travels along the axon.

 (Speed depends on the degree to which the axon is covered with myelin).
- When the action potential reaches the terminal boutons, it triggers the release of neurotransmitters.

Threshold Logic Units

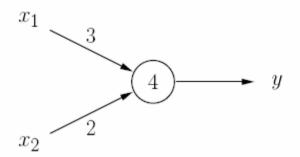
A Threshold Logic Unit (TLU) is a processing unit for numbers with n inputs x_1, \ldots, x_n and one output y. The unit has a **threshold** θ and each input x_i is associated with a **weight** w_i . A threshold logic unit computes the function

$$y = \begin{cases} 1, & \text{if } \vec{x}\vec{w} = \sum_{i=1}^{n} w_i x_i \ge \theta, \\ 0, & \text{otherwise.} \end{cases}$$



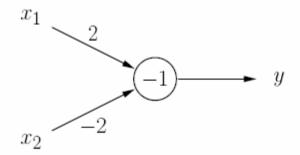
Threshold Logic Units: Examples

Threshold logic unit for the conjunction $x_1 \wedge x_2$.



x_1	x_2	$3x_1 + 2x_2$	y
0	0	0	0
1	0	3	0
0	1	2	0
1	1	5	1

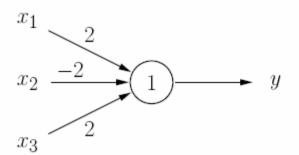
Threshold logic unit for the implication $x_2 \to x_1$.



x_1	x_2	$2x_1 - 2x_2$	y
0	0	0	1
1	0	2	1
0	1	-2	0
1	1	0	1

Threshold Logic Units: Examples

Threshold logic unit for $(x_1 \wedge \overline{x_2}) \vee (x_1 \wedge x_3) \vee (\overline{x_2} \wedge x_3)$.



x_1	x_2	x_3	$\sum_{i} w_{i} x_{i}$	y
0	0	0	0	0
1	0	0	2	1
0	1	0	-2	0
1	1	0	0	0
0	0	1	2	1
1	0	1	4	1
0	1	1	0	0
1	1	1	2	1

Review of line representations

Straight lines are usually represented in one of the following forms:

Explicit Form: $g \equiv x_2 = bx_1 + c$

Implicit Form: $g \equiv a_1x_1 + a_2x_2 + d = 0$

Point-Direction Form: $g \equiv \vec{x} = \vec{p} + k\vec{r}$

Normal Form: $g \equiv (\vec{x} - \vec{p})\vec{n} = 0$

with the parameters:

Gradient of the line

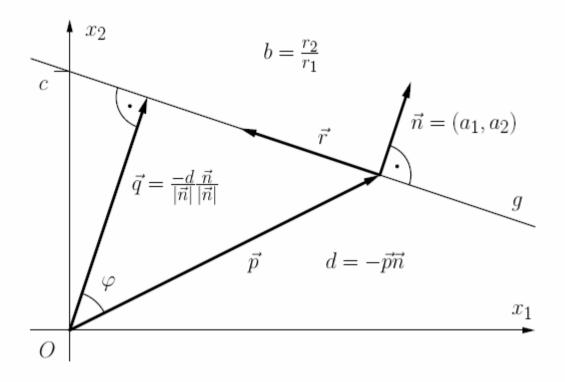
Section of the x_2 axis

Vector of a point of the line (base vector)

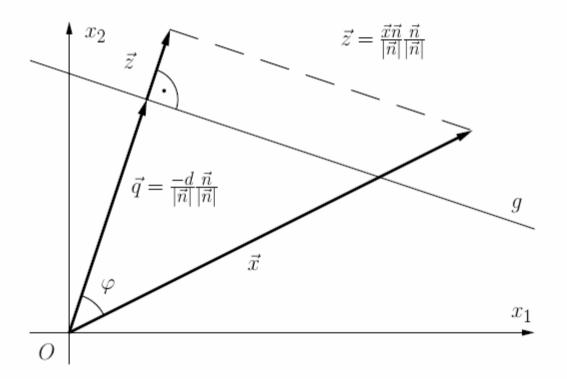
 \vec{r} : Direction vector of the line

 \vec{n} : Normal vector of the line

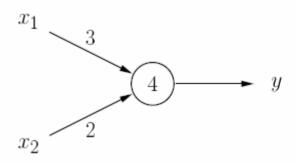
A straight line and its defining parameters.

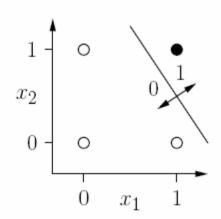


How to determine the side on which a point \vec{x} lies.

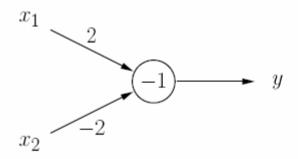


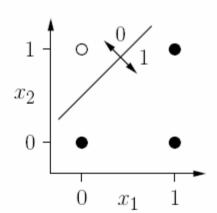
Threshold logic unit for $x_1 \wedge x_2$.



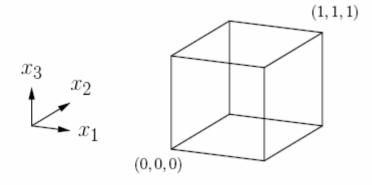


A threshold logic unit for $x_2 \to x_1$.

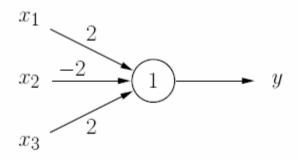


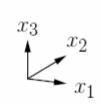


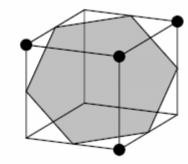
Visualization of 3-dimensional Boolean functions:



Threshold logic unit for $(x_1 \wedge \overline{x_2}) \vee (x_1 \wedge x_3) \vee (\overline{x_2} \wedge x_3)$.



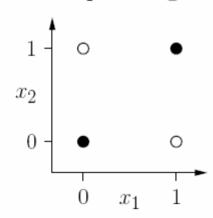




Threshold Logic Units: Limitations

The biimplication problem $x_1 \leftrightarrow x_2$: There is no separating line.

x_1	x_2	y
0	0	1
1	0	0
0	1	0
1	1	1



Formal proof by reductio ad absurdum:

(2) and (3): $w_1 + w_2 < 2\theta$. With (4): $2\theta > \theta$, or $\theta > 0$. Contradiction to (1).

Threshold Logic Units: Limitations

Total number and number of linearly separable Boolean functions. ([Widner 1960] as cited in [Zell 1994])

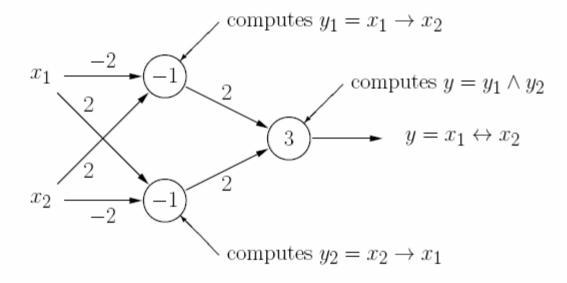
inputs	Boolean functions	linearly separable functions
1	4	4
2	16	14
3	256	104
4	65536	1774
5	$4.3 \cdot 10^9$	94572
6	$1.8 \cdot 10^{19}$	$5.0 \cdot 10^{6}$

- For many inputs a threshold logic unit can compute almost no functions.
- Networks of threshold logic units are needed to overcome the limitations.

Networks of Threshold Logic Units

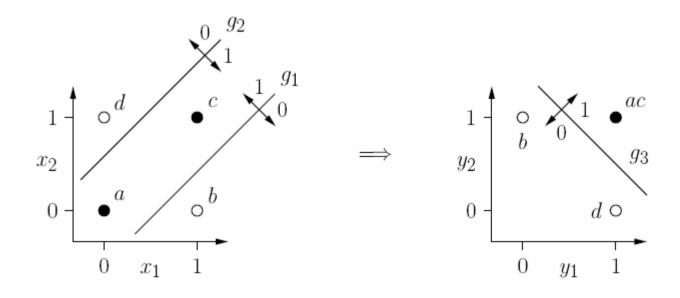
Solving the biimplication problem with a network.

Idea: Logical Decomposition $x_1 \leftrightarrow x_2 \equiv (x_1 \to x_2) \land (x_2 \to x_1)$



Networks of Threshold Logic Units

Solving the biimplication problem: Geometric interpretation



- The first layer computes new Boolean coordinates for the points.
- After the coordinate transformation the problem is linearly separable.

Representing Arbitrary Boolean Functions

Let $y = f(x_1, \dots, x_n)$ be a Boolean function of n variables.

- (i) Represent $f(x_1, \ldots, x_n)$ in disjunctive normal form. That is, determine $D_f = K_1 \vee \ldots \vee K_m$, where all K_j are conjunctions of n literals, i.e., $K_j = l_{j1} \wedge \ldots \wedge l_{jn}$ with $l_{ji} = x_i$ (positive literal) or $l_{ji} = \neg x_i$ (negative literal).
- (ii) Create a neuron for each conjunction K_j of the disjunctive normal form (having n inputs one input for each variable), where

$$w_{ji} = \begin{cases} 2, & \text{if } l_{ji} = x_i, \\ -2, & \text{if } l_{ji} = \neg x_i, \end{cases}$$
 and $\theta_j = n - 1 + \frac{1}{2} \sum_{i=1}^n w_{ji}.$

(iii) Create an output neuron (having m inputs — one input for each neuron that was created in step (ii)), where

$$w_{(n+1)k} = 2, \quad k = 1, \dots, m,$$
 and $\theta_{n+1} = 1.$