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Time Series Analysis



Time Series
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• Motivation

• Decomposition Models

◦ Additive models, multiplicative models

• Global Approaches

◦ Regression
◦ With and without seasonal component

• Local Approaches

◦ Moving Averages Smoothing
◦ With and without seasonal component

• Summary



Motivation: Temperatures
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Example: Temperatures data set (fictive)

• The plot shows the average temperature per day for 50 years.

• Is there any trend visible?

• How to extract seasonal effects?



Decomposition Models
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• The time series is given as a sequence of values

y1, . . . , yt, . . . , yn

• We assume that every yt is a composition of (some of) the following components:

◦ gt trend component

◦ st seasonal component

◦ ct cyclical variation

◦ ǫt irregular component (random factors, noise)

• Assume a functional dependency:

yt = f (gt, st, ct, ǫt)



Components of Time Series
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Trend Component

• Reflects long-term developments.

• Often assumed to be a monotone function of time.

• Represents the actual component we are interested in.

Cyclic Component

• Reflects mid-term developments.

• Models economical cycles such as booms and recessions.

• Variable cycle length.

• We do not consider this component here.

Remark: Often, both components are combined.



Components of Time Series
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Seasonal Component

• Reflects short-term developments.

• Constant cycle length (i. e., 12 months)

• Represents changes that (re)occur rather regularly.

Irregular Component

• Represents everything else that cannot be related to the other components.

• Combines irregular changes, random noise and local fluctuations.

• We assume that the values are small and have an average of zero.



Decompositions
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Additive Decomposition

yt = gt + st + ǫt

• Pure trend model: yt = gt + ǫt (stock market, no season)

• Possible extension: yt = gt + st + xtβ + ǫt (calendar effects)

Multiplicative Decomposition

yt = gt · st · ǫt

• Seasonal changes may increase with trend.

• Transform into additive model:

ỹt = log yt + log st + log ǫt



Time Series Analysis
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Goal: Estimate the components from a given time series, i. e.

ĝt + ŝt + ǫt ≈ yt

Application: With the estimates, we can compute the

• trend-adjusted series: yt − ĝt

• season-adjusted series: yt − ŝt

• We only consider additive models here.

⇒ Additional assumptions necessary in order to find ways
to infer the desired components.



Overview
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• Global approach: There is a fix functional dependence
throughout the entire time range. (⇒ regression models)

• Local approach: We do not postulate a global model and
rather use local estimations to describe the respective components.

• Seasonal effects: We have to decide beforehand whether
to assume a seasonal component or not.

Global Local

without Season Regression Smoothing Averages

with Season Dummy Variables Smoothing Averages



Global Approach (without Season)
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Model: yt = gt + ǫt

Assumptions:

• No seasonal component: st = 0

• Depending on gt, use regression analysis to estimate the
parameter(s) to define the trend component.

◦ linear trend: gt = β0 + β1t

◦ quadratic trend: gt = β0 + β1t + β2t
2

◦ polynomial trend: gt = β0 + β1t + · · · + βqt
q

◦ exponential trend: gt = β0 exp(β1t)

◦ logistic trend: gt =
β0

β1+exp(−β2t)



Global Approach (with Season)
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Model: yt = st + ǫt (no trend)

Assumptions:

• No trend component: gt = 0

• Seasonal component does not change from period to period.

• Introduce dummy variables for every time span (here: months) that
serve as indicator functions to determine to which
month a specific t belongs:

sm(t) =







1, if t belongs to month m

0, otherwise

• The seasonal component is then set up as st =
12
∑

m=1

βmsm(t).

• Determine the monthly effects βm with normal least squares method.



Global Approach (with Season)
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Model: yt = gt + st + ǫt

Assumptions:

• Estimate ĝt while temporarily ignoring st.

• Estimate st from the trend-adjusted ỹt = yt − ĝt.

Model: yt = α1t + · · · + αqt
q + · · · + β1s1(t) + · · · + β12s12(t) + ǫt

Assumptions:

• Seasonal component does not change from period to period.

• Model the seasonal effects with trigonometric functions:

st = β0 +
6
∑

m=1

βm cos
(

2π
m

12
t
)

+
5
∑

m=1

γm sin
(

2π
m

12
t
)

• Determine α1, . . . , αq, β0, . . . , β6 and γ1, . . . , γ5 with normal least squares method.



Local Approach (without Season)
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General Idea: Smooth the time series.

• Estimate the trend component gt at time t as the average of the values around
time t.

For a given time series y1, . . . , yn, the Smoothing Average y⋆t of order r
is defined as follows:

y⋆t =















































1

2k + 1
·

k
∑

j=−k

yt+j, if r = 2k + 1

1

2k
· (

1

2
yt−k +

k−1
∑

j=−k+1

yt+j +
1

2
yt+k), if r = 2k



Local Approach (without Season)
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Model: yt = gt + ǫt

Assumptions:

• In every time frame of width 2k + 1 the time series can be assumed to be linear.

• ǫt averages to zero.

• Then we use the smoothing average to estimate the trend component:

ĝt = y⋆t



Local Approach (with Season)

Prof. R. Kruse, Chr. Braune Intelligent Data Analysis 15

Model: yt = gt + st + ǫt

Assumptions:

• Seasonal component has period length p (repeats after p points):

st = st+p, t = 1, . . . , n− p

• Sum of seasonal values is zero:
p
∑

j=1

sj = 0

• Trend component is linear in time frames of width p (if p is odd)
or p + 1 (if p is even).

• Irregular component averages to zero.



Local Approach (with Season)
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Let k = p−1
2 (for odd p) or k = p

2 (for even p).

Then:
• Estimate the trend component with smoothing average:

ĝt = y⋆t , k + 1 ≤ t ≤ n− k

• Estimate the seasonal components s1, . . . , sp as follows:

ŝi = s̃i −
1

p

p
∑

j=1

s̃j with s̃t
1

mi − li + 1

mi
∑

j=l

(yi+jp − y⋆i+jp), 1 ≤ i ≤ p

where
mi = max {m ∈ N0 | i +mp ≤ n− k}

and
li = min {l ∈ N0 | i + lp ≥ k + 1}



Example (from motivation)
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• We can extract an increase and decrease of 1 degree during 50 years even though
the amount of noise is more than twice as large than the actual trend.



Example
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5 years period, trend ±8 degrees, noise amount ±2 degrees



Example
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100 years period, trend ±1 degree, noise amount ±3 degrees



Summary
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• Definition of the problem domain

◦ Consider a time series to be composed of subcomponents.
◦ Additive and multiplicative models.

• Global and local approaches

◦ With and without seasonal components.

• Robust to noise

◦ Noise can be higher than the trend component itself.
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Frequent Patterns in Temporal Data
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• Frequent pattern in temporal data

◦ Motivation / Problem
◦ Other common methods
◦ Algorithms / Example



Quality Surveillance of Vehicles
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Quality Surveillance of Vehicles
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Quality Surveillance of Vehicles
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Pilot Series Vehicles
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Pilot Series Vehicles
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What is a Temporal Pattern?
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What is a Temporal Pattern?
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• Frequent pattern in temporal data

◦ Motivation / Problem
◦ Other common methods
◦ Algorithms / Example



Agrawal 1995
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• Many customers with a history of item sets (transaction)

• Searches for sequences
◦ z.B. {a, b} → {c} → {b, c}

• No rules

• No time window

• Support: Count!
◦ Support counter of a sequence is incremented, if it occurs for a customer



Höppner 2002
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• On a single time line, events have a duration

• Searches for patterns
◦ a contains b and meets with c

• Rules are induced from patterns

• Uses a time frame that needs to contain the pattern

• Support: Temporal Support



Related Methods
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◦ Other common methods
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Partial Apriori Criterion
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• All suffixes of a frequent pattern are frequent.



Candidate Generation
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Support Evaluation
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• Exploit the property of normalised patterns by finite automata



Finite automata get stuck
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• A finite automaton gets stuck after accepting the fist ’a’.

• Solution to this problem: Create copies and filter found occurences



Example: Quality surveillance of Vehicles
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• 101 250 vehicles

◦ Workshop stops

◦ Vehicle configuration

◦ 1.4 Mio. temporal intervals



Number of Frequent Patterns
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Runtime
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Efficiently Finding Motifs in Time Series
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• Efficiently Finding Motifs in Time Series

◦ Data Mining in Time Series
◦ memory-efficient Representationen
◦ Symbolic Aggregat-Approximation (SAX)
◦ Finding Motifs in Time Series with SAX
◦ Example



Data Mining in Time Series
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• Main Task: Find useful information in time series

• typical problems: Clustering, Classification, Discovery of frequent patterns and
rules, visualisisation, anomaly detection

• Problems are reduced to finding repeated, similar subsequences because of the
amount of data

• requires: Similarity measure to compare subsequences

• e.g. euclidean distance

d(Q,C) =

√

√

√

√

n
∑

i=1

(qi − ci)2

between 2 standard normal distributed subsequences Q = (q1, . . . , qn)
T and C =

(c1, . . . , cn)
T

• Problem: many comparisons and memory capacity often too low to load all the
required data



Memory Efficient Representation
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• Problem: Many, slow accesses to data

• Solution: Approximation of time series, which fits into memory and keeps relevant
(or interesting) features

• e.g. discrete fourier transformation (DFT), discrete wavelet transformation (DWT),
partially linear approximation and adaptive, partially constant approximation
(APCA), singular value decomposition (SVD)

• here: symbolic representationen

• Advantage: Algorithms from information retrieval and bioinformatics can be used
(Hashing, markovian models, . . .)



Time Series REpresentation
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Representationen

model based

HMM ARMA

not adaptive

Wavelets

Orthonormal

Haar Daubechies

Bi-orthonormal

Coiflets Symlets

random PAA Spectral

DFT DCT Chebyshev

data-driven

pruned
phase-

based
Grid

adaptive

Sorted

Coeffi-

cients

partially

polyno-

mial

partially

linear

Interpolation Regression

APCA

SVD Symbolic

NLG Strings

SAX
value-

based

inclination-

based

Trees



Most Commonly Used Representation
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DFT PLA Haar wavelet APCA



Partially Aggregated Approximation (PAA)
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Reduction from 128 to 8 Data points



Symbolic Aggregate Approximation (SAX)
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• for every sequence of length n a word with length w is defined (over an alpabet
A = {α1, . . . , αa} with |A| = a

• simple Algorithm:
1. Split up subsequence into w equally-sized intervals

2. PAA: For each interval find a representativ (e.g. mean value)
C = (c1, . . . , cn)

T is mapped toC̄ = (c̄1, . . . , c̄w) durch

c̄i =
w

n

n
wi
∑

j=n
w(i−1)+1

cj

3. Map mean value c̄i of C̄ to one of the a letters by
âi = αj ⇔ βj−1 ≤ c̄i ≤ βj

• Assumption: Range of values of the PAA sequence is normally distributed and
every occurence of a letter is equally likely

• Mapping c̄i 7→ b ∈ A by “sites of fracture” β1, . . . , βa−1



“Sites of Fracture” of a Normal Distribution
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|A| 3 4 5 6 7 8 9 10
β1 −.43 −.67 −.84 −.97 −1.07 −1.15 −1.22 −1.28
β2 0.43 0 0.25 0.43 0.57 0.67 0.76 0.84
β3 0.67 0.25 0 −.18 −.32 −.43 −.52
β4 0.84 0.43 0.18 0 −.14 −.25
β5 0.97 0.57 0.32 0.14 0
β6 1.07 0.67 0.43 0.25
β7 1.15 0.76 0.52
β8 1.22 0.84
β9 1.28

• sites of fracture split normal distribution into equally probable regions



Example: SAX
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• here: n = 128, w = 8, a = 3

• Result: baabccbc



Distance Measure for SAX
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• PAA: lower bound to euclidean distance by

dr(Q̄, C̄) =

√

n

w

√

√

√

√

w
∑

i=1

(q̄i − c̄i)2

• SAX:

d∗(Q̂, Ĉ) =

√

n

w

√

√

√

√

w
∑

i=1

d∗a(q̂i, ĉi)
2

• Distance measure d∗a should be defined by a lookup table, e.g. for a = 4
a b c d

a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.340 0.67 0 0

d∗a(r, c) =







0 falls |r − c| ≤ 1,

βmax(r,c)−1 − βmin(r,c) sonst



Comparison of Distance Measures
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SAX-Advantage: Lower Bound
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• d∗(Q̂, Ĉ) is lower bound of the euclidean distance d(Q,C) of the original se-
quences Q and C

d∗(Q̂, Ĉ) ≤ d(Q,C)

• if Q̂ and Ĉ are dissimilar then Q and C are dissimilar as well

• SAX-based algorithms produce identical results compared to algorithms that work
with original data

• “only” similar SAX words should be compared in the original feature space

• thus only few accesses to original data



Finding Motifs in Time Series
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• Motifs: Primitive, frequent (similar) patterns, prototypes

• Challenges:
◦ Motifs are unknown beforehand
◦ exhaustive search is too expensive with a complexity of O(n2)
◦ Outliers influence euclidean distance



Creating the SAX Matrix
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• Find all motifs of a time series of
length m by sliding windows

• Window lengths n leads to (m−n+
1) subsequences

• Transform every subsequence into a
SAX word of length w

• Store in row matrix (so called SAX
matrix)

• Matrix has w columns and (m−n+
1) rows



Random Projection
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• Guess motif positions by so-called random projection

• pair-wise comparison of SAX words

• Collision matrix M with (m− n + 1)2 cells for every comparison

• Implement M efficiently by a hash table

• At first M(i, j) = 0 for 1 ≤ i, j ≤ m− n + 1

• Idea: Compare characters of two words in a SAX matrix with each other

• Better assumption: “don’t care symbols” in sequences with unknown location

• E.G. noisy Motif or compression/expansion of a sequence



Random Projection
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• Thus: SAX matrix is projected onto 1 ≤ k < w randomly chosen columns

• Compare all rows of the projection

• if two projected SAX words in row i and j are identical, increment M(i, j)

• Projection is repeated t times, because some motifs will share an entry in M after
some iterations

• It is unlikely that many random sequences will collide with an alredy found motif

• user-edefined threshhold s with 1 ≤ s ≤ k for collision entries in M

• All M(i, j) ≥ s are candidates for motifs

• But: the local neighbourhood of a sequence i contains many (so-called trivial)
matches

• These are filtered at the end!



Random Projection
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• first two iterations of a random projection



Subdimensional Motifs
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• Random projections for motifs in univariate SAX time series can also be used in
a multi-variate way

• Idea: increment the collision matrixM for each attribute j ∈ {1, . . . , p} for each
projected SAX word

• Problem: relevant dimensions of potentional subdimensional motifs are unknown

• Solution:
◦ Estimate a distribution P (dj) over distances between non-trivial matches by
drawing a sample

◦ Determine the distances d∗1, . . . , d
∗
p for each entry M(i, j) ≥ s

◦ if P (dj ≤ d∗j) < rrelj (user-specified dimension relevance), then every jth
attribute is relevant



Example
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• Expert identifies p = 9 of a total of 130 channels as important

• Motif lasts at least n = 400ms

• 10 time series are given to search for subdimensional motifs



Subdimensional Motif in Two Time Series
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Clustering of Motivs
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• Calculate dissimilarity matrix by
pairwise comparison of all found pat-
terns in the 10 time series based on
d∗

• Matrix is symetric, positive and con-
tains only zeros on its principal diag-
onal

• Can be used for grouping the oc-
curences to find motifs that occur in
several time series

• Here: hierarchical, agglomerative
clustering of all motifs, that con-
tained the attributes attr 1 attr 3


