Regression
Regression

• General Idea of Regression
 ○ Method of least squares

• Linear Regression
 ○ An illustrative example

• Polynomial Regression
 ○ Generalization to polynomial functional relationships

• Multivariate Regression
 ○ Generalization to more than one function argument

• Logistic Regression
 ○ Generalization to non-polynomial functional relationships
 ○ An illustrative example

• Summary
Regression

Also known as: **Method of Least Squares** (Carl Friedrich Gauß)

Given:
- A data set of data tuples (one or more input values and one output value).
- A hypothesis about the functional relationship between output and input values.

Desired:
- A parameterization of the conjectured function that minimizes the sum of squared errors (“best fit”).

Depending on

- the hypothesis about the functional relationship and
- the number of arguments to the conjectured function

different types of regression are distinguished.
Task: Find values $\vec{x} = (x_1, \ldots, x_m)$ such that $f(\vec{x}) = f(x_1, \ldots, x_m)$ is optimal.

Often feasible approach:

- A necessary condition for a (local) optimum (maximum or minimum) is that the partial derivatives w.r.t. the parameters vanish (Pierre Fermat).

- Therefore: (Try to) solve the equation system that results from setting all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize $f(x, y) = x^2 + y^2 + xy - 4x - 5y$.

Solution procedure:

1. Take the partial derivatives of the objective function and set them to zero:

$$\frac{\partial f}{\partial x} = 2x + y - 4 = 0, \quad \frac{\partial f}{\partial y} = 2y + x - 5 = 0.$$

2. Solve the resulting (here: linear) equation system: $x = 1, \quad y = 2$.
Linear Regression

- Given: data set \(((x_1, y_1), \ldots, (x_n, y_n))\) of \(n\) data tuples

- Conjecture: the functional relationship is linear, i.e., \(y = g(x) = a + bx\).

Approach: Minimize the sum of squared errors, i.e.

\[
F(a, b) = \sum_{i=1}^{n} (g(x_i) - y_i)^2 = \sum_{i=1}^{n} (a + bx_i - y_i)^2.
\]

Necessary conditions for a minimum:

\[
\frac{\partial F}{\partial a} = \sum_{i=1}^{n} 2(a + bx_i - y_i) = 0 \quad \text{and}
\]

\[
\frac{\partial F}{\partial b} = \sum_{i=1}^{n} 2(a + bx_i - y_i)x_i = 0
\]
Result of necessary conditions: System of so-called normal equations, i.e.

\[\begin{align*}
n a + \left(\sum_{i=1}^{n} x_i \right) b &= \sum_{i=1}^{n} y_i, \\
\left(\sum_{i=1}^{n} x_i \right) a + \left(\sum_{i=1}^{n} x_i^2 \right) b &= \sum_{i=1}^{n} x_i y_i.
\end{align*}\]

- Two linear equations for two unknowns \(a\) and \(b\).
- System can be solved with standard methods from linear algebra.
- Solution is unique unless all \(x\)-values are identical.
- The resulting line is called a regression line.
Linear Regression: Example

\[
y = \frac{3}{4} + \frac{7}{12}x.
\]

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
A regression line can be interpreted as a **maximum likelihood estimator**:

Assumption: The data generation process can be described well by the model

\[y = a + bx + \xi, \]

where \(\xi \) is normally distributed with mean 0 and (unknown) variance \(\sigma^2 \) (\(\sigma^2 \) independent of \(x \), i.e. same dispersion of \(y \) for all \(x \)).

As a consequence we have

\[
f(y \mid x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp \left(-\frac{(y - (a + bx))^2}{2\sigma^2} \right).\]

With this expression we can set up the **likelihood function**

\[
L((x_1, y_1), \ldots, (x_n, y_n); a, b, \sigma^2) = \prod_{i=1}^{n} f(x_i) f(y_i \mid x_i) = \prod_{i=1}^{n} f(x_i) \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp \left(-\frac{(y_i - (a + bx_i))^2}{2\sigma^2} \right).\]
To simplify taking the derivatives, we compute the natural logarithm:

\[
\ln L((x_1, y_1), \ldots, (x_n, y_n); a, b, \sigma^2) = \ln \prod_{i=1}^{n} f(x_i) \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp \left(-\frac{(y_i - (a + bx_i))^2}{2\sigma^2}\right)
\]

\[
= \sum_{i=1}^{n} \ln f(x_i) + \sum_{i=1}^{n} \ln \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - (a + bx_i))^2
\]

From this expression it becomes clear that (provided \(f(x)\) is independent of \(a, b,\) and \(\sigma^2\)) maximizing the likelihood function is equivalent to minimizing

\[
F(a, b) = \sum_{i=1}^{n} (y_i - (a + bx_i))^2.
\]

Interpreting the method of least squares as a maximum likelihood estimator works also for the generalizations to polynomials and multilinear functions discussed next.
Polynomial Regression

Generalization to polynomials

\[y = p(x) = a_0 + a_1 x + \ldots + a_m x^m \]

Approach: Minimize the sum of squared errors, i.e.

\[F(a_0, a_1, \ldots, a_m) = \sum_{i=1}^{n} (p(x_i) - y_i)^2 = \sum_{i=1}^{n} (a_0 + a_1 x_i + \ldots + a_m x_i^m - y_i)^2 \]

Necessary conditions for a minimum: All partial derivatives vanish, i.e.

\[\frac{\partial F}{\partial a_0} = 0, \quad \frac{\partial F}{\partial a_1} = 0, \quad \ldots, \quad \frac{\partial F}{\partial a_m} = 0. \]
System of normal equations for polynomials

\[na_0 + \left(\sum_{i=1}^{n} x_i \right) a_1 + \ldots + \left(\sum_{i=1}^{n} x_i^m \right) a_m = \sum_{i=1}^{n} y_i \]
\[\left(\sum_{i=1}^{n} x_i \right) a_0 + \left(\sum_{i=1}^{n} x_i^2 \right) a_1 + \ldots + \left(\sum_{i=1}^{n} x_i^{m+1} \right) a_m = \sum_{i=1}^{n} x_i y_i \]
\[\vdots \]
\[\left(\sum_{i=1}^{n} x_i^m \right) a_0 + \left(\sum_{i=1}^{n} x_i^{m+1} \right) a_1 + \ldots + \left(\sum_{i=1}^{n} x_i^{2m} \right) a_m = \sum_{i=1}^{n} x_i^m y_i, \]

- \(m + 1 \) linear equations for \(m + 1 \) unknowns \(a_0, \ldots, a_m \).
- System can be solved with standard methods from linear algebra.
- Solution is unique unless the points lie exactly on a polynomial of lower degree.
Generalization to more than one argument

\[z = f(x, y) = a + bx + cy \]

Approach: Minimize the sum of squared errors, i.e.

\[F(a, b, c) = \sum_{i=1}^{n} (f(x_i, y_i) - z_i)^2 = \sum_{i=1}^{n} (a + bx_i + cy_i - z_i)^2 \]

Necessary conditions for a minimum: All partial derivatives vanish, i.e.

\[\frac{\partial F}{\partial a} = \sum_{i=1}^{n} 2(a + bx_i + cy_i - z_i) = 0, \]

\[\frac{\partial F}{\partial b} = \sum_{i=1}^{n} 2(a + bx_i + cy_i - z_i)x_i = 0, \]

\[\frac{\partial F}{\partial c} = \sum_{i=1}^{n} 2(a + bx_i + cy_i - z_i)y_i = 0. \]
Multilinear Regression

System of normal equations for several arguments

\[na + \left(\sum_{i=1}^{n} x_i \right) b + \left(\sum_{i=1}^{n} y_i \right) c = \sum_{i=1}^{n} z_i \]
\[\left(\sum_{i=1}^{n} x_i \right) a + \left(\sum_{i=1}^{n} x_i^2 \right) b + \left(\sum_{i=1}^{n} x_i y_i \right) c = \sum_{i=1}^{n} z_i x_i \]
\[\left(\sum_{i=1}^{n} y_i \right) a + \left(\sum_{i=1}^{n} x_i y_i \right) b + \left(\sum_{i=1}^{n} y_i^2 \right) c = \sum_{i=1}^{n} z_i y_i \]

- 3 linear equations for 3 unknowns \(a, b, \) and \(c\).
- System can be solved with standard methods from linear algebra.
- Solution is unique unless all data points lie on a straight line.
General multilinear case:

\[\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_m) = a_0 + \sum_{k=1}^{m} a_k \tilde{x}_k \]

Approach: Minimize the sum of squared errors, i.e.

\[F(\tilde{a}) = (X\tilde{a} - \tilde{y})^\top (X\tilde{a} - \tilde{y}), \]

where

\[
X = \begin{pmatrix}
1 & x_{11} & \cdots & x_{1m} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n1} & \cdots & x_{nm}
\end{pmatrix}, \quad \tilde{y} = \begin{pmatrix} y_1 \\
\vdots \\
y_n \end{pmatrix}, \quad \text{and} \quad \tilde{a} = \begin{pmatrix} a_0 \\
a_1 \\
\vdots \\
a_m \end{pmatrix}
\]

Necessary condition for a minimum:

\[\nabla_{\tilde{a}} F(\tilde{a}) = \nabla_{\tilde{a}} (X\tilde{a} - \tilde{y})^\top (X\tilde{a} - \tilde{y}) = 0 \]
• $\nabla \vec{a} \ F(\vec{a})$ may easily be computed by remembering that the differential operator

$$\nabla \vec{a} = \left(\frac{\partial}{\partial a_0}, \ldots, \frac{\partial}{\partial a_m} \right)$$

behaves formally like a vector that is “multiplied” to the sum of squared errors.

• Alternatively, one may write out the differentiation componentwise.
• What is the derivative of $\vec{x}^\top \vec{x}$ w.r.t. \vec{x}?

$\nabla_{\vec{x}} \vec{x}^\top \vec{x} = \left(\frac{\partial \vec{x}^\top \vec{x}}{\partial x_1}, \ldots, \frac{\partial \vec{x}^\top \vec{x}}{\partial x_m} \right)$

• We get: $k = 1, \ldots, m$

$\frac{\partial \vec{x}^\top \vec{x}}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^{m} x_i x_i$

$= \frac{\partial}{\partial x_k} \left(x_1^2 + \cdots + x_k^2 + \cdots + x_m^2 \right)$

$= \frac{\partial}{\partial x_k} x_1^2 + \cdots + \frac{\partial}{\partial x_k} x_k^2 + \cdots + \frac{\partial}{\partial x_k} x_m^2$

$= 2x_k$

• Therefore we get:

$\nabla_{\vec{x}} \vec{x}^\top \vec{x} = (2x_1, \ldots, 2x_k, \ldots, 2x_m) = 2\vec{x}$
With the former method we obtain for the derivative:

\[
\nabla \tilde{a} \ (X\tilde{a} - \tilde{y})^\top (X\tilde{a} - \tilde{y})
\]

\[
= \ (\nabla \tilde{a} \ (X\tilde{a} - \tilde{y}))^\top (X\tilde{a} - \tilde{y}) + ((X\tilde{a} - \tilde{y})^\top (\nabla \tilde{a} \ (X\tilde{a} - \tilde{y})))^\top
\]

\[
= \ (\nabla \tilde{a} \ (X\tilde{a} - \tilde{y}))^\top (X\tilde{a} - \tilde{y}) + (\nabla \tilde{a} \ (X\tilde{a} - \tilde{y}))^\top (X\tilde{a} - \tilde{y})
\]

\[
= \ 2X^\top (X\tilde{a} - \tilde{y})
\]

\[
= \ 2X^\top X\tilde{a} - 2X^\top \tilde{y} = \tilde{0}
\]
Multilinear Regression

Necessary condition for a minimum therefore:

\[\nabla_{\vec{a}} F(\vec{a}) = \nabla_{\vec{a}} (\vec{X}\vec{a} - \vec{y})^\top (\vec{X}\vec{a} - \vec{y}) \]

\[= 2\vec{X}^\top \vec{X}\vec{a} - 2\vec{X}^\top \vec{y} = \vec{0} \]

As a consequence we get the system of normal equations:

\[\vec{X}^\top \vec{X}\vec{a} = \vec{X}^\top \vec{y} \]

This system has a unique solution if \(\vec{X}^\top \vec{X} \) is not singular. Then we have

\[\vec{a} = (\vec{X}^\top \vec{X})^{-1}\vec{X}^\top \vec{y}. \]

\((\vec{X}^\top \vec{X})^{-1}\vec{X}^\top \) is called the (Moore–Penrose) pseudoinverse of the matrix \(\vec{X} \).

With the matrix-vector representation of the regression problem an extension to multipolynomial regression is straightforward:

Simply add the desired products of powers to the matrix \(\vec{X} \).
Generalization to non-polynomial functions

Idea: Find transformation to linear/polynomial case.

Simple example: The function \(y = a x^b \)
can be transformed into \(\ln y = \ln a + b \cdot \ln x \).

Special case: logistic function

\[
y = \frac{Y}{1 + e^{a+bx}} \quad \Leftrightarrow \quad \frac{1}{y} = \frac{1 + e^{a+bx}}{Y} \quad \Leftrightarrow \quad \frac{Y - y}{y} = e^{a+bx}.
\]

Result: Apply so-called Logit Transformation

\[
\ln \left(\frac{Y - y}{y} \right) = a + bx.
\]
Logistic Regression: Example

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.4</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Transform the data with

$$z = \ln \left(\frac{Y - y}{y} \right), \quad Y = 6.$$

The transformed data points are

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>2.64</td>
<td>1.61</td>
<td>0.00</td>
<td>−1.61</td>
<td>−2.64</td>
</tr>
</tbody>
</table>

The resulting regression line is

$$z \approx -1.3775x + 4.133.$$
• **Attention:** The sum of squared errors is minimized only in the space the transformation maps to, not in the original space.

• Nevertheless this approach usually leads to very good results. The result may be improved by a gradient descent in the original space.
Example logistic function for two arguments x_1 and x_2:

$$y = \frac{1}{1 + \exp(4 - x_1 - x_2)} = \frac{1}{1 + \exp\left(4 - (1, 1)(x_1, x_2)^T\right)}$$
Logistic Regression: Two Class Problems

• Let C be a class attribute, $\text{dom}(C) = \{c_1, c_2\}$, and \vec{X} an m-dim. random vector. Let $P(C = c_1 \mid \vec{X} = \vec{x}) = p(\vec{x})$ and $P(C = c_2 \mid \vec{X} = \vec{x}) = 1 - p(\vec{x})$.

• Given: A set of data points $X = \{\vec{x}_1, \ldots, \vec{x}_n\}$ (realizations of \vec{X}), each of which belongs to one of the two classes c_1 and c_2.

• Desired: A simple description of the function $p(\vec{x})$.

• Approach: Describe p by a logistic function:

$$p(\vec{x}) = \frac{1}{1 + e^{a_0 + \vec{a} \vec{x}}} = \frac{1}{1 + \exp(a_0 + \sum_{i=1}^{m} a_i x_i)}$$

Apply logit transformation to $p(x)$:

$$\ln\left(\frac{1 - p(\vec{x})}{p(\vec{x})}\right) = a_0 + \vec{a} \vec{x} = a_0 + \sum_{i=1}^{m} a_i x_i$$

The values $p(\vec{x}_i)$ may be obtained by kernel estimation.
Kernel Estimation

- **Idea:** Define an “influence function” (kernel), which describes how strongly a data point influences the probability estimate for neighboring points.

- Common choice for the kernel function: **Gaussian function**

\[
K(\vec{x}, \vec{y}) = \frac{1}{(2\pi\sigma^2)^{\frac{m}{2}}} \exp\left(-\frac{(\vec{x} - \vec{y})^\top(\vec{x} - \vec{y})}{2\sigma^2}\right)
\]

- Kernel estimate of probability density given a data set \(\mathbf{X} = \{\vec{x}_1, \ldots, \vec{x}_n\}\):

\[
\hat{f}(\vec{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\vec{x}, \vec{x}_i).
\]

- Kernel estimation applied to a two class problem:

\[
\hat{p}(\vec{x}) = \frac{\sum_{i=1}^{n} c(\vec{x}_i)K(\vec{x}, \vec{x}_i)}{\sum_{i=1}^{n} K(\vec{x}, \vec{x}_i)}.
\]

(It is \(c(\vec{x}_i) = 1\) if \(x_i\) belongs to class \(c_1\) and \(c(\vec{x}_i) = 0\) otherwise.)
• **Minimize the Sum of Squared Errors**
 ○ Write the sum of squared errors as a function of the parameters to be determined.

• **Exploit Necessary Conditions for a Minimum**
 ○ Partial derivatives w.r.t. the parameters to determine must vanish.

• **Solve the System of Normal Equations**
 ○ The best fit parameters are the solution of the system of normal equations.

• **Non-polynomial Regression Functions**
 ○ Find a transformation to the multipolynomial case.
 ○ Logistic regression can be used to solve two class classification problems.