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Inductive Statistics



Inductive Statistics: Main Tasks
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• Parameter Estimation
Given an assumption about the type of distribution of the underlying random
variable the parameter(s) of the distribution function is estimated.

• Hypothesis Testing
A hypothesis about the data generating process is tested by means of the data.

◦ Parameter Test

Test whether a parameter can have certain values.

◦ Goodness-of-Fit Test

Test whether a distribution assumption fits the data.

◦ Dependence Test

Test whether two attributes are dependent.

• Model Selection
Among different models that can be used to explain the data the best fitting is
selected, taking the complexity of the model into account.



Inductive Statistics: Random Samples
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• In inductive statistics probability theory is applied to make inferences about the
process that generated the data. This presupposes that the sample is the result
of a random experiment, a so-called random sample.

• The random variable yielding the sample value xi is denoted Xi.
xi is called a instantiation of the random variable Xi.

• A random sample x = (x1, . . . , xn) is an instantiation of the random vector
X = (X1, . . . , Xn).

• A random sample is called independent if the random variables X1, . . . , Xn are
(stochastically) independent, i. e. if

∀c1, . . . , cn ∈ IR : P




n∧

i=1

Xi ≤ ci


 =

n∏

i=1

P (Xi ≤ ci).

• An independent random sample is called simple if the random variables
X1, . . . , Xn have the same distribution function.



Parameter Estimation
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Given:

• A data set and

• a family of parameterized distributions functions of the same type, e.g.

◦ the family of binomial distributions bX(x; p, n) with the parameters p,
0 ≤ p ≤ 1, and n ∈ IN, where n is the sample size,

◦ the family of normal distributions NX(x;µ, σ2) with the parameters µ
(expected value) and σ2 (variance).

Assumption:

• The process that generated the data can be described well by an element of the
given family of distribution functions.

Desired:

• The element of the given family of distribution functions (determined by its pa-
rameters) that is the best model for the data.



Parameter Estimation
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• Methods that yield an estimate for a parameter are called estimators.

• Estimators are statistics, i.e. functions of the values in a sample.

As a consequence they are functions of (instantiations of) random variables and
thus (instantiations of) random variables themselves.

Therefore we can use all of probability theory to analyze estimators.

• There are two types of parameter estimation:

◦ Point Estimators
Point estimators determine the best value of a parameter
w.r.t. the data and certain quality criteria.

◦ Interval Estimators
Interval estimators yield a region, a so-called confidence interval,
in which the true value of the parameter lies with high certainty.



Point Estimation
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Not all statistics, that is, not all functions of the sample values are reasonable and
useful estimator. Desirable properties are:

• Consistency
With growing data volume the estimated value should get closer and closer to the
true value, at least with higher and higher probability.
Formally: If T is an estimator for the parameter θ, it should be

∀ε > 0 : lim
n→∞P (|T − θ| < ε) = 1,

where n is the sample size.

• Unbiasedness
An estimator should not tend to over- or underestimate the parameter.
Rather it should yield, on average, the correct value.
Formally this means

E(T ) = θ.



Point Estimation
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• Efficiency
The estimation should be as precise as possible, that is, the deviation from the
true value should be as small as possible. Formally: If T and U are two estimators
for the same parameter θ, then T is called more efficient than U if

D2(T ) < D2(U).

• Sufficiency
An estimator should exploit all information about the parameter contained in the
data. More precisely: two samples that yield the same estimate should have the
same probability (otherwise there is unused information).
Formally: an estimator T for a parameter θ is called sufficient iff for all samples x =
(x1, . . . , xn) with T (x) = t the expression

fX1
(x1; θ) · · · fXn

(xn; θ)

fT (t; θ)

is independent of θ.



Point Estimation: Example
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Given: a family of uniform distributions on the interval [0, θ], i. e.

fX(x; θ) =

{
1
θ, if 0 ≤ x ≤ θ,
0, otherwise.

Desired: an estimate for the unknown parameter θ.

• We will now consider two estimators for the parameter θ
and compare their properties.

◦ T = max{X1, . . . , Xn}
◦ U = n+1

n max{X1, . . . , Xn}

• General approach:

◦ Find the probability density function of the estimator.

◦ Check the desirable properties by exploiting this density function.



Point Estimation: Example
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To analyze the estimator T = max{X1, . . . , Xn}, we compute its density function:

fT (t; θ) = d
dt
FT (t; θ) = d

dt
P (T ≤ t)

= d
dt
P (max{X1, . . . , Xn} ≤ t)

= d
dt
P
(∧

n
i=1Xi ≤ t

)
= d

dt

n∏

i=1

P (Xi ≤ t)

= d
dt
(FX(t; θ))n = n · (FX(t; θ))n−1fX(t, θ)

where

FX(x; θ) =
∫ x

−∞
fX(x; θ)dx =





0, if x ≤ 0,
x
θ , if 0 ≤ x ≤ θ,
1, if x ≥ θ.

Therefore it is

fT (t; θ) =
n · tn−1

θn
for 0 ≤ t ≤ θ, and 0 otherwise.



Point Estimation: Example
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• The estimator T = max{X1, . . . , Xn} is consistent:

lim
n→∞P (|T − θ| < ǫ) = lim

n→∞P (T > θ − ǫ)

= lim
n→∞

∫ θ

θ−ǫ

n · tn−1

θn
dt = lim

n→∞

[
tn

θn

]θ

θ−ǫ

= lim
n→∞

(
θn

θn
− (θ − ǫ)n

θn

)

= lim
n→∞

(
1−

(
θ − ǫ

θ

)n)
= 1

• It is not unbiased:

E(T ) =
∫ ∞

−∞
t · fT (t; θ)dt =

∫ θ

0
t · n · tn−1

θn
dt

=

[
n · tn+1
(n + 1)θn

]θ

0

=
n

n + 1
θ < θ for n < ∞.



Point Estimation: Example
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• The estimator U = n+1
n max{X1, . . . , Xn} has the density function

fU (u; θ) =
nn+1

(n + 1)n
un−1

θn
for 0 ≤ t ≤ n+1

n θ, and 0 otherwise.

• The estimator U is consistent (without formal proof).

• It is unbiased:
E(U) =

∫ ∞

−∞
u · fU (u; θ)du

=
∫ n+1

n θ

0
u · nn+1

(n + 1)n
un−1

θn
du

=
nn+1

(n + 1)nθn

[
un+1

n + 1

]n+1
n θ

0

=
nn+1

(n + 1)nθn
· 1

n + 1

(
n + 1

n
θ
)n+1

= θ



Densities of Estimators
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What does the density of the estimator W = max{X1, . . . , Xn} look like? (w. r. t. n)

0 θ
0

3

θ

w

fW (w; θ, 3)

0 θ
0

1

θ

w

fW (w; θ, 1)

0 θ
0

n

θ

w

fW (w; θ, n)

0 θ
0

2

θ

w

fW (w; θ, 2)

Note the different scales for the y-axes!



Point Estimation: Example
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Given: a family of normal distributions NX(x;µ, σ2)

fX(x;µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)

Desired: estimates for the unknown parameters µ and σ2.

• The median and the arithmetic mean of the sample
are both consistent and unbiased estimators for the parameter µ.

The median is less efficient than the arithmetic mean.

• The function V 2 = 1
n
∑n

i=1(Xi − X̄)2 is a consistent, but biased estimator

for the parameter σ2 (it tends to underestimate the variance).

The function S2 = 1
n−1

∑n
i=1(Xi − X̄)2, however, is a consistent and unbiased

estimator for σ2 (this explains the definition of the empirical variance).



Point Estimation: Example
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Given: a family of polynomial distributions
(synonym: multinomial distribution)

fX1,...,Xk
(x1, . . . , xk; θ1, . . . , θk, n) =

n!
∏k
i=1 xi!

k∏

i=1

θ
xi
i ,

(n is the sample size, the xi are the frequencies of the different values ai, i = 1, . . . , k,
and the θi are the probabilities with which the values ai occur.)

Desired: estimates for the unknown parameters θ1, . . . , θk

• The relative frequencies Ri =
Xi
n of the different values ai, i = 1, . . . , k, are

◦ consistent,

◦ unbiased,

◦ most efficient, and

◦ sufficient estimators for the θi.



Polynomial Distribution: Example
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• Consider the random experiment of picking a person out of a population (with
replacement, technically) and determine her eye color.

• k = 3: a1 =̂ blue, a2 =̂ green, a3 =̂ brown

• θ1 = 0.3, θ2 = 0.3, θ3 = 0.4

The probability of finding 2 persons with blue eyes, 4 persons with green eyes and 4
persons with brown eyes (in a sample of size 10) is:

fX1,X2,X3
(2, 4, 4; θ1, θ2, θ3, 10) =

10!

2!4!4!
· 0.32 · 0.34 · 0.44 ≈ 0.0588

Note:

•
k∑

i=1

xi = n and
k∑

i=1

θi = 1



How Can We Find Estimators?
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• Up to now we analyzed given estimators,
now we consider the question how to find them.

• There are three main approaches to find estimators:

◦ Method of Moments
Derive an estimator for a parameter from the moments of a distribution and
its generator function.
(We do not consider this method here.)

◦ Maximum Likelihood Estimation
Choose the (set of) parameter value(s) that makes the sample most likely.

◦ Maximum A-posteriori Estimation
Choose a prior distribution on the range of parameter values, apply Bayes’ rule
to compute the posterior probability from the sample, and choose the (set of)
parameter value(s) that maximizes this probability.



Maximum Likelihood Estimation
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• General idea: Choose the (set of) parameter value(s)
that makes the sample most likely.

• If the parameter value(s) were known, it would be possible to compute the proba-
bility of the sample. With unknown parameter value(s), however, it is still possible
to state this probability as a function of the parameter(s).

• Formally this can be described as choosing the value θ that maximizes

L(D; θ) = f (D | θ),

where D are the sample data and L is called the Likelihood Function.

• Technically the estimator is determined by

◦ setting up the likelihood function,

◦ forming its partial derivative(s) w.r.t. the parameter(s), and

◦ setting these derivatives equal to zero (necessary condition for a maximum).



Brief Excursion: Function Optimization
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Task: Find values ~x = (x1, . . . , xm) such that f (~x) = f (x1, . . . , xm) is optimal.

Often feasible approach:

• A necessary condition for a (local) optimum (maximum or minimum) is
that the partial derivatives w.r.t. the parameters vanish (Pierre Fermat).

• Therefore: (Try to) solve the equation system that results from setting
all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize f (x, y) = x2 + y2 + xy − 4x− 5y.

Solution procedure:

1. Take the partial derivatives of the objective function and set them to zero:

∂f

∂x
= 2x + y − 4 = 0,

∂f

∂y
= 2y + x− 5 = 0.

2. Solve the resulting (here: linear) equation system: x = 1, y = 2.



Optima of a Function
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• The locations of the optima of a function f do not change if f is composed with
a strictly monotonic (increasing or decreasing) function g.

0 1 2 3 4

f(x) = (x− 1)2(x− 3)2 + 1

0 1 2 3 4

g1(x) = lnx

0 1 2 3 4

g2(x) =
1

x

0 1 2 3 4

(g1 ◦ f)(x)

0 1 2 3 4

(g2 ◦ f)(x)



Maximum Likelihood Estimation: Example
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Given: a family of normal distributions NX(x;µ, σ2)

fX(x;µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)

Desired: estimators for the unknown parameters µ and σ2.

The Likelihood Function, which describes the probability of the data, is

L(x1, . . . , xn;µ, σ
2) =

n∏

i=1

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
.

To simplify the technical task of forming the partial derivatives,
we consider the natural logarithm of the likelihood function, i. e.

lnL(x1, . . . , xn;µ, σ
2) = −n ln

(√
2πσ2

)
− 1

2σ2

n∑

i=1

(xi − µ)2.



Maximum Likelihood Estimation: Example
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• Estimator for the expected value µ:

∂

∂µ
lnL(x1, . . . , xn;µ, σ

2) =
1

σ2

n∑

i=1

(xi − µ)
!
= 0

⇒
n∑

i=1

(xi − µ) =




n∑

i=1

xi


− nµ

!
= 0 ⇒ µ̂ =

1

n

n∑

i=1

xi

• Estimator for the variance σ2:

∂

∂σ2
lnL(x1, . . . , xn;µ, σ

2) = − n

2σ2
+

1

2σ4

n∑

i=1

(xi − µ)2
!
= 0

⇒ σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2 =
1

n

n∑

i=1

x2i −
1

n2




n∑

i=1

xi



2

(biased!)



Maximum A-posteriori Estimation: Motivation
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Consider the following three situations:

• A drunkard claims to be able to predict the side on which a thrown coin will land
(head or tails). On ten trials he always states the correct side beforehand.

• A tea lover claims that she is able to taste whether the tea or the milk was poured
into the cup first. On ten trials she always identifies the correct order.

• An expert of classical music claims to be able to recognize from a single sheet of
music whether the composer was Mozart or somebody else. On ten trials he is
indeed correct every time.

Maximum likelihood estimation treats all situations alike, because formally the samples
are the same. However, this is implausible:

• We do not believe the drunkard at all, despite the sample data.

• We highly doubt the tea drinker, but tend to consider the data as evidence.

• We tend to believe the music expert easily.



Maximum A-posteriori Estimation
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• Background knowledge about the plausible values can be incorporated by

◦ using a prior distribution on the domain of the parameter and

◦ adapting this distribution with Bayes’ rule and the data.

• Formally maximum a-posteriori estimation is defined as follows:
find the parameter value θ that maximizes

f (θ | D) =
f (D | θ)f (θ)

f (D)
=

f (D | θ)f (θ)
∫∞
−∞ f (D | θ′)f (θ′)dθ′

• As a comparison: maximum likelihood estimation maximizes

f (D | θ)

• Note that f (D) need not be computed: It is the same for all parameter values
and since we are only interested in the value θ that maximizes f (θ | D) and not
the value of f (θ | D), we can treat it as a normalization constant.



Maximum A-posteriori Estimation: Example
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Given: a family of binomial distributions

fX(x; θ, n) =

(
n

x

)
θx(1− θ)n−x.

Desired: an estimator for the unknown parameter θ.

a) Uniform prior: f (θ) = 1, 0 ≤ θ ≤ 1.

f (θ | D) = γ

(
n

x

)
θx(1− θ)n−x · 1 ⇒ θ̂ =

x

n

b) Tendency towards 1
2: f (θ) = 6θ(1− θ), 0 ≤ θ ≤ 1.

f (θ | D) = γ

(
n

x

)
θx(1− θ)n−x · θ(1− θ) = γ

(
n

x

)
θx+1(1− θ)n−x+1

⇒ θ̂ =
x + 1

n + 2



Excursion: Dirichlet’s Integral
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• For computing the normalization factors of the probability density functions
that occur with polynomial distributions, Dirichlet’s Integral is helpful:

∫

θ1
. . .
∫

θk

k∏

i=1

θ
xi
i dθ1 . . . dθk =

∏k
i=1 Γ(xi + 1)

Γ(n + k)
, where n =

k∑

i=1

xi

and the Γ-function is the so-called generalized factorial:

Γ(x) =
∫ ∞

0
e−ttx−1dt, x > 0,

which satisfies

Γ(x + 1) = x · Γ(x), Γ(12) =
√
π, Γ(1) = 1.

• Example: the normalization factor α for the binomial distribution prior
f (θ) = α θ2(1− θ)3 is

α =
1

∫
θ θ

2(1− θ)3dθ
=

Γ(5 + 2)

Γ(2 + 1) Γ(3 + 1)
=

6!

2! 3!
=

720

12
= 60.



Maximum A-posteriori Estimation: Example
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f (θ) f (θ) f (θ)

f (D|θ) f (D|θ) f (D|θ)

f (θ|D) f (θ|D) f (θ|D)

θ θ θ

0 0 00.5 0.5 0.51 1 1

θ θ θ

0 0 00.5 0.5 0.51 1 1

θ θ θ

0 0 00.5 0.5 0.51 1 1

drunkard

Dirac pulse

θ̂ = 1
2

tea lover

αθ10(1− θ)10

θ̂ = 2
3

music expert

12 θ(1− θ)

θ̂ = 11
12



Interval Estimation
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• In general the estimated value of a parameter will differ from the true value.

• It is desirable to be able to make an assertion about the possible deviations.

• The simplest possibility is to state not only a point estimate,
but also the standard deviation of the estimator:

t±D(T ) = t±
√
D2(T ).

• A better possibility is to find intervals that contain the true value with high
probability. Formally they can be defined as follows:
Let A = gA(X1, . . . , Xn) and B = gB(X1, . . . , Xn) be two statistics, such that

P (A < θ < B) = 1− α, P (θ ≤ A) =
α

2
, P (θ ≥ B) =

α

2
.

Then the random interval [A,B] (or an instantiation [a, b] of this interval) is called
(1−α) ·100% confidence interval for θ. The value 1−α is called confidence
level.



Interval Estimation
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• This definition of a confidence interval is not specific enough:
A and B are not uniquely determined.

• Common solution: Start from a point estimator T for the unknown parameter θ
and define A and B as functions of T :

A = hA(T ) and B = hB(T ).

• Instead of A ≤ θ ≤ B consider the corresponding event w.r.t. the estimator T ,
that is, A∗ ≤ T ≤ B∗.

• Determine A = hA(T ) and B = hB(T ) from the inverse functions A∗ = h−1
A (θ)

and B∗ = h−1
B (θ).

Procedure: P (A∗ < T < B∗) = 1− α

⇒ P (h−1
A (θ) < T < h−1

B (θ)) = 1− α
⇒ P (hA(T ) < θ < hB(T )) = 1− α
⇒ P (A < θ < B) = 1− α.



Interval Estimation: Example
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Given: a family of uniform distributions on the interval [0, θ], i.e.

fX(x; θ) =

{
1
θ, if 0 ≤ x ≤ θ,
0, otherwise.

Desired: a confidence interval for the unknown parameter θ.

• Start from the unbiased point estimator U = n+1
n max{X1, . . . , Xn}:

P (U ≤ B∗) =
∫ B∗

0
fU (u; θ)du =

α

2

P (U ≥ A∗) =
∫ n+1

n θ

A∗ fU (u; θ)du =
α

2

• From the study of point estimators we know

fU (u; θ) =
nn+1

(n + 1)n
un−1

θn
.



Interval Estimation: Example
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• Solving the integrals gives us

B∗ = n

√
α

2

n + 1

n
θ and A∗ = n

√
1− α

2

n + 1

n
θ,

that is,

P
(

n

√
α

2

n + 1

n
θ < U < n

√
1− α

2

n + 1

n
θ
)
= 1− α.

• Computing the inverse functions leads to

P




U

n
√
1− α

2
n+1
n

< θ <
U

n
√

α
2
n+1
n


 = 1− α,

that is,

A =
U

n
√
1− α

2
n+1
n

and B =
U

n
√

α
2
n+1
n

.



Interval Estimation: Common Misconceptions
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• Since A and B are functions of random variables ~X = (X1, . . . , Xn) (modelling
the underlying random sampling), they are random variables themselves and thus
a statement like

P (A( ~X < θ < B( ~X)) = 1− α
makes sense.

• If, however, applied to a specific random sample ~x the interval borders
a = A(~x) and b = B(~x) become fixed and are not random anymore.

• A probability statement about a < θ < b would be nonsensical
because either θ ∈ [a, b] or θ /∈ [a, b].

• Therefore it is incorrect to say:
“The true parameter θ lies with (1− α) · 100% probability within the
confidence interval.”

• Correct: “This confidence interval has been generated by a proce-
dure which returns for (1 − α) · 100% of all possible samples ~x an
interval that contains the true parameter θ.”



Interval Estimation: Common Misconceptions
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Relation to sample size n and confidence level α.

• Width of a confidence interval can be considered a measure of imprecision or
inaccuracy, i. e., the smaller the interval the more accurate the estimation.
(although the real parameter may not be within the interval at all, of course).

• Increasing n yields a smaller interval.

• Increasing α yields a smaller interval. (Often misunderstood!)

• Example: random variable X with binomial distribution: bX(x; p, n)

• Let x be the number of positive outcomes in the sample of size n.
The (1− α) · 100% confidence interval for p reads:


r − z1−α

2
·
√
r(1− r)

n− 1
, r + z1−α

2
·
√
r(1− r)

n− 1


 with r =

x

n

(with za = Φ−1(a) and Φ being the standard normal distribution function)



Hypothesis Testing
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• A hypothesis test is a statistical procedure with which a decision is made
between two contrary hypothesis about the process that generated the data.

• The two hypotheses can refer to

◦ the value of a parameter (Parameter Test),

◦ a distribution assumption (Goodness-of-Fit Test),

◦ the dependence of two attributes (Dependence Test).

• One of the two hypothesis is preferred, that is, in case of doubt the decision is
made in its favor. (One says that it gets the “benefit of the doubt”.)

• The preferred hypothesis is called the Null Hypothesis H0,
the other hypothesis is called the Alternative Hypothesis Ha.

• Intuitively: the null hypothesis H0 is put on trial.
Only if the evidence is strong enough, it is convicted (i.e. rejected).
If there is doubt, however, it is acquitted (i.e. accepted).



Hypothesis Testing
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• The test decision is based on a test statistic,
that is, a function of the sample values.

• The null hypothesis is rejected if the value of the test statistic
lies inside the so-called critical region C.

• Developing a hypothesis test consists in finding the critical region
for a given test statistic and significance level (see below).

• The test decision may be wrong. There are two possible types of errors:

Type 1: The null hypothesis H0 is rejected, even though it is correct.
Type 2: The null hypothesis H0 is accepted, even though it is false.

• Type 1 errors are considered to be more severe,
since the null hypothesis gets “the benefit of the doubt”.

• Therefore it is tried to restrict the probability of a type 1 error to a certain maxi-
mum α. This maximum value α is called significance level.



Example: Outlier Detection - Single Attributes
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Numerical attributes:
• Outliers in boxplots.
Problems: Asymmetric distribution, large data sets

• Statistical tests, for example Grubb’s test :

Define the statistic

G =
max{‖xi−x‖:1≤i≤n

s , where x1, . . . , xn is the sample, x its mean value and s its
empirical standard deviation. For a given significance level α, the null hypothesis that
the sample coming from a normal distribution does not contain outliers is rejected if

G > n−1√
n

√√√√ t2
1−α/(2n),n−2

n−2+t2
1−α/(2n),n−2

where t1−α/(2n),n−2 denotes the (1 − α/(2n))-quantile of the t-distribution with n−
degrees of freedom.
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• In a parameter test the contrary hypotheses refer to the value of a parameter, for
example (one-sided test):

H0 : θ ≥ θ0, Ha : θ < θ0.

• For such a test usually a point estimator T is chosen as the test statistic.

• The null hypothesis H0 is rejected if the value t of the point estimator does not
exceed a certain value c, the so-called critical value (i.e. C = (−∞, c]).

• Formally the critical value c is determined as follows: We consider

β(θ) = Pθ(H0 is rejected) = Pθ(T ∈ C),

the so-called power β of the test.

• The power must not exceed the significance level α for values θ satisfying H0:

max
θ:θ satisfies H0

β(θ) ≤ α. (here: β(θ0) ≤ α)
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• The probability of a type 1 error is the area under the estimator’s
probability density function f (T | θ0) to the left of the critical value c.
(Note: This example illustrates H0 : θ ≥ θ0 and Ha : θ < θ0.)

T

θ0ccritical region C

f (T | θ0)probability of
a type 1 error

β(θ0)

• Obviously the probability of a type 1 error depends on the location
of the critical value c: higher values mean a higher error probability.

• Idea: Choose the location of the cricital value so that the maximal
probability of a type 1 error equals α, the chosen significance level.
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• What is so special about θ0 that we use f (T | θ0)?

T

θ0ccritical region C θ satisfying H0

f (T | θ)probability of
a type 1 error

β(θ)

• In principle, all θ satisfying H0 have to be considered,
that is, all density functions f (T | θ) with θ ≥ θ0.

• Among these values θ, the one with the highest probability of a type 1 error
(i.e., the one with the highest power β(θ)) determines the critical value.

Intuitively: we consider the worst possible case.
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• We consider a one-sided test of the expected value µ of a normal distributionN(µ, σ2)
with known variance σ2, i.e., we consider the hypotheses

H0 : µ ≥ µ0, Ha : µ < µ0.

• As a test statistic we use the standard point estimator for the expected value

X̄ =
1

n

n∑

i=1

Xi.

This point estimator has the probability density

fX̄(x) = N
(
x;µ, σ

2

n

)
.

• Therefore it is (with the N(0, 1)-distributed random variable Z)

α = β(µ0) = Pµ0(X̄ ≤ c) = P

(
X̄ − µ0
σ/

√
n

≤ c− µ0
σ/

√
n

)
= P

(
Z ≤ c− µ0

σ/
√
n

)
.
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• We have as a result that

α = Φ

(
c− µ0
σ/

√
n

)
,

where Φ is the distribution function of the standard normal distribution.

• The distribution function Φ is tabulated, because it cannot be represented in closed
form. From such a table we retrieve the value zα satisfying α = Φ(zα).

• Then the critical value is

c = µ0 + zα
σ√
n
.

(Note that the value of zα is negative due to the usually small value of α.
Typical values are α = 0.1, α = 0.05 or α = 0.01.)

• H0 is rejected if the value x̄ of the point estimator X̄ does not exceed c, otherwise
it is accepted.
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• Let σ = 5.4, n = 25 and x̄ = 128. We choose µ0 = 130 and α = 0.05.

• From a standard normal distribution table we retrieve z0.05 ≈ −1.645 and get

c0.05 ≈ 130− 1.645
5.4√
25

≈ 128.22.

Since x̄ = 128 < 128.22 = c, we reject the null hypothesis H0.

• If, however, we had chosen α = 0.01, it would have been (with z0.01 ≈ −2.326):

c0.01 ≈ 130− 2.326
5.4√
25

≈ 127.49

Since x̄ = 128 > 127.49 = c, we would have accepted the null hypothesis H0.

• Instead of fixing a significance level α one may state the so-called p-value

p = Φ

(
128− 130

5.4/
√
25

)
≈ 0.032.

For α ≥ p = 0.032 the null hypothesis is rejected, for α < p = 0.032 accepted.
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• Let t be the value of the test statistic T
that has been computed from a given data set.
(Note: This example illustrates H0 : θ ≥ θ0 and Ha : θ < θ0.)

T

θ0t

f (T | θ0)
p-value of t

• The p-value is the probability that a value of t or less
can be observed for the chosen test statistic T .

• The p-value is a lower limit for the significance level α
that may have been chosen if we wanted to reject the null hypothesis H0.
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Attention: p-values are often misused or misinterpreted!

• A low p-value does not mean that the result is very reliable!

All that matters for the test is whether the computed p-value
is below the chosen significance level or not.

(A low p-value could just be a chance event, an accident!)

• The significance level may not be chosen after computing the p-value,
since we tend to choose lower significance levels if we know that they are met.

Doing so would undermine the reliability of the procedure!

• Stating p-values is only a convenient way of avoiding a fixed significance level.
(Since significance levels are a matter of choice and thus user-dependent.)

However: A significance level must still be chosen
before a reported p-value is looked at.
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• Reminder: There are two possible types of errors:

Type 1: The null hypothesis H0 is rejected, even though it is correct.

Type 2: The null hypothesis H0 is accepted, even though it is false.

• Type-1 errors are considered to be more severe,
since the null hypothesis gets “the benefit of the doubt”.

• However, type-2 errors should not be neglected completely:

◦ It is always possible to achieve a vanishing probability of a type-1 error:
Simply accept the null hypothesis in all instances, regardless of the data.

◦ Unfortunately such an approach maximizes the type-2 error.

• Generally, type-1 and type-2 errors are complementary quantities:

The lower we require the type-1 error to be (the lower the significance level),
the higher will be the probability of a type-2 error.
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• Suppose there are only two possible parameter values θ0 and θ1 with θ1 < θ0.
(That is, we have H0 : θ = θ0 and Ha : θ = θ1.)

T

θ1 θ0c

f (T | θ1) f (T | θ0)

probability of a
type-1 error type-2 error

• Lowering the significance level α moves the critical value c to the left:
lower type-1 error (red), but higher type-2 error (blue).

• Increasing the significance level α moves the critical value c to the right:
higher type-1 error (red), but lower type-2 error (blue).


