Clustering

Clustering

- General Idea of Clustering
- Similarity and distance measures
- Prototype-based Clustering
- Classical c-means clustering
- Learning vector quantization
- Fuzzy c-means clustering
- Expectation maximization for Gaussian mixtures
- Hierarchical Agglomerative Clustering
- Merging clusters: Dendrograms
- Measuring the distance of clusters
- Choosing the clusters
- Summary

General Idea of Clustering

- Goal: Arrange the given data tuples into classes or clusters.
- Data tuples assigned to the same cluster should be as similar as possible.
- Data tuples assigned to different clusters should be as dissimilar as possible.
- Similarity is most often measured with the help of a distance function. (The smaller the distance, the more similar the data tuples.)
- Often: restriction to data points in \mathbb{R}^{m} (although this is not mandatory).
$d: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}_{0}^{+}$is a distance function if it satisfies $\forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^{m}$:

$$
\begin{aligned}
\text { (i) } d(\vec{x}, \vec{y}) & =0 \quad \Leftrightarrow \quad \vec{x}=\vec{y} & & \\
\text { (ii) } d(\vec{x}, \vec{y}) & =d(\vec{y}, \vec{x}) & & \text { (symmetry) } \\
\text { (iii) } d(\vec{x}, \vec{z}) & \leq d(\vec{x}, \vec{y})+d(\vec{y}, \vec{z}) & & \text { (triangle inequality). }
\end{aligned}
$$

Distance Functions

Illustration of distance functions: Minkowski Family

$$
d_{k}(\vec{x}, \vec{y})=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{k}\right)^{\frac{1}{k}}
$$

Well-known special cases from this family are:

$$
\begin{array}{ll}
k=1: & \text { Manhattan or city block distance, } \\
k=2: & \text { Euclidean distance, } \\
k \rightarrow \infty: & \text { maximum distance, i.e. } d_{\infty}(\vec{x}, \vec{y})=\max _{i=1}^{n}\left|x_{i}-y_{i}\right|
\end{array}
$$

$k=1$

$$
k=2
$$

$$
k \rightarrow \infty
$$

c-Means Clustering

- Choose a number c of clusters to be found (user input).
- Initialize the cluster centers randomly (for instance, by randomly selecting c data points).
- Data point assignment:

Assign each data point to the cluster center that is closest to it (i.e. closer than any other cluster center).

- Cluster center update:

Compute new cluster centers as the mean vectors of the assigned data points. (Intuitively: center of gravity if each data point has unit weight.)

- Repeat these two steps (data point assignment and cluster center update) until the clusters centers do not change anymore.
- It can be shown that this scheme must converge, i.e., the update of the cluster centers cannot go on forever.

c-Means Clustering: Example

Data set to cluster.
Choose $c=3$ clusters.
(From visual inspection, can be difficult to determine in general.)

Initial position of cluster centers.
Randomly selected data points. (Alternative methods include e.g. latin hypercube sampling)

Delaunay Triangulations and Voronoi Diagrams

- Dots represent cluster centers (quantization vectors).
- Left: Delaunay Triangulation
(The circle through the corners of a triangle does not contain another point.)
- Right: Voronoi Diagram
(Midperpendiculars of the Delaunay triangulation: boundaries of the regions of points that are closest to the enclosed cluster center (Voronoi cells)).

Delaunay Triangulations and Voronoi Diagrams

- Delaunay Triangulation: simple triangle (shown in grey on the left)
- Voronoi Diagram: midperpendiculars of the triangle's edges (shown in blue on the left, in grey on the right)

c-Means Clustering: Example

c-Means Clustering: Local Minima

- Clustering is successful in this example:

The clusters found are those that would have been formed intuitively.

- Convergence is achieved after only 5 steps.
(This is typical: convergence is usually very fast.)
- However: The clustering result is fairly sensitive to the initial positions of the cluster centers.
- With a bad initialization clustering may fail (the alternating update process gets stuck in a local minimum).
- Fuzzy c-means clustering and the estimation of a mixture of Gaussians are much more robust (to be discussed later).
- Research issue: Can we determine the number of clusters automatically? (Some approaches exists, but none of them is too successful.)

Learning Vector Quantization

Adaptation of reference vectors / codebook vectors

- Like "online" c-means clustering (update after each data point).
- For each training pattern find the closest reference vector.
- Adapt only this reference vector (winner neuron).
- For classified data the class may be taken into account. (reference vectors are assigned to classes)

Attraction rule (data point and reference vector have same class)

$$
\vec{r}^{(\text {new })}=\vec{r}^{(\text {old })}+\eta\left(\vec{p}-\vec{r}^{(\text {old })}\right)
$$

Repulsion rule (data point and reference vector have different class)

$$
\vec{r}^{(\text {new })}=\vec{r}^{(\mathrm{old})}-\eta\left(\vec{p}-\vec{r}^{(\mathrm{old})}\right)
$$

Learning Vector Quantization

Adaptation of reference vectors / codebook vectors

attraction rule

repulsion rule

- \vec{p} : data point, \vec{r}_{i} : reference vector
- $\eta=0.4$ (learning rate)

Learning Vector Quantization: Learning Rate Decay

Problem: fixed learning rate can lead to oscillations

Solution: time dependent learning rate

$$
\eta(t)=\eta_{0} \alpha^{t}, \quad 0<\alpha<1, \quad \text { or } \quad \eta(t)=\eta_{0} t^{\kappa}, \quad \kappa<0
$$

Learning Vector Quantization: Example

Adaptation of reference vectors / codebook vectors

- Left: Online training with learning rate $\eta=0.1$,
- Right: Batch training with learning rate $\eta=0.05$.

Excursus: Short Introduction to Fuzzy Theory

- Classical Logic: only truth values true and false. Classical Algebra: either is element or is not element.
- The bivalence of the classical theories is often not appropriate.

Illustrating example: Sorites Paradoxon (Greek sorites: heap)

- One billion grains of sand is a heap of sand.
- If you remove a grain of sand from a heap of sand, a heap of sand remains.
Thus it follows:
- 999999999 grains are a heap of sand.

Multiple repetition of the same conclusion finally leads to

- 1 grain of sand is a heap of sand. (false!)

At which number of grains the conclusion does not preserve the truth?

Excursus: Short Introduction to Fuzzy Theory

- Obviously: There is no exact determined number of grains of sand, where the conclusion to the next smaller number is wrong.
- Problem: Terms of natural language (e.g., "heap of sand", "bald headed", "warm", "fast", "high pressure", "light" etc.) are vague.
- Note: Though vague terms may be inexact, but not useless.
- Also for vague terms there exist situations/objects, where they are for sure applicable and where they are for sure not applicable.
- Between this a penumbra (Latin semi-shade) of situations is located, where it is unclear, whether the terms are applicable, or whether they are only applicable with restrictions ("small heap of sand").
- The fuzzy theory tries to model this penumbra mathematically ("soft transition" between applicable and not applicable).

Excursus: Fuzzy Logic

- Fuzzy logic is an extension of the classical logic to intermediate values between true and false.
- As truth value, any value from the real interval $[0,1]$ can appear, whereas $0 \hat{=}$ false and $1 \hat{=}$ true.
- Thus necessary: Extension of the logical operators
- Negation classical: $\neg a, \quad$ fuzzy: $\sim a \quad$ Fuzzy Negation
- Conjunction classical: $a \wedge b$, fuzzy: $\top(a, b) \quad t$-Norm
- Disjunction classical: $a \vee b, \quad$ fuzzy: $\perp(a, b) \quad t$-Conorm
- Basic principles of the extension:
- For the extreme values 0 and 1 , the operators shall behave the same way like the classical examples (marginal/edge constraints).
- For the intermediate values, the behavior shall be monotone.
- As far as possible the laws of the classical logical shall be preserved.

Fuzzy Clustering

- Allow degrees of membership of a datum to different clusters.
(Classical c-means clustering assigns data crisply.)
Objective Function: (to be minimized)

$$
J(\mathbf{X}, \mathbf{B}, \mathbf{U})=\sum_{i=1}^{c} \sum_{j=1}^{n} u_{i j}^{w} d^{2}\left(\vec{\beta}_{i}, \vec{x}_{j}\right)
$$

- $\mathbf{U}=\left[u_{i j}\right]$ is the $c \times n$ fuzzy partition matrix,
$u_{i j} \in[0,1]$ is the membership degree of the data point \vec{x}_{j} to the i-th cluster.
- $\mathbf{B}=\left\{\vec{\beta}_{1}, \ldots, \vec{\beta}_{c}\right\}$ is the set of cluster prototypes.
- w is the so-called "fuzzifier" (the higher w, the softer the cluster boundaries).
- Constraints:
$\forall i \in\{1, \ldots, c\}: \quad \sum_{j=1}^{n} u_{i j}>0 \quad$ and $\quad \forall j \in\{1, \ldots, n\}: \quad \sum_{i=1}^{c} u_{i j}=1$.

Fuzzy and Hard Clustering

Relation to Classical c-Means Clustering:

- c-means clustering can be seen as optimizing the objective function

$$
J(\mathbf{X}, \mathbf{B}, \mathbf{U})=\sum_{i=1}^{c} \sum_{j=1}^{n} u_{i j} d^{2}\left(\vec{\beta}_{i}, \vec{x}_{j}\right)
$$

where $\forall i, j: u_{i j} \in\{0,1\}$ (i.e. hard assignment of the data points) and the cluster prototypes $\vec{\beta}_{i}$ consist only of cluster centers.

- To obtain a fuzzy assignment of the data points, it is not enough to extend the range of values for the $u_{i j}$ to the unit interval $[0,1]$: The objective function J is optimized for a hard assignment (each data point is assigned to the closest cluster center).
- Necessary for degrees of membership:

Apply a convex function $h:[0,1] \rightarrow[0,1]$ to the membership degrees $u_{i j}$. Most common choice: $h(u)=u^{w}$, usually with $w=2$.

Reminder: Function Optimization

Task: Find values $\vec{x}=\left(x_{1}, \ldots, x_{m}\right)$ such that $f(\vec{x})=f\left(x_{1}, \ldots, x_{m}\right)$ is optimal.
Often feasible approach:

- A necessary condition for a (local) optimum (maximum or minimum) is that the partial derivatives w.r.t. the parameters vanish (Pierre Fermat).
- Therefore: (Try to) solve the equation system that results from setting all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize $\quad f(x, y)=x^{2}+y^{2}+x y-4 x-5 y$.

Solution procedure:

1. Take the partial derivatives of the objective function and set them to zero:

$$
\frac{\partial f}{\partial x}=2 x+y-4=0, \quad \frac{\partial f}{\partial y}=2 y+x-5=0
$$

2. Solve the resulting (here: linear) equation system: $\quad x=1, \quad y=2$.

Function Optimization with Constraints

Often a function has to be optimized subject to certain constraints.
Here: restriction to k equality constraints $C_{i}(\vec{x})=0, i=1, \ldots, k$.
Note: the equality constraints describe a subspace of the domain of the function.
Problem of optimization with constraints:

- The gradient of the objective function f may vanish outside the constrained subspace, leading to an unacceptable solution (violating the constraints).
- At an optimum in the constrained subspace the derivatives need not vanish.

One way to handle this problem are generalized coordinates:

- Exploit the dependence between the parameters specified in the constraints to express some parameters in terms of the others and thus reduce the set \vec{x} to a set \vec{x}^{\prime} of independent parameters (generalized coordinates).
- Problem: Can be clumsy and cumbersome, if possible at all, because the form of the constraints may not allow for expressing some parameters as proper functions of the others.

Contour Lines of a Function

Contour Lines: Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, the contour plot is obtained by drawing the contour sets for equidistant levels, i. e., plot the following sets of points:

$$
\begin{aligned}
& M_{k c}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid f\left(x_{1}, x_{2}\right)=k c\right\} \\
& \text { for } k \in \mathbb{N} \text { and fixed } c \in \mathbb{R}_{\geq 0}
\end{aligned}
$$

Example:

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}
$$

Gradient Field of a Function

- The gradient of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ consists of the vector of its partial derivatives w.r.t. the arguments:

$$
\nabla_{\vec{x}} f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)^{\top}
$$

- The gradient evaluated at a point \vec{x}^{*}, written as

$$
\left.\nabla_{\vec{x}} f\right|_{\vec{x}^{*}}=\left(\left.\frac{\partial f}{\partial x_{1}}\right|_{x_{1}^{*}}, \ldots,\left.\frac{\partial f}{\partial x_{n}}\right|_{x_{n}^{*}}\right)^{\top}
$$

points into the direction of largest increase of f.

- Formally, the gradient of a function with domain \mathbb{R}^{n} has n dimensions although it is often depicted as an $n+1$-dimensional vector.

Gradient Field of a Function: Examples

$$
f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}
$$

$\nabla_{\vec{x}} f_{1}=\binom{2 x_{1}}{2 x_{2}}$

$$
f_{2}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-1
$$

Function Optimization with Constraints

Problem: If the global optimum of f lies outside the feasible region the gradient does not vanish at the constrained optimum \vec{x}^{*}.

Which criteria do hold at the constrained optimum?

- Assume we move \vec{x}^{*} throughout the feasible region to find the optimum "manually". If we cross a contour line of f, the crossing point cannot be an optimum: because crossing a contour line means descending or ascending.
- However, if we touch a contour line we have found an optimum because stepping backward or forward will increase (or decrease) the value.
- At the "touching point" \vec{x}^{*} the gradient of f and the gradient of g are parallel.

$$
\nabla f=\lambda \nabla g
$$

- We only need both gradients to be parallel. Since they can have opposite directions and different lengths λ is used to rescale ∇g.

Example

Task: Minimize $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ subject to $g: x+y=1$.

- Crossing a contour line: Point 1 cannot be a constrained minimum because ∇f has a non-zero component in the constrained space. Walking in opposite direction to this component can further decrease f.
- Touching a contour line: Point 2 is a constrained minimum: both gradients are parallel, hence there is no component of ∇f in the constrained space that might lead us to a lower value of f.

Function Optimization with Constraints

- Therefore, at the constrained optimum \vec{x}^{*} we require:

$$
\nabla f\left(\vec{x}^{*}\right)=\lambda \nabla g\left(\vec{x}^{*}\right) \quad \text { and } \quad g\left(\vec{x}^{*}\right)=0
$$

- More compact representation:

$$
L(\vec{x}, \lambda)=f(\vec{x})-\lambda g(\vec{x}) \quad \text { and } \quad \nabla L=0
$$

- Taking the partial derivatives reveals the initial conditions:

$$
\begin{aligned}
& \frac{\partial}{\partial \vec{x}} L(\vec{x}, \lambda)= \nabla f(\vec{x})-\lambda \nabla g(\vec{x})=0 \\
& \nabla f(\vec{x})=\lambda \nabla g(\vec{x}) \\
& \frac{\partial}{\partial \lambda} L(\vec{x}, \lambda)=g(\vec{x})=0
\end{aligned}
$$

- The negative sign in the Lagrange function L can be incorporated into λ, i. e. we will from now on replace it by a positive sign.

Lagrange Theory: Example 1

Example task: Minimize $f(x, y)=x^{2}+y^{2} \quad$ subject to $\quad x+y=1$.

Solution procedure:

1. Rewrite the constraint, so that one side gets zero: $x+y-1=0$.
2. Construct the Lagrange function by incorporating the constraint into the objective function with a Lagrange multiplier λ :

$$
L(x, y, \lambda)=x^{2}+y^{2}+\lambda(x+y-1) .
$$

3. Take the partial derivatives of the Lagrange function and set them to zero (necessary conditions for a minimum):

$$
\frac{\partial L}{\partial x}=2 x+\lambda=0, \quad \frac{\partial L}{\partial y}=2 y+\lambda=0, \quad \frac{\partial L}{\partial \lambda}=x+y-1=0 .
$$

4. Solve the resulting (here: linear) equation system:

$$
\lambda=-1, \quad x=y=\frac{1}{2} .
$$

Summary: Function Optimization with Constraints

Let \vec{x}^{*} be a (local) optimum of $f(\vec{x})$ in the constrained subspace. Then:

- The gradient $\nabla_{\vec{x}} f\left(\vec{x}^{*}\right)$, if it does not vanish, must be perpendicular to the constrained subspace. (If $\nabla_{\vec{x}} f\left(\vec{x}^{*}\right)$ had a component in the constrained subspace, \vec{x}^{*} would not be a (local) optimum in this subspace.)
- The gradients $\nabla_{\vec{x}} g_{j}\left(\vec{x}^{*}\right), 1 \leq j \leq k$, must all be perpendicular to the constrained subspace, because they are constant, namely 0 , in this subspace. Together they span the subspace perpendicular to the constrained subspace.
- Therefore it must be possible to find values $\lambda_{j}, 1 \leq j \leq k$, such that

$$
\nabla_{\vec{x}} f\left(\vec{x}^{*}\right)+\sum_{j=1}^{s} \lambda_{j} \nabla_{\vec{x}} g_{j}\left(\vec{x}^{*}\right)=0
$$

If the constraints (and thus their gradients) are linearly independent, the values λ_{j} are uniquely determined. This equation can be used to compensate the gradient of $f\left(\vec{x}^{*}\right)$ so that it vanishes at \vec{x}^{*}.

General Principle: Lagrange Theory

As a consequence of these insights we obtain the

Method of Lagrange Multipliers:

Given: $\quad \circ$ a function $f(\vec{x})$, which is to be optimized,

- k equality constraints $g_{j}(\vec{x})=0,1 \leq j \leq k$.

Procedure:

1. Construct the so-called Lagrange function by incorporating the equality constraints $g_{i}, i=1, \ldots, k$, with (unknown) Lagrange multipliers λ_{i} :

$$
L\left(\vec{x}, \lambda_{1}, \ldots, \lambda_{k}\right)=f(\vec{x})+\sum_{i=1}^{k} \lambda_{i} g_{i}(\vec{x})
$$

2. Set the partial derivatives of the Lagrange function equal to zero:

$$
\frac{\partial L}{\partial x_{1}}=0, \quad \ldots, \quad \frac{\partial L}{\partial x_{m}}=0, \quad \frac{\partial L}{\partial \lambda_{1}}=0, \quad \ldots, \quad \frac{\partial L}{\partial \lambda_{k}}=0 .
$$

3. (Try to) solve the resulting equation system.

Lagrange Theory: Revisited Example 1

Example task: Minimize $f(x, y)=x^{2}+y^{2} \quad$ subject to $\quad x+y=1$.

The unconstrained minimum is not in the constrained subspace, and at the minimum in the constrained subspace the gradient does not vanish.

Lagrange Theory: Revisited Example 1

Example task: Minimize $f(x, y)=x^{2}+y^{2} \quad$ subject to $\quad x+y=1$.

$$
L(x, y,-1)=x^{2}+y^{2}-(x+y-1)
$$

The gradient of the constraint is perpendicular to the constrained subspace.
The (unconstrained) minimum of the Lagrange function $L(x, y, \lambda)$
is the minimum of the objective function $f(x, y)$ in the constrained subspace.

Lagrange Theory: Example 2

Example task: Find the side lengths x, y, z of a box with maximum volume for a given area S of the surface.

Formally: Maximize $\quad f(x, y, z)=x y z$ subject to $\quad 2 x y+2 x z+2 y z=S$.

Solution procedure:

1. The constraint is $C(x, y, z)=2 x y+2 x z+2 y z-S=0$.
2. The Lagrange function is

$$
L(x, y, z, \lambda)=x y z+\lambda(2 x y+2 x z+2 y z-S)
$$

3. Taking the partial derivatives yields (in addition to the constraint):

$$
\frac{\partial L}{\partial x}=y z+2 \lambda(y+z)=0, \quad \frac{\partial L}{\partial y}=x z+2 \lambda(x+z)=0, \quad \frac{\partial L}{\partial y}=x y+2 \lambda(x+y)=0 .
$$

4. The solution is: $\quad \lambda=-\frac{1}{4} \sqrt{\frac{S}{6}}, \quad x=y=z=\sqrt{\frac{S}{6}} \quad$ (i.e., the box is a cube).

Function Optimization: Lagrange Theory

Observations:

- Due to the representation of the gradient of $f(\vec{x})$ at a local optimum \vec{x}^{*} in the constrained subspace (see above) the gradient of L w.r.t. \vec{x} vanishes at \vec{x}^{*}.
\rightarrow The standard approach works again!
- If the constraints are satisfied, the additional terms have no influence.
\rightarrow The original task is not modified (same objective function).
- Taking the partial derivative w.r.t. a Lagrange multiplier reproduces the corresponding equality constraint:

$$
\forall j ; 1 \leq j \leq k: \quad \frac{\partial}{\partial \lambda_{j}} L\left(\vec{x}, \lambda_{1}, \ldots, \lambda_{k}\right)=C_{j}(\vec{x})
$$

\rightarrow Constraints enter the equation system to solve in a natural way.

Remark:

- Inequality constraints can be handled with the Kuhn-Tucker theory.

Fuzzy Clustering: Alternating Optimization

Objective function: (to be minimized)

$$
J(\mathbf{X}, \mathbf{B}, \mathbf{U})=\sum_{i=1}^{c} \sum_{j=1}^{n} u_{i j}^{w} d^{2}\left(\vec{x}_{j}, \vec{\beta}_{i}\right)
$$

Constraints:
$\forall i \in\{1, \ldots, c\}: \quad \sum_{j=1}^{n} u_{i j}>0 \quad$ and $\quad \forall j \in\{1, \ldots, n\}: \quad \sum_{i=1}^{c} u_{i j}=1$.

- Problem: The objective function J cannot be minimized directly.
- Therefore: Alternating Optimization
- Optimize membership degrees for fixed cluster parameters.
- Optimize cluster parameters for fixed membership degrees.
(Update formulae are derived by differentiating the objective function J)
- Iterate until convergence (checked, e.g., by change of cluster center).

Fuzzy Clustering: Alternating Optimization

First Step: Fix the cluster parameters.

Introduce Lagrange multipliers $\lambda_{j}, 0 \leq j \leq n$, to incorporate the constraints $\forall j ; 1 \leq$ $j \leq n: \sum_{i=1}^{c} u_{i j}=1$. This yields the Lagrange function (to be minimized)

$$
L(\mathbf{X}, \mathbf{B}, \mathbf{U}, \Lambda)=\underbrace{\sum_{i=1}^{c} \sum_{j=1}^{n} u_{i j}^{w} d_{i j}^{2}}_{=J(\mathbf{X}, \mathbf{B}, \mathbf{U})}+\sum_{j=1}^{n} \lambda_{j}\left(1-\sum_{i=1}^{c} u_{i j}\right)
$$

A necessary condition for the minimum is that the partial derivatives of the Lagrange function w.r.t. the membership degrees vanish, i.e.,

$$
\frac{\partial}{\partial u_{k l}} L(\mathbf{X}, \mathbf{B}, \mathbf{U}, \Lambda)=w u_{k l}^{w-1} d_{k l}^{2}-\lambda_{l} \stackrel{!}{=} 0
$$

which leads to

$$
\forall i ; 1 \leq i \leq c: \forall j ; 1 \leq j \leq n: \quad u_{i j}=\left(\frac{\lambda_{j}}{w d_{i j}^{2}}\right)^{\frac{1}{w-1}}
$$

Fuzzy Clustering: Alternating Optimization

Summing these equations over the clusters (in order to be able to exploit the corresponding constraints on the membership degrees), we get

$$
1=\sum_{i=1}^{c} u_{i j}=\sum_{i=1}^{c}\left(\frac{\lambda_{j}}{w d_{i j}^{2}}\right)^{\frac{1}{w-1}} .
$$

Consequently the $\lambda_{j}, 1 \leq j \leq n$, are

$$
\lambda_{j}=\left(\sum_{i=1}^{c}\left(w d_{i j}^{2}\right)^{\frac{1}{1-w}}\right)^{1-w}
$$

Inserting this into the equation for the membership degrees yields

$$
\forall i ; 1 \leq i \leq c: \forall j ; 1 \leq j \leq n: \quad u_{i j}=\frac{d_{i j}^{\frac{2}{1-w}}}{\sum_{k=1}^{c} d_{k j}^{\frac{2}{1-w}}} .
$$

This update formula results regardless of the distance measure.

Standard Fuzzy Clustering Algorithms

Fuzzy C-Means Algorithm: Euclidean distance

$$
d_{\mathrm{fcm}}^{2}\left(\vec{x}_{j}, \vec{\beta}_{i}\right)=\left(\vec{x}_{j}-\vec{\mu}_{i}\right)^{\top}\left(\vec{x}_{j}-\vec{\mu}_{i}\right) \quad \text { with } \quad \vec{\beta}_{i}=\left(\vec{\mu}_{i}\right)
$$

Necessary condition for a minimum: gradients w.r.t. cluster centers vanish.

$$
\begin{aligned}
\nabla_{\vec{\mu}_{k}} J_{\mathrm{fcm}}(\mathbf{X}, \mathbf{B}, \mathbf{U}) & =\nabla_{\vec{\mu}_{k}} \sum_{i=1}^{c} \sum_{j=1}^{n} u_{i j}^{w}\left(\vec{x}_{j}-\vec{\mu}_{i}\right)^{\top}\left(\vec{x}_{j}-\vec{\mu}_{i}\right) \\
& =\sum_{j=1}^{n} u_{k j}^{w} \nabla_{\vec{\mu}_{k}}\left(\vec{x}_{j}-\vec{\mu}_{k}\right)^{\top}\left(\vec{x}_{j}-\vec{\mu}_{k}\right) \\
& =-2 \sum_{j=1}^{n} u_{k j}^{w}\left(\vec{x}_{j}-\vec{\mu}_{k}\right) \stackrel{!}{=} \overrightarrow{0}
\end{aligned}
$$

Resulting update rule for the cluster centers (second step of alt. optimization):

$$
\forall i ; 1 \leq i \leq c: \quad \vec{\mu}_{i}=\frac{\sum_{j=1}^{n} u_{i j}^{w} \vec{x}_{j}}{\sum_{j=1}^{n} u_{i j}^{w}}
$$

Standard Fuzzy Clustering Algorithms

Gustafson-Kessel Algorithm: Mahalanobis distance

$$
d_{\mathrm{gk}}^{2}\left(\vec{x}_{j}, \vec{\beta}_{i}\right)=\left(\vec{x}_{j}-\vec{\mu}_{i}\right)^{\top} \mathbf{C}_{i}^{-1}\left(\vec{x}_{j}-\vec{\mu}_{i}\right) \quad \text { with } \quad \vec{\beta}_{i}=\left(\vec{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)
$$

Additional constraints: $\left|\mathbf{C}_{i}\right|=1$ (all cluster have unit size).
These constraints are incorporated again by Lagrange multipliers.
A similar derivation as for the fuzzy c-means algorithm yields the same update rule for the cluster centers:

$$
\forall i ; 1 \leq i \leq c: \quad \vec{\mu}_{i}=\frac{\sum_{j=1}^{n} u_{i j}^{w} \vec{x}_{j}}{\sum_{j=1}^{n} u_{i j}^{w}}
$$

Update rule for the covariance matrices (m is the number of dimensions):

$$
\mathbf{C}_{i}=\frac{1}{\sqrt[m]{\left|\boldsymbol{\Sigma}_{i}\right|}} \boldsymbol{\Sigma}_{i} \quad \text { where } \quad \boldsymbol{\Sigma}_{i}=\sum_{j=1}^{n} u_{i j}^{w}\left(\vec{x}_{j}-\vec{\mu}_{i}\right)\left(\vec{x}_{j}-\vec{\mu}_{i}\right)^{\top}
$$

Fuzzy Clustering: Overlapping Clusters

Classical c-Means

Fuzzy c-Means

Fuzzy Clustering of the Iris Data

Fuzzy c-Means

Gustafson-Kessel

Expectation Maximization: Mixture of Gaussians

- Assumption: Data was generated by sampling a set of normal distributions. (The probability density is a mixture of Gaussian distributions.)
- Formally: We assume that the probability density can be described as

$$
f_{\vec{X}}(\vec{x} ; \mathbf{C})=\sum_{y=1}^{c} f_{\vec{X}, Y}(\vec{x}, y ; \mathbf{C})=\sum_{y=1}^{c} p_{Y}(y ; \mathbf{C}) \cdot f_{\vec{X} \mid Y}(\vec{x} \mid y ; \mathbf{C})
$$

C is the set of cluster parameters
$\vec{X} \quad$ is a random vector that has the data space as its domain
Y is a random variable that has the cluster indices as possible values (i.e., $\operatorname{dom}(\vec{X})=\mathbb{R}^{m}$ and $\operatorname{dom}(Y)=\{1, \ldots, c\}$)
$p_{Y}(y ; \mathbf{C}) \quad$ is the probability that a data point belongs to (is generated by) the y-th component of the mixture
$f_{\vec{X} \mid Y}(\vec{x} \mid y ; \mathbf{C}) \quad$ is the conditional probability density function of a data point given the cluster (specified by the cluster index y)

Expectation Maximization

- Basic idea: Do a maximum likelihood estimation of the cluster parameters.
- Problem: The likelihood function,

$$
L(\mathbf{X} ; \mathbf{C})=\prod_{j=1}^{n} f_{\vec{X}_{j}}\left(\vec{x}_{j} ; \mathbf{C}\right)=\prod_{j=1}^{n} \sum_{y=1}^{c} p_{Y}(y ; \mathbf{C}) \cdot f_{\vec{X} \mid Y}\left(\vec{x}_{j} \mid y ; \mathbf{C}\right)
$$

is difficult to optimize, even if one takes the natural logarithm (cf. the maximum likelihood estimation of the parameters of a normal distribution), because

$$
\ln L(\mathbf{X} ; \mathbf{C})=\sum_{j=1}^{n} \ln \sum_{y=1}^{c} p_{Y}(y ; \mathbf{C}) \cdot f_{\vec{X} \mid Y}\left(\vec{x}_{j} \mid y ; \mathbf{C}\right)
$$

contains the natural logarithms of complex sums.

- Approach: Assume that there are "hidden" variables Y_{j} stating the clusters that generated the data points \vec{x}_{j}, so that the sums reduce to one term.
- Problem: Since the Y_{j} are hidden, we do not know their values.

Expectation Maximization

- Formally: Maximize the likelihood of the "completed" data set (\mathbf{X}, \vec{y}), where $\vec{y}=\left(y_{1}, \ldots, y_{n}\right)$ combines the values of the variables Y_{j}. That is,

$$
L(\mathbf{X}, \vec{y} ; \mathbf{C})=\prod_{j=1}^{n} f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, y_{j} ; \mathbf{C}\right)=\prod_{j=1}^{n} p_{Y_{j}}\left(y_{j} ; \mathbf{C}\right) \cdot f_{\vec{X}_{j} \mid Y_{j}}\left(\vec{x}_{j} \mid y_{j} ; \mathbf{C}\right)
$$

- Problem: Since the Y_{j} are hidden, the values y_{j} are unknown (and thus the factors $p_{Y_{j}}\left(y_{j} ; \mathbf{C}\right)$ cannot be computed).
- Approach to find a solution nevertheless:
- See the Y_{j} as random variables (the values y_{j} are not fixed) and consider a probability distribution over the possible values.
- As a consequence $L(\mathbf{X}, \vec{y} ; \mathbf{C})$ becomes a random variable, even for a fixed data set \mathbf{X} and fixed cluster parameters \mathbf{C}.
- Try to maximize the expected value of $L(\mathbf{X}, \vec{y} ; \mathbf{C})$ or $\ln L(\mathbf{X}, \vec{y} ; \mathbf{C})$ (hence the name expectation maximization).

Expectation Maximization

- Formally: Find the cluster parameters as

$$
\hat{\mathbf{C}}=\underset{\mathbf{C}}{\arg \max } E([\ln] L(\mathbf{X}, \vec{y} ; \mathbf{C}) \mid \mathbf{X} ; \mathbf{C})
$$

that is, maximize the expected likelihood

$$
E(L(\mathbf{X}, \vec{y} ; \mathbf{C}) \mid \mathbf{X} ; \mathbf{C})=\sum_{\vec{y} \in\{1, \ldots, c\}^{n}} p_{\vec{Y} \mid \mathcal{X}}(\vec{y} \mid \mathbf{X} ; \mathbf{C}) \cdot \prod_{j=1}^{n} f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, y_{j} ; \mathbf{C}\right)
$$

or, alternatively, maximize the expected \log-likelihood

$$
E(\ln L(\mathbf{X}, \vec{y} ; \mathbf{C}) \mid \mathbf{X} ; \mathbf{C})=\sum_{\vec{y} \in\{1, \ldots, c\}^{n}} p_{\vec{Y} \mid \mathcal{X}}(\vec{y} \mid \mathbf{X} ; \mathbf{C}) \cdot \sum_{j=1}^{n} \ln f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, y_{j} ; \mathbf{C}\right)
$$

- Unfortunately, these functionals are still difficult to optimize directly.
- Solution: Use the equation as an iterative scheme, fixing \mathbf{C} in some terms (iteratively compute better approximations, similar to Heron's algorithm).

Excursion: Heron's Algorithm

- Task: Find the square root of a given number x, i.e., find $y=\sqrt{x}$.
- Approach: Rewrite the defining equation $y^{2}=x$ as follows:

$$
y^{2}=x \quad \Leftrightarrow \quad 2 y^{2}=y^{2}+x \quad \Leftrightarrow \quad y=\frac{1}{2 y}\left(y^{2}+x\right) \quad \Leftrightarrow \quad y=\frac{1}{2}\left(y+\frac{x}{y}\right) .
$$

- Use the resulting equation as an iteration formula, i.e., compute the sequence

$$
y_{k+1}=\frac{1}{2}\left(y_{k}+\frac{x}{y_{k}}\right) \quad \text { with } \quad y_{0}=1 .
$$

- It can be shown that $0 \leq y_{k}-\sqrt{x} \leq y_{k-1}-y_{n} \quad$ for $\quad k \geq 2$.

Therefore this iteration formula provides increasingly better approximations of the square root of x and thus is a safe and simple way to compute it. Example $x=2: y_{0}=1, y_{1}=1.5, y_{2} \approx 1.41667, y_{3} \approx 1.414216, y_{4} \approx 1.414213$.

- Heron's algorithm converges very quickly and is often used in pocket calculators and microprocessors to implement the square root.

Expectation Maximization

- Iterative scheme for expectation maximization:

Choose some initial set \mathbf{C}_{0} of cluster parameters and then compute

$$
\begin{aligned}
\mathbf{C}_{k+1} & =\underset{\mathbf{C}}{\arg \max } E\left(\ln L(\mathbf{X}, \vec{y} ; \mathbf{C}) \mid \mathbf{X} ; \mathbf{C}_{k}\right) \\
& =\underset{\mathbf{C}}{\arg \max } \sum_{\vec{y} \in\{1, \ldots, c\}^{n}} p_{\vec{Y} \mid \mathcal{X}}\left(\vec{y} \mid \mathbf{X} ; \mathbf{C}_{k}\right) \sum_{j=1}^{n} \ln f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, y_{j} ; \mathbf{C}\right) \\
& =\underset{\mathbf{C}}{\arg \max } \sum_{\vec{y} \in\{1, \ldots, c\}^{n}}\left(\prod_{l=1}^{n} p_{Y_{l} \mid \vec{X}_{l}}\left(y_{l} \mid \vec{x}_{l} ; \mathbf{C}_{k}\right)\right) \sum_{j=1}^{n} \ln f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, y_{j} ; \mathbf{C}\right) \\
& =\underset{\mathbf{C}}{\arg \max } \sum_{i=1}^{c} \sum_{j=1}^{n} p_{Y_{j} \mid \vec{X}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}_{k}\right) \cdot \ln f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, i ; \mathbf{C}\right) .
\end{aligned}
$$

- It can be shown that each EM iteration increases the likelihood of the data and that the algorithm converges to a local maximum of the likelihood function (i.e., EM is a safe way to maximize the likelihood function).

Expectation Maximization

Justification of the last step on the previous slide:

$$
\begin{aligned}
& \sum_{\vec{y} \in\{1, \ldots, c\}^{n}}\left(\prod_{l=1}^{n} p_{Y_{l} \mid \vec{X}_{l}}\left(y_{l} \mid \vec{x}_{l} ; \mathbf{C}_{k}\right)\right) \sum_{j=1}^{n} \ln f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, y_{j} ; \mathbf{C}\right) \\
&= \sum_{y_{1}=1}^{c} \cdots \sum_{y_{n}=1}^{c}\left(\prod_{l=1}^{n} p_{Y_{l} \mid \vec{X}_{l}}\left(y_{l} \mid \vec{x}_{l} ; \mathbf{C}_{k}\right)\right) \sum_{j=1}^{n} \sum_{i=1}^{c} \delta_{i, y_{j}} \ln f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, i ; \mathbf{C}\right) \\
&= \sum_{i=1}^{c} \sum_{j=1}^{n} \ln f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, i ; \mathbf{C}\right) \sum_{y_{1}=1}^{c} \cdots \sum_{y_{n}=1}^{c} \delta_{i, y_{j}} \prod_{l=1}^{n} p_{Y_{l} \mid \vec{X}_{l}}\left(y_{l} \mid \vec{x}_{l} ; \mathbf{C}_{k}\right) \\
&= \sum_{i=1}^{c} \sum_{j=1}^{n} p_{Y_{j} \mid \vec{X}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}_{k}\right) \cdot \ln f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, i ; \mathbf{C}\right) \\
& \sum_{y_{1=1}^{c}} \cdots \sum_{y_{j-1}=1}^{c} \sum_{y_{j+1}=1}^{c} \cdots \sum_{y_{n}=1}^{c} \sum_{l=1, l \neq j}^{n} \sum_{y_{l}=1}^{c} p_{Y_{l} \mid \vec{X}_{l}}\left(y_{l} \mid \vec{x}_{l} ; \mathbf{C}_{k}\right)=\prod_{l=1, l \neq j}^{n} p_{Y_{l} \mid \vec{X}_{l}}\left(y_{l} \mid \vec{x}_{l} ; \mathbf{C}_{k}\right)
\end{aligned}
$$

Expectation Maximization

- The probabilities $p_{Y_{j} \mid \vec{X}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}_{k}\right)$ are computed as

$$
p_{Y_{j} \mid \vec{X}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}_{k}\right)=\frac{f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, i ; \mathbf{C}_{k}\right)}{f_{\vec{X}_{j}}\left(\vec{x}_{j} ; \mathbf{C}_{k}\right)}=\frac{f_{\vec{X}_{j} \mid Y_{j}}\left(\vec{x}_{j} \mid i ; \mathbf{C}_{k}\right) \cdot p_{Y_{j}}\left(i ; \mathbf{C}_{k}\right)}{\sum_{l=1}^{c} f_{\vec{X}_{j} \mid Y_{j}}\left(\vec{x}_{j} \mid l ; \mathbf{C}_{k}\right) \cdot p_{Y_{j}}\left(l ; \mathbf{C}_{k}\right)},
$$

that is, as the relative probability densities of the different clusters (as specified by the cluster parameters) at the location of the data points \vec{x}_{j}.

- The $p_{Y_{j} \mid \vec{X}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}_{k}\right)$ are the posterior probabilities of the clusters given the data point \vec{x}_{j} and a set of cluster parameters \mathbf{C}_{k}.
- They can be seen as case weights of a "completed" data set:
- Split each data point \vec{x}_{j} into c data points $\left(\vec{x}_{j}, i\right), i=1, \ldots, c$.
- Distribute the unit weight of the data point \vec{x}_{j} according to the above probabilities, i.e., assign to $\left(\vec{x}_{j}, i\right)$ the weight $p_{Y_{j} \mid \vec{X}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}_{k}\right), i=1, \ldots, c$.

Expectation Maximization: Cookbook Recipe

Core Iteration Formula

$$
\mathbf{C}_{k+1}=\underset{\mathbf{C}}{\arg \max } \sum_{i=1}^{c} \sum_{j=1}^{n} p_{Y_{j} \mid \vec{X}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}_{k}\right) \cdot \ln f_{\vec{X}_{j}, Y_{j}}\left(\vec{x}_{j}, i ; \mathbf{C}\right)
$$

Expectation Step

- For all data points \vec{x}_{j} :

Compute for each normal distribution the probability $p_{Y_{j} \mid \vec{X}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}_{k}\right)$ that the data point was generated from it (ratio of probability densities at the location of the data point). \rightarrow "weight" of the data point for the estimation.

Maximization Step

- For all normal distributions:

Estimate the parameters by standard maximum likelihood estimation using the probabilities ("weights") assigned to the data points w.r.t. the distribution in the expectation step.

Expectation Maximization: Mixture of Gaussians

Expectation Step: Use Bayes' rule to compute

$$
p_{C \mid \vec{X}}(i \mid \vec{x} ; \mathbf{C})=\frac{p_{C}\left(i ; \mathbf{c}_{i}\right) \cdot f_{\vec{X} \mid C}\left(\vec{x} \mid i ; \mathbf{c}_{i}\right)}{f_{\vec{X}}(\vec{x} ; \mathbf{C})}=\frac{p_{C}\left(i ; \mathbf{c}_{i}\right) \cdot f_{\vec{X} \mid C}\left(\vec{x} \mid i ; \mathbf{c}_{i}\right)}{\sum_{k=1}^{c} p_{C}\left(k ; \mathbf{c}_{k}\right) \cdot f_{\vec{X} \mid C}\left(\vec{x} \mid k ; \mathbf{c}_{k}\right)} .
$$

\rightarrow "weight" of the data point \vec{x} for the estimation.
Maximization Step: Use maximum likelihood estimation to compute

$$
\begin{aligned}
& \varrho_{i}^{(t+1)}=\frac{1}{n} \sum_{j=1}^{n} p_{C \mid \vec{x}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}^{(t)}\right), \quad \vec{\mu}_{i}^{(t+1)}=\frac{\sum_{j=1}^{n} p_{C \mid \vec{x}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}^{(t)}\right) \cdot \vec{x}_{j}}{\sum_{j=1}^{n} p_{C \mid \vec{X}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}^{(t)}\right)}, \\
& \text { and } \quad \boldsymbol{\Sigma}_{i}^{(t+1)}=\frac{\sum_{j=1}^{n} p_{C \mid \vec{X}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}^{(t)}\right) \cdot\left(\vec{x}_{j}-\vec{\mu}_{i}^{(t+1)}\right)\left(\vec{x}_{j}-\vec{\mu}_{i}^{(t+1)}\right)^{\top}}{\sum_{j=1}^{n} p_{C \mid \vec{x}_{j}}\left(i \mid \vec{x}_{j} ; \mathbf{C}^{(t)}\right)}
\end{aligned}
$$

Iterate until convergence (checked, e.g., by change of mean vector).

Expectation Maximization: Technical Problems

- If a fully general mixture of Gaussian distributions is used, the likelihood function is truly optimized if
- all normal distributions except one are contracted to single data points and
- the remaining normal distribution is the maximum likelihood estimate for the remaining data points.
- This undesired result is rare, because the algorithm gets stuck in a local optimum.
- Nevertheless it is recommended to take countermeasures, which consist mainly in reducing the degrees of freedom, like
- Fix the determinants of the covariance matrices to equal values.
- Use a diagonal instead of a general covariance matrix.
- Use an isotropic variance instead of a covariance matrix.
- Fix the prior probabilities of the clusters to equal values.

Hierarchical Agglomerative Clustering

- Start with every data point in its own cluster. (i.e., start with so-called singletons: single element clusters)
- In each step merge those two clusters that are closest to each other.
- Keep on merging clusters until all data points are contained in one cluster.
- The result is a hierarchy of clusters that can be visualized in a tree structure (a so-called dendrogram - from the Greek $\delta \dot{\varepsilon} \nu \tau \varrho \omega \nu$ (dendron): tree)
- Measuring the Distances
- The distance between singletons is simply the distance between the (single) data points contained in them.
- However: How do we compute the distance between clusters that contain more than one data point?

Measuring the Distance between Clusters

- Centroid (red)
Distance between the centroids (mean value vectors) of the two clusters.
- Average Linkage

Average distance between two points of the two clusters.

- Single Linkage (green)

Distance between the two closest points of the two clusters.

- Complete Linkage (blue)

Distance between the two farthest points of the two clusters.

Measuring the Distance between Clusters

- Single linkage can "follow chains" in the data (may be desirable in certain applications).
- Complete linkage leads to very compact clusters.
- Average linkage also tends clearly towards compact clusters.

Single Linkage

Complete Linkage

Dendrograms

- The cluster merging process arranges the data points in a binary tree.
- Draw the data tuples at the bottom or on the left (equally spaced if they are multi-dimensional).
- Draw a connection between clusters that are merged, with the distance to the data points representing the distance between the clusters.

Hierarchical Agglomerative Clustering

- Example: Clustering of the 1 -dimensional data set $\{2,12,16,25,29,45\}$.
- All three approaches to measure the distance between clusters lead to different dendrograms.

Implementation Aspects

- Hierarchical agglomerative clustering can be implemented by processing the matrix $\mathbf{D}=\left(d_{i j}\right)_{1 \leq i, j \leq n}$ containing the pairwise distances of the data points. (The data points themselves are actually not needed.)
- In each step the rows and columns corresponding to the two clusters that are closest to each other are deleted.
- A new row and column corresponding to the cluster formed by merging these clusters is added to the matrix.
- The elements of this new row/column are computed according to

$$
\forall k: \quad d_{k *}=d_{* k}=\alpha_{i} d_{i k}+\alpha_{j} d_{j k}+\beta d_{i j}+\gamma\left|d_{i k}-d_{j k}\right|
$$

$i, j \quad$ indices of the two clusters that are merged
$k \quad$ indices of the old clusters that are not merged

* index of the new cluster (result of merger)
$\alpha_{i}, \alpha_{j}, \beta, \gamma$ parameters specifying the method (single linkage etc.)

Implementation Aspects

- The parameters defining the different methods are (n_{i}, n_{j}, n_{k} are the numbers of data points in the clusters):

method	α_{i}	α_{j}	β	γ
centroid method	$\frac{n_{i}}{n_{i}+n_{j}}$	$\frac{n_{j}}{n_{i}+n_{j}}$	$-\frac{n_{i} n_{j}}{n_{i}+n_{j}}$	0
median method	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{4}$	0
single linkage	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$
complete linkage	$\frac{1}{2}$	$\frac{1}{2}$	0	$+\frac{1}{2}$
average linkage	$\frac{n_{i}}{n_{i}+n_{j}}$	$\frac{n_{j}}{n_{i}+n_{j}}$	0	0
Ward's method	$\frac{n_{i}+n_{k}}{n_{i}+n_{j}+n_{k}}$	$\frac{n_{j}+n_{k}}{n_{i}+n_{j}+n_{k}}$	0	0

Choosing the Clusters

- Simplest Approach:
- Specify a minimum desired distance between clusters.
- Stop merging clusters if the closest two clusters are farther apart than this distance.
- Visual Approach:
- Merge clusters until all data points are combined into one cluster.
- Draw the dendrogram and find a good cut level.
- Advantage: Cut need not be strictly horizontal.
- More Sophisticated Approaches:
- Analyze the sequence of distances in the merging process.
- Try to find a step in which the distance between the two clusters merged is considerably larger than the distance of the previous step.
- Several heuristic criteria exist for this step selection.

Summary Clustering

- Prototype-based Clustering
- Alternating adaptation of data point assignment and cluster parameters.
- Online or batch adaptation of the cluster center.
- Crisp or fuzzy/probabilistic assignment of a datum to a cluster.
- Local minima can pose a problem.
- Fuzzy/probabilistic approaches are usually more robust.
- Hierarchical Agglomerative Clustering
- Start with singletons (one element clusters).
- Always merge those clusters that are closest.
- Different ways to measure the distance of clusters.
- Cluster hierarchy can be depicted as a dendrogram.

