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Lecture
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Conditions for Certificates (Scheine)

• ticked at least two thirds of the assignments,

• presented at least two times a solution during the exercise, and

• passed a small colloquium (approx. 10 min) or a written test (if there are more
than 20 students) after the course.

Conditions for Exams

• no ticking required
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Berthold, Borgelt, Höppner, Klawonn:
Guide to Intelligent Data Analysis,
Springer 2011
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• Introduction

• Data and Knowledge

◦ Characteristics and Differences of Data and Knowledge

◦ Quality Criteria for Knowledge

◦ Example: Tycho Brahe and Johannes Kepler

• Knowledge Discovery and Data Mining

◦ How to Find Knowledge?

◦ The Knowledge Discovery Process (KDD Process)

◦ Data Analysis / Data Mining Tasks

◦ Data Analysis / Data Mining Methods

• Summary



Introduction

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 7

• Today every enterprise uses electronic information processing systems.

◦ Production and distribution planning

◦ Stock and supply management

◦ Customer and personnel management

• Usually these systems are coupled with a database system
(e.g. databases of customers, suppliers, parts etc.).

• Every possible individual piece of information can be retrieved.

• However: Data alone are not enough.

◦ In a database one may “not see the wood for the trees”.

◦ General patterns, structures, regularities go undetected.

◦ Often such patterns can be exploited to increase turnover
(e.g. joint sales in a supermarket).



Data
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Examples of Data

• “Columbus discovered America in 1492.”

• “Mr Jones owns a Volkswagen Golf.”

Characteristics of Data

• refer to single instances
(single objects, persons, events, points in time etc.)

• describe individual properties

• are often available in huge amounts (databases, archives)

• are usually easy to collect or to obtain
(e.g. cash registers with scanners in supermarkets, Internet)

• do not allow us to make predictions



Knowledge
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Examples of Knowledge

• “All masses attract each other.”

• “Every day at 5 pm there runs a train from Magdeburg to Berlin.”

Characteristic of Knowledge

• refers to classes of instances
(sets of objects, persons, points in time etc.)

• describes general patterns, structure, laws, principles etc.

• consists of as few statements as possible (this is an objective!)

• is usually difficult to find or to obtain
(e.g. natural laws, education)

• allows us to make predictions



Criteria to Assess Knowledge
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• Not all statements are equally important, equally substantial, equally useful.

⇒ Knowledge must be assessed.

Assessment Criteria

• Correctness (probability, success in tests)

• Generality (range of validity, conditions of validity)

• Usefulness (relevance, predictive power)

• Comprehensibility (simplicity, clarity, parsimony)

• Novelty (previously unknown, unexpected)

Priority

• Science: correctness, generality, simplicity

• Economy: usefulness, comprehensibility, novelty



Tycho Brahe (1546–1601)
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Who was Tycho Brahe?

• Danish nobleman and astronomer

• In 1582 he built an observatory on the island of Ven (32 km NE of Copenhagen).

• He determined the positions of the sun, the moon and the planets
(accuracy: one angle minute, without a telescope!).

• He recorded the motions of the celestial bodies for several years.

Brahe’s Problem

• He could not summarize the data he had collected in a uniform and consistent
scheme.

• The planetary system he developed (the so-called Tychonic system) did not stand
the test of time.



Johannes Kepler (1571–1630)
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Who was Johannes Kepler?

• German astronomer and assistant of Tycho Brahe

• He advocated the Copernican planetary system.

• He tried all his life to find the laws that govern the motion of the planets.

• He started from the data that Tycho Brahe had collected.

Kepler’s Laws

1. Each planet moves around the sun in an ellipse, with the sun at one focus.

2. The radius vector from the sun to the planet sweeps out equal areas
in equal intervals of time.

3. The squares of the periods of any two planets are proportional to the cubes

of the semi-major axes of their respective orbits: T ∼ a
3
2 .



How to find Knowledge?
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We do not know any universal method to discover knowledge.

Problems

• Today huge amounts of data are available in databases.

We are drowning in information,
but starving for knowledge. John Naisbett

• Manual methods of analysis have long ceased to be feasible.

• Simple aids (e.g. displaying data in charts) are too limited.

Attempts to Solve the Problems

• Intelligent Data Analysis

• Knowledge Discovery in Databases

• Data Mining



Knowledge Discovery and Data Mining
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As a response to the challenge raised by the growing volume of data a new research
area has emerged, which is usually characterized by one of the following phrases:

• Knowledge Discovery in Databases (KDD)

Usual characterization:

KDD is the non-trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data. [Fayyad et al. 1996]

• Data Mining

◦ Data mining is that step of the knowledge discovery process
in which data analysis methods are applied to find interesting patterns.

◦ It can be characterized by a set of types of tasks that have to be solved.

◦ It uses methods from a variety of research areas.
(statistics, databases, machine learning, artificial intelligence, soft computing etc.)



The Knowledge Discovery Process (KDD Process)
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Preliminary Steps

• estimation of potential benefit

• definition of goals, feasibility study

Main Steps

• check data availability, data selection, if necessary, data collection

• preprocessing (60-80% of total overhead)
◦ unification and transformation of data formats

◦ data cleaning (error correction, outlier detection, imputation of missing values)

◦ reduction / focusing (sample drawing, feature selection, prototype generation)

• Data Mining (using a variety of methods)

• visualization (also in parallel to preprocessing, data mining, and interpretation)

• interpretation, evaluation, and test of results

• deployment and documentation



Data Analysis / Data Mining Tasks
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• Classification
Is this customer credit-worthy?

• Segmentation, Clustering
What groups of customers do I have?

• Concept Description
Which properties characterize fault-prone vehicles?

• Prediction, Trend Analysis
What will the exchange rate of the dollar be tomorrow?

• Dependence/Association Analysis
Which products are frequently bought together?

• Deviation Analysis
Are there seasonal or regional variations in turnover?



Data Analysis / Data Mining Methods 1
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• Classical Statistics
(charts, parameter estimation, hypothesis testing, model selection, regression)

tasks: classification, prediction, trend analysis

• Bayes Classifiers
(probabilistic classification, naive and full Bayes classifiers)

tasks: classification, prediction

• Decision and Regression Trees
(top down induction, attribute selection measures, pruning)

tasks: classification, prediction

• k-nearest Neighbor/Case-based Reasoning
(lazy learning, similarity measures, data structures for fast search)

tasks: classification, prediction



Data Analysis / Data Mining Methods 2
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• Artificial Neural Networks
(multilayer perceptrons, radial basis function networks, learning vector quantization)

tasks: classification, prediction, clustering

• Cluster Analysis
(k-means and fuzzy clustering, hierarchical agglomerative clustering)

tasks: segmentation, clustering

• Association Rule Induction
(frequent item set mining, rule generation)

tasks: association analysis

• Inductive Logic Programming
(rule generation, version space, search strategies, declarative bias)

tasks: classification, association analysis, concept description
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Statistics



Statistics
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• Descriptive Statistics

◦ Tabular and Graphical Representations

◦ Characteristic Measures

◦ Principal Component Analysis

• Inductive Statistics

◦ Parameter Estimation
(point and interval estimation, finding estimators)

◦ Hypothesis Testing
(parameter test, goodness-of-fit test, dependence test)

◦ Model Selection
(information criteria, minimum description length)

• Summary



Statistics: Introduction
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Statistics is the art to collect, to display, to analyze, and to interpret
data in order to gain new knowledge.

[Sachs 1999]

[...] statistics, that is, the mathematical treatment of reality, [...]

Hannah Arendt

There are lies, damned lies, and statistics.
Benjamin Disraeli

Statistics, n. Exactly 76.4% of all statistics (including this one) are
invented on the spot. However, in 83% of cases it is inappropriate to
admit it.

The Devil’s IT Dictionary

86.8748648% of all statistics pretend an accuracy that is not justified by
the applied methods.

source unknown



Basic Notions

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 22

• Object, Case
Data describe objects, cases, persons etc.

• (Random) Sample
The objects or cases described by a data set is called a sample,
their number the sample size.

• Attribute
Objects and cases are described by attributes,
patients in a hospital, for example, by age, sex, blood pressure etc.

• (Attribute) Value
Attributes have different possible values.
The age of a patient, for example, is a non-negative number.

• Sample Value
The value an attribute has for an object in the sample is called sample value.



Scale Types / Attribute Types
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Scale Type Possible Operations Examples

nominal equality sex
(categorical, qualitative) blood group

ordinal equality exam grade
(rank scale, comparative) greater/less than wind strength

metric equality length
(interval scale, quantitative) greater/less than weight

difference time
maybe ratio temperature

• Nominal scales are sometimes divided into dichotomic (two values)
and polytomic (more than two values).

• Metric scales may or may not allow us to form a ratio:
weight and length do, temperature does not.
time as duration does, time as calender time does not.



Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 24

Descriptive Statistics



Tabular Representations: Frequency Table
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• Given data set: x = (3, 4, 3, 2, 5, 3, 1, 2, 4, 3, 3, 4, 4, 1, 5, 2, 2, 3, 5, 3, 2, 4, 3, 2, 3)

ak hk rk
∑k

i=1 hi
∑k

i=1 ri

1 2 2
25 = 0.08 2 2

25 = 0.08

2 6 6
25 = 0.24 8 8

25 = 0.32

3 9 9
25 = 0.36 17 17

25 = 0.68

4 5 5
25 = 0.20 22 22

25 = 0.88

5 3 3
25 = 0.12 25 25

25 = 1.00

• Absolute Frequency hk (frequency of an attribute value ak in the sample).

• Relative Frequency rk = hk
n , where n is the sample size (here n = 25).

• Cumulated Absolute/Relative Frequency
∑k

i=1 hi and
∑k

i=1 ri.



Tabular Representations: Contingency Tables
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• Frequency tables for two or more attributes are called contingency tables.

• They contain the absolute or relative frequency of value combinations.

a1 a2 a3 a4
∑

b1 8 3 5 2 18
b2 2 6 1 3 12
b3 4 1 2 7 14
∑

14 10 8 12 44

• A contingency table may also contain the marginal frequencies,
i.e., the frequencies of the values of individual attributes.

• Contingency tables for a higher number of dimensions (> 4) may be difficult to
read.



Graphical Representations: Pole and Bar Chart
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• Numbers, which may be, for example, the frequencies of attribute values are rep-
resented by the lengths of poles (left) or bars (right).
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• Bar charts are the most frequently used and most comprehensible way of displaying
absolute frequencies.

• A wrong impression can result if the vertical scale does not start at 0
(for frequencies or other absolute numbers).



Frequency Polygon and Line Chart
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• Frequency polygon: the ends of the poles of a pole chart are connected by lines.
(Numbers are still represented by lengths.)
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• If the attribute values on the horizontal axis are not ordered, connecting the ends
of the poles does not make sense.

• Line charts are frequently used to display time series.



Area and Volume Charts
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• Numbers may also be represented by other geometric quantities than lengths, like
areas or volumes.

• Area and volume charts are usually less comprehensible than bar charts, be-
cause humans have more difficulties to compare areas and especially volumes than
lengths. (exception: the represented numbers are areas or volumes)

1
2 3 4 5

• Sometimes the height of a two- or three-dimensional object is used to represent a
number. The diagram then conveys a misleading impression.



Pie and Stripe Charts
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• Relative numbers may be represented by angles or sections of a stripe.

1

2

3

4

5

1 2 3 4 5

Mosaic Chart

• Mosaic charts can be used to display contingency tables.

• More than two attributes are possible, but then separation distances and color
must support the visualization to keep it comprehensible.



Histograms
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• Intuitively: Histograms are frequency bar charts for metric data.

• However: Since there are so many different values,
values have to be grouped in order to arrive a proper representation.

Most common approach: form equally sized intervals (so-called bins)
and count the frequency of sample values inside each interval.

• Attention: Depending on the size and the position of the bins
the histogram may look considerably different.

• In sketches often only a rough outline of a histogram is drawn:



Scatter Plots
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• Scatter plots are used to display two-dimensional metric data sets.

• Sample values are the coordinates of a point.
(Numbers are represented by lengths.)

• Scatter plots provide a simple means for checking for dependency.



How to Lie with Statistics
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Often the vertical axis of
a pole or bar chart does
not start at zero, but at
some higher value.

In such a case the con-
veyed impression of the
ratio of the depicted val-
ues is completely wrong.

This effect is used to
brag about increases in
turnover, speed etc.

Sources of these diagrams and those on
the following transparencies:
D. Huff: How to Lie with Statistics.
W. Krämer: So lügt man mit Statistik.



How to Lie with Statistics
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• Depending on the position of the zero line of a pole, bar, or line chart
completely different impressions can be conveyed.



How to Lie with Statistics
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• Poles and bars are frequently replaced by (sketches of) objects
in order to make the diagram more aesthetically appealing.

• However, objects are perceived as 2- or even 3-dimensional and
thus convey a completely different impression of the numerical ratios.



How to Lie with Statistics
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How to Lie with Statistics
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Foreign outstanding debits of German banks in million Euros as of 2010:

379579
167092 ≈ 2.2

AUK
AF
≈ 5.0



How to Lie with Statistics
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• In the left diagram the areas of the barrels represent the numerical value. However,
since the barrels are drawn 3-dimensional, a wrong impression of the numerical
ratios is conveyed.

• The right diagram is particularly striking: an area measure is represented by the
side length of a rectangle representing the apartment.



Descriptive Statistics: Characteristic Measures
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Idea: Describe a given sample by few characteristic measures
and thus summarize the data.

• Localization Measures
Localization measures describe, usually by a single number, where the data points
of a sample are located in the domain of an attribute.

• Dispersion Measures
Dispersion measures describe how much the data points vary around a localization
parameter and thus indicate how well this parameter captures the localization of
the data.

• Shape Measures
Shape measures describe the shape of the distribution of the data points relative
to a reference distribution. The most common reference distribution is the normal
distribution (Gaussian).



Localization Measures: Mode and Median
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• Mode x∗
The mode is the attribute value that is most frequent in the sample.
It need not be unique, because several values can have the same frequency.
It is the most general measure, because it is applicable for all scale types.

• Median x̃
The median minimizes the sum of absolute differences:

n∑

i=1

|xi − x̃| = min . and thus it is
n∑

i=1

sgn(xi − x̃) = 0

If x = (x(1), . . . , x(n)) is a sorted data set, the median is defined as

x̃ =





x
(n+1

2 )
, if n is odd,

1
2

(
x(n2 )

+ x(n2+1)
)
, if n is even.

The median is applicable to ordinal and metric attributes.



Localization Measures: Arithmetic Mean
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• Arithmetic Mean x̄
The arithmetic mean minimizes the sum of squared differences:

n∑

i=1

(xi − x̄)2 = min . and thus it is
n∑

i=1

(xi − x̄) =
n∑

i=1

xi − nx̄ = 0

The arithmetic mean is defined as

x̄ =
1

n

n∑

i=1

xi.

The arithmetic mean is only applicable to metric attributes.

• Even though the arithmetic mean is the most common localization measure, the
median is preferable if

◦ there are few sample cases,

◦ the distribution is asymmetric, and/or

◦ one expects that outliers are present.



How to Lie with Statistics
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Dispersion Measures: Range and Interquantile Range
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A man with his head in the freezer and feet in the oven
is on the average quite comfortable.

old statistics joke

• Range R
The range of a data set is the difference between the maximum and the minimum
value.

R = xmax − xmin = max n
i=1xi −min n

i=1xi

• Interquantile Range
The p-quantile of a data set is a value such that a fraction of p of all sample values
are smaller than this value. (The median is the 1

2-quantile.)

The p-interquantile range, 0 < p < 1
2, is the difference between

the (1− p)-quantile and the p-quantile.

The most common is the interquartile range (p = 1
4)



Dispersion Measures: Average Absolute Deviation
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• Average Absolute Deviation
The average absolute deviation is the average of the absolute deviations of the
sample values from the median or the arithmetic mean.

• Average Absolute Deviation from the Median

dx̃ =
1

n

n∑

i=1

|xi − x̃|

• Average Absolute Deviation from the Arithmetic Mean

dx̄ =
1

n

n∑

i=1

|xi − x̄|

• It is always dx̃ ≤ dx̄, since the median minimizes the sum of absolute deviations.
(see the definition of the median)



Dispersion Measures: Variance and Standard Deviation
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• Variance s2

It would be natural to define the variance as the average squared deviation:

v2 =
1

n

n∑

i=1

(xi − x̄)2.

However, inductive statistics suggests that it is better defined as

s2 =
1

n− 1

n∑

i=1

(xi − x̄)2.

• Standard Deviation s
The standard deviation is the square root of the variance, i.e.,

s =
√
s2 =

√√√√ 1

n− 1

n∑

i=1

(xi − x̄)2.



Dispersion Measures: Variance and Standard Deviation
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• Special Case: Normal/Gaussian Distribution

The variance/standard deviation provides information about
the height of the mode and the width of the curve.

1√
2πσ2

1√
2πσ2e

1√
2πσ2e2

µ

σ σ

2σ 2σ
x

fX(x;µ, σ2) = 1√
2πσ2

· exp
(
−(x−µ)2

2σ2

)

• µ: expected value, estimated by mean value x̄

σ2: variance, estimated by (empirical) variance s2

σ: standard deviation, estimated by (empirical) standard deviation s

(Details about parameter estimation are studied later.)



Dispersion Measures: Variance and Standard Deviation
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Note that it is often more convenient to compute the variance using the formula that
results from the following transformation:

s2 =
1

n− 1

n∑

i=1

(xi − x̄)2 =
1

n− 1

n∑

i=1

(
x2i − 2xix̄ + x̄2

)

=
1

n− 1




n∑

i=1

x2i − 2x̄
n∑

i=1

xi +
n∑

i=1

x̄2




=
1

n− 1




n∑

i=1

x2i − 2nx̄2 + nx̄2


 =

1

n− 1




n∑

i=1

x2i − nx̄2




=
1

n− 1




n∑

i=1

x2i −
1

n




n∑

i=1

xi



2



• Advantage: The sums
∑n

i=1 xi and
∑n

i=1 x
2
i can both be computed in the same

traversal of the data and from them both mean and variance are computable.



Shape Measures: Skewness
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• The skewness α3 (or skew for short) measures whether, and if, how much,
a distribution differs from a symmetric distribution.

• It is computed from the 3rd moment about the mean,
which explains the index 3.

α3 =
1

n · v3
n∑

i=1

(xi − x̄)3 =
1

n

n∑

i=1

z3i

where zi =
xi − x̄

v
and v2 =

1

n

n∑

i=1

(xi − x̄)2.

α3 < 0: right steep α3 = 0: symmetric α3 > 0: left steep



Shape Measures: Kurtosis
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• The kurtosis or excess α4 measures how much a distribution is arched,
usually compared to a Gaussian distribution.

• It is computed from the 4th moment about the mean,
which explains the index 4.

α4 =
1

n · v4
n∑

i=1

(xi − x̄)4 =
1

n

n∑

i=1

z4i

where zi =
xi − x̄

v
and v2 =

1

n

n∑

i=1

(xi − x̄)2.

α4 < 3: leptokurtic α4 = 3: Gaussian α4 > 3: platikurtic



Moments of Data Sets
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• The k-th moment of a dataset is defined as

m′k =
1

n

n∑

i=1

xki .

The first moment is the mean m′1 = x̄ of the data set.

Using the moments of a data set the variance s2 can also be written as

s2 = 1
n−1

(
m′2 − 1

nm
′2
1

)
and also v2 = 1

nm
′
2 − 1

n2
m′21 .

• The k-th moment about the mean is defined as

mk =
1

n

n∑

i=1

(xi − x̄)k.

It is m1 = 0 and m2 = v2 (i.e., the average squared deviation).

The skewness is α3 =
m3

m
3/2
2

and the kurtosis is α4 =
m4
m2

2
.



Visualizing Characteristic Measures: Box Plots
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xmax maximum

Q3 3. quartile

x̄ arithmetic mean
x̃ = Q2 median/2. quartile

Q1 1. quartile

xmin minimum

A box plot is a common way to
combine some important char-
acteristic measures into a single
graphic.

Often the central box is drawn
laced (〉〈) w.r.t. the arithmetic
mean in order to emphasize its
location.

Box plots are often used to get a quick impression of the distribution of the data by
showing them side by side for several attributes.



Multidimensional Characteristic Measures
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General Idea: Transfer the formulae to vectors.

• Arithmetic Mean
The arithmetic mean for multidimensional data is the vector mean of the data
points. For two dimensions it is

(x, y) =
1

n

n∑

i=1

(xi, yi) = (x̄, ȳ)

For the arithmetic mean the transition to several dimensions only combines the
arithmetic means of the individual dimensions into one vector.

• Other measures are transferred in a similar way.
However, sometimes the transfer leads to new quantities, as for the variance.



Excursion: Vector Products

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 53

For the variance, the square of the difference to the mean has to be generalized.

Inner Product
Scalar Product

~v⊤~v




v1
v2
...
vm




(v1, v2, . . . , vm)
∑m

i=1 v
2
i

Outer Product
Matrix Product

~v~v⊤ ( v1, v2, . . . , vm )



v1
v2
...
vm







v21 v1v2 · · · v1vm
v1v2 v22 · · · v2vm
... . . . ...

v1vm v2vm · · · v2m




• In principle both vector products may be used for a generalization.

• The second, however, yields more information about the distribution:

◦ a measure of the (linear) dependence of the attributes,

◦ a description of the direction dependence of the dispersion.



Covariance Matrix
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• Covariance Matrix
Compute variance formula with vectors (square: outer product ~v~v⊤):

S =
1

n− 1

n∑

i=1

((
xi
yi

)
−
(
x̄

ȳ

))((
xi
yi

)
−
(
x̄

ȳ

))⊤
=

(
s2x sxy
sxy s2y

)

where

s2x =
1

n− 1




n∑

i=1

x2i − nx̄2


 (variance of x)

s2y =
1

n− 1




n∑

i=1

y2i − nȳ2


 (variance of y)

sxy =
1

n− 1




n∑

i=1

xiyi − nx̄ȳ


 (covariance of x and y)



Reminder: Variance and Standard Deviation
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• Special Case: Normal/Gaussian Distribution

The variance/standard deviation provides information about
the height of the mode and the width of the curve.

1√
2πσ2

1√
2πσ2e

1√
2πσ2e2

µ

σ σ

2σ 2σ
x

fX(x;µ, σ2) = 1√
2πσ2

· exp
(
−(x−µ)2

2σ2

)

• µ: expected value, estimated by mean value x̄,

σ2: variance, estimated by (empirical) variance s2,
σ: standard deviation, estimated by (empirical) standard deviation s.

Important: standard deviation has same unit as expected value.



Multivariate Normal Distribution
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• A univariate normal distribution has the density function

fX(x;µ, σ2) =
1√
2πσ2

· exp
(
−(x− µ)2

2σ2

)

µ: expected value, estimated by mean value x̄,

σ2: variance, estimated by (empirical) variance s2,
σ: standard deviation, estimated by (empirical) standard deviation s.

• A multivariate normal distribution has the density function

f ~X
(~x; ~µ,Σ) =

1√
(2π)m|Σ|

· exp
(
−1
2
(~x− ~µ)⊤Σ−1(~x− ~µ)

)

m: size of the vector ~x (it is m-dimensional),
~µ: mean value vector, estimated by (empirical) mean value vector ~̄x,
Σ: covariance matrix, estimated by (empirical) covariance matrix S,
|Σ|: determinant of the covariance matrix Σ.



Interpretation of a Covariance Matrix
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• The variance/standard deviation relates the spread of the distribution to
the spread of a standard normal distribution (σ2 = σ = 1).

• The covariance matrix relates the spread of the distribution to
the spread of a multivariate standard normal distribution (Σ = 1).

• Example: bivariate normal distribution

standard general

• Question: Is there a multivariate analog of standard deviation?



Interpretation of a Covariance Matrix
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Question: Is there a multivariate analog of standard deviation?

First insight:
If all covariances vanish,
the contour lines are axes-parallel ellipses.
The upper ellipse is inscribed into the
rectangle [−σx, σx]× [−σy, σy].

Σ =

(
σ2
x 0
0 σ2

y

)
−σx σx
σy

−σy

Second insight:
If the covariances do not vanish,
the contour lines are rotated ellipses.
Still the upper ellipse is inscribed into the
rectangle [−σx, σx]× [−σy, σy].

Σ =

(
σ2
x σxy

σxy σ2
y

)

−σx σx
σy

−σy

Consequence: A covariance matrix describes a scaling and a rotation.



Cholesky Decomposition
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• Intuitively: Compute an analog of standard deviation.

• Let S be a symmetric, positive definite matrix (e.g. a covariance matrix).
Cholesky decomposition serves the purpose to compute a “square root” of S.

◦ symmetric: ∀1 ≤ i, j ≤ m : sij = sji

◦ positive definite: for all m-dimensional vectors ~v 6= ~0 it is ~v⊤ S ~v > 0

• Formally: Compute a left/lower triangular matrix L such that LL⊤ = S.
(L⊤ is the transpose of the matrix L.)

lii =


sii −

i−1∑

k=1

l2ik




1
2

lji =
1

lii


sij −

i−1∑

k=1

likljk


 , j = i + 1, i + 2, . . . ,m.



Cholesky Decomposition
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Special Case: Two Dimensions

• Covariance matrix

Σ =




σ2x σxy

σxy σ2y




• Cholesky decomposition

L =




σx 0

σxy
σx

1

σx

√
σ2xσ

2
y − σ2xy




unit
circle

1

2

3

4

mapping with L

~v′ = L~v

1
2

3
4



Eigenvalue Decomposition

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 61

• Also yields an analog of standard deviation.

• Computationally more expensive than Cholesky decomposition.

• Let S be a symmetric, positive definite matrix (e.g. a covariance matrix).

◦ S can be written as

S = R diag(λ1, . . . , λm) R−1,

where the λj, j = 1, . . . ,m, are the eigenvalues of S
and the columns of R are the (normalized) eigenvectors of S.

◦ The eigenvalues λj, j = 1, . . . ,m, of S are all positive

and the eigenvectors of S are orthonormal (→ R−1 = R⊤).

• Due to the above, S can be written as S = TT⊤, where

T = R diag
(√

λ1, . . . ,
√
λm

)



Eigenvalue Decomposition
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Special Case: Two Dimensions

• Covariance matrix

Σ =




σ2x σxy

σxy σ2y




• Eigenvalue decomposition

T =


 c −s

s c




 σ1 0

0 σ2


 ,

s = sinφ, c = cosφ, φ = 1
2 arctan

2σxy
σ2x−σ2y

,

σ1 =
√
c2σ2x + s2σ2y + 2scσxy,

σ2 =
√
s2σ2x + c2σ2y − 2scσxy.

unit
circle

1

2

3

4

mapping with T

~v′ = T~v

1
2

3
4

σ1

σ2

φ



Eigenvalue Decomposition
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Eigenvalue decomposition enables us to write a covariance matrix Σ as

Σ = TT⊤ with T = R diag
(√

λ1, . . . ,
√
λm

)
.

As a consequence we can write its inverse Σ−1 as

Σ−1 = U⊤U with U = diag

(
λ
−1

2
1 , . . . , λ

−1
2

m

)
R⊤.

U describes the inverse mapping of T, i.e., rotates the ellipse so that its axes coincide
with the coordinate axes and then scales the axes to unit length. Hence:

(~x− ~y)⊤Σ−1(~x− ~y) = (~x− ~y)⊤U⊤U(~x− ~y) = (~x ′ − ~y ′)⊤(~x ′ − ~y ′),

where ~x ′ = U~x and ~y ′ = U~y.

Result: (~x− ~y)⊤Σ−1(~x− ~y) is equivalent to the squared Euclidean distance in
the properly scaled eigensystem of the covariance matrix Σ.

d(~x, ~y) =
√
(~x− ~y)⊤Σ−1(~x− ~y) is called Mahalanobis distance.



Eigenvalue Decomposition
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Eigenvector decomposition also shows that the determinant of the covariance
matrix Σ provides a measure of the (hyper-)volume of the (hyper-)ellipsoid. It is

|Σ| = |R| |diag(λ1, . . . , λm)| |R⊤| = |diag(λ1, . . . , λm)| =
m∏

i=1

λi,

since |R| = |R⊤| = 1 as R is orthogonal with unit length columns, and thus

√
|Σ| =

m∏

i=1

√
λi,

which is proportional to the (hyper-)volume of the (hyper-)ellipsoid.

To be precise, the volume of them-dimensional (hyper-)ellipsoid a (hyper-)sphere with
radius r is mapped to with a covariance matrix Σ is

Vm(r) =
π
m
2 rm

Γ
(
m
2 + 1

)
√
|Σ|, where

Γ(x) =
∫∞
0 e−ttx−1dt, x > 0,

Γ(x + 1) = x · Γ(x), Γ(12) =
√
π, Γ(1) = 1.



Eigenvalue Decomposition
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Special Case: Two Dimensions

• Covariance matrix and its eigenvalue decomposition:

Σ =




σ2x σxy

σxy σ2y


 and T =


 cosφ − sinφ

sinφ cosφ




 σ1 0

0 σ2


 .

unit
circle

1

2

3

4

mapping with T

~v′ = T~v

1
2

3
4

σ1

σ2

φ

• The area of the ellipse, to which the unit circle (area π) is mapped, is

A = πσ1σ2 = π
√
|Σ|.



Covariance Matrices of Example Data Sets
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Σ =(
3.59 0.19
0.19 3.54

)

L =(
1.90 0
0.10 1.88

)

Σ =(
2.33 1.44
1.44 2.41

)

L =(
1.52 0
0.95 1.22

)

Σ =(
1.88 1.62
1.62 2.03

)

L =(
1.37 0
1.18 0.80

)

Σ =(
2.25 −1.93
−1.93 2.23

)

L =(
1.50 0
−1.29 0.76

)



Covariance Matrix: Summary

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 67

• A covariance matrix provides information about the height of the mode
and about the spread/dispersion of a multivariate normal distribution
(or of a set of data points that are roughly normally distributed).

• A multivariate analog of standard deviation can be computed
with Cholesky decomposition and eigenvalue decomposition.
The resulting matrix describes the distribution’s shape and orientation.

• The shape and the orientation of a two-dimensional normal distribution
can be visualized as an ellipse (curve of equal probability density;
similar to a contour line — line of equal height — on a map.)

• The shape and the orientation of a three-dimensional normal distribution
can be visualized as an ellipsoid (surface of equal probability density).

• The (square root of the) determinant of a covariance matrix describes
the spread of a multivariate normal distribution with a single value.
It is a measure of the area or (hyper-)volume of the (hyper-)ellipsoid.
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Correlation and

Principal Component Analysis



Correlation Coefficient
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• The covariance is a measure of the strength of linear dependence
of the two quantities.

• However, its value depends on the variances of the individual dimensions.
⇒ Normalize to unit variance in the individual dimensions.

• Correlation Coefficient
(more precisely: Pearson’s Product Moment Correlation Coefficient)

r =
sxy
sxsy

, r ∈ [−1,+1].

• r measures the strength of linear dependence:

r = −1: the data points lie perfectly on a descending straight line.
r = +1: the data points lie perfectly on an ascending straight line.

• r = 0: there is no linear dependence between the two attributes
(but there may be a non-linear dependence!).



Correlation Coefficients of Example Data Sets
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no
correlation
(r ≈ 0.05)

weak
positive
correlation
(r ≈ 0.61)

strong
positive
correlation
(r ≈ 0.83)

strong
negative
correlation
(r ≈ −0.86)



Correlation Matrix
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• Normalize Data

Transform data to mean value 0 and variance/standard deviation 1:

∀i; 1 ≤ i ≤ n : x′i =
xi − x̄

sx
, y′i =

yi − ȳ

sy
.

• Compute Covariance Matrix of Normalized Data

Sum outer products of transformed data vectors:

Σ′ =
1

n− 1

n∑

i=1

(
x′i
y′i

)(
x′i
y′i

)⊤
=

(
1 r
r 1

)

Subtraction of mean vector is not necessary (because it is (0, 0)⊤).
Diagonal elements are always 1 (because of unit variance in each dimension).

• Normalizing the data and then computing the covariances or
computing the covariances and then normalizing them has the same effect.



Correlation Matrix: Interpretation
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Special Case: Two Dimensions

• Correlation matrix

Σ′ =


 1 r

r 1


 ,

eigenvalues: σ21, σ
2
2

correlation: r =
σ21−σ22
σ21+σ

2
2

• Eigenvalue decomposition

T =


 c −s

s c




 σ1 0

0 σ2


 ,

s = sin π
4 = 1√

2
, σ1 =

√
1 + r,

c = cos π4 = 1√
2
, σ2 =

√
1− r.

unit
circle

1

2

3

4

mapping with T

~v′ = T~v

1

2

3

4

σ1

σ2

π
4



Correlation Matrix: Interpretation
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• For two dimensions the eigenvectors of a correlation matrix are always

~v1 =


 1√

2
, 1√

2


 and ~v2 =


− 1√

2
, 1√

2




(or their opposites −~v1 or −~v2 or exchanged).

The reason is that the normalization trans-
forms the data points in such a way, that the
ellipse, the unit circle is mapped to by the
“square root” of the covariance matrix of the
normalized data, is always inscribed into the
square [−1, 1] × [−1, 1]. Hence the ellipse’s
major axes are the square’s diagonals.

• The situation is analogous in m-dimensional spaces:
the eigenvectors are always m of the 2m−1 diagonals
of the m-dimensional unit (hyper-)cube around the origin.



Correlation and Stochastic (In)Dependence
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• Note: stochastic independence ⇒ r = 0,
but: r = 0 6⇒ stochastic independence.

• Example: Suppose the data points lie symmetrically on a parabola.

• The correlation coefficient of this data set is r = 0,
because there is no linear dependence between the two attributes.
However, there is a perfect quadratic dependence,
and thus the two attributes are not stochastically independent.



Regression Line
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• Since the covariance/correlation measures linear dependence,
it is not surprising that it can be used to define a regression line:

(y − ȳ) =
sxy
s2x

(x− x̄) or y =
sxy
s2x

(x− x̄) + ȳ.

• The regression line can be seen as a conditional arithmetic mean:
there is one arithmetic mean for the y-dimensions for each x-value.

• This interpretation is supported by the fact that the regression line minimizes the
sum of squared differences in y-direction.
(Reminder: the arithmetic mean minimizes the sum of squared differences.)

• More information on regression and the method of least squares
in the corresponding chapter.



Principal Component Analysis
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• Correlations between the attributes of a data set can be used to
reduce the number of dimensions:

◦ Of two strongly correlated features only one needs to be considered.

◦ The other can be reconstructed approximately from the regression line.

◦ However, the feature selection can be difficult.

• Better approach: Principal Component Analysis (PCA)

◦ Find the direction in the data space that has the highest variance.

◦ Find the direction in the data space that has the highest variance
among those perpendicular to the first.

◦ Find the direction in the data space that has the highest variance
among those perpendicular to the first and second and so on.

◦ Use first directions to describe the data.



Principal Component Analysis: Physical Analog
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• The rotation of a body around an axis through its center of gravity can be described
by a so-called inertia tensor, which is a 3× 3-matrix

Θ =




Θxx Θxy Θxz

Θxy Θyy Θyz

Θxz Θyz Θzz


 .

• The diagonal elements of this tensor are called the moments of inertia.
They describe the “resistance” of the body against being rotated.

• The off-diagonal elements are the so-called deviation moments.
They describe forces vertical to the rotation axis.

• All bodies possess three perpendicular axes through their center of gravity, around
which they can be rotated without forces perpendicular to the rotation axis. These
axes are called principal axes of inertia.
There are bodies that possess more than 3 such axes (example: a homogeneous sphere),
but all bodies have at least three such axes.



Principal Component Analysis: Physical Analog
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The principal axes
of inertia of a box.

• The deviation moments cause “rattling” in the bearings of the rotation axis, which
cause the bearings to wear out quickly.

• A car mechanic who balances a wheel carries out, in a way, a principal axes
transformation. However, instead of changing the orientation of the axes, he/she
adds small weights to minimize the deviation moments.

• A statistician who does a principal component analysis, finds, in a way, the axes
through a weight distribution with unit weights at each data point, around which
it can be rotated most easily.



Principal Component Analysis: Formal Approach
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• Normalize all attributes to arithmetic mean 0 and standard deviation 1:

x′ =
x− x̄

sx

• Compute the correlation matrix Σ
(i.e., the covariance matrix of the normalized data)

• Carry out a principal axes transformation of the correlation matrix,
that is, find a matrix R, such that R⊤ΣR is a diagonal matrix.

• Formal procedure:

◦ Find the eigenvalues and eigenvectors of the correlation matrix,
i.e., find the values λi and vectors ~vi, such that Σ~vi = λi~vi.

◦ The eigenvectors indicate the desired directions.

◦ The eigenvalues are the variances in these directions.



Principal Component Analysis: Formal Approach
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• Select dimensions using the percentage of explained variance.

◦ The eigenvalues λi are the variances σ
2
i in the principal dimensions.

◦ It can be shown that the sum of the eigenvalues of anm×m correlation matrix
is m. Therefore it is plausible to define λi

m as the share the i-th principal axis
has in the total variance.

◦ Sort the λi descendingly and find the smallest value k, such that

k∑

i=1

λi
m
≥ α,

where α is a user-defined parameter (e.g. α = 0.9).

◦ Select the corresponding k directions (given by the eigenvectors).

• Transform the data to the new data space by multiplying the data points with a
matrix, the rows of which are the eigenvectors of the selected dimensions.



Principal Component Analysis: Example
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x 5 15 21 29 31 43 49 51 61 65

y 33 35 24 21 27 16 18 10 4 12

x

y

0 10 20 30 40 50 60

0

10

20

30

• Strongly correlated features ⇒ Reduction to one dimension possible.



Principal Component Analysis: Example
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Normalize to arithmetic mean 0 and standard deviation 1:

x̄ =
1

10

10∑

i=1

xi =
370

10
= 37,

ȳ =
1

10

10∑

i=1

yi =
200

10
= 20,

s2x =
1

9




10∑

i=1

x2i − 10x̄2


 =

17290− 13690

9
= 400 ⇒ sx = 20,

s2y =
1

9




10∑

i=1

y2i − 10ȳ2


 =

4900− 4000

9
= 100 ⇒ sy = 10.

x′ −1.6 −1.1 −0.8 −0.4 −0.3 0.3 0.6 0.7 1.2 1.4

y′ 1.3 1.5 0.4 0.1 0.7 −0.4 −0.2 −1.0 −1.6 −0.8



Principal Component Analysis: Example
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• Compute the correlation matrix (covariance matrix of normalized data).

Σ =
1

9

(
9 −8.28
−8.28 9

)
=

(
1 −23

25
−23

25 1

)
.

• Find the eigenvalues and eigenvectors, i.e., the values λi and vectors ~vi, i = 1, 2,
such that

Σ~vi = λi~vi or (Σ− λi1)~vi = ~0.

where 1 is the unit matrix.

• Here: Find the eigenvalues as the roots of the characteristic polynomial.

c(λ) = |Σ− λ1| = (1− λ)2 − 529

625
.

For more than 3 dimensions, this method is numerically unstable and should be
replaced by some other method (Jacobi-Transformation, Householder Transfor-
mation to tridiagonal form followed by the QR algorithm etc.).



Principal Component Analysis: Example
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• The roots of the characteristic polynomial c(λ) = (1− λ)2 − 529
625 are

λ1/2 = 1±
√
529

625
= 1± 23

25
, i.e. λ1 =

48

25
and λ2 =

2

25

• The corresponding eigenvectors are determined by solving for i = 1, 2 the (under-
determined) linear equation system

(Σ− λi1)~vi = ~0

• The resulting eigenvectors (normalized to length 1) are

~v1 =

(
1√
2
,− 1√

2

)
and ~v2 =

(
1√
2
,
1√
2

)
,

(Note that for two dimensions always these two vectors result.
Reminder: directions of the eigenvectors of a correlation matrix.)



Principal Component Analysis: Example
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• Therefore the transformation matrix for the principal axes transformation is

R =




1√
2

1√
2

− 1√
2

1√
2


 , for which it is R⊤ΣR =

(
λ1 0
0 λ2

)

• However, instead of R⊤ we use
√
2R⊤ to transform the data:

(
x′′

y′′

)
=
√
2 ·R⊤ ·

(
x′

y′

)
.

Resulting data set:

x′′ −2.9 −2.6 −1.2 −0.5 −1.0 0.7 0.8 1.7 2.8 2.2

y′′ −0.3 0.4 −0.4 −0.3 0.4 −0.1 0.4 −0.3 −0.4 0.6

• y′′ is discarded (s2y′′ = 2λ2 =
4
25) and only x′′ is kept (s2x′′ = 2λ1 =

96
25).
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Probability Foundations



Reminder: Probability Theory
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• Goal: Make statements and/or predictions about
results of physical processes.

• Even processes that seem to be simple at first sight
may reveal considerable difficulties when trying to predict.

• Describing real-world physical processes always calls
for a simplifying mathematical model.

• Although everybody will have some intuitive notion about
probability, we have to formally define the underlying
mathematical structure.

• Randomness or chance enters as the incapability of precisely
modelling a process or the inability of measuring the initial conditions.

◦ Example : Predicting the trajectory of a billard ball over more than 9 banks
requires more detailed measurement of the initial conditions (ball location,
applied momentum etc.) than physically possible according to Heisenberg’s
uncertainty principle.



Reality vs. Model
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• Producing a result of a physical process is referred
to as an observed outcome.

• Assessing or predicting the probability of every possible
outcome is not straightforward but often
implicitly assumed to be clear.

• We will study this “non-straightforwardness” with
three real-world examples:

◦ Rolling a die.

◦ Arrivals of inquiries at a call center.

◦ The weight of a bread roll purchased from a bakery.
(Inspired by a broadcast of Quarks & Co. from WDR.)

• Obviously, all examples differ in the nature of
the space of possible observable outcomes.



Example 1: Rolling a Die
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• Physical Process
Shaking a six-sided die in a dice cup.
Then cast it and read off the number of pips.

• Possible Outcomes

• Sources of Randomness

◦ Inaccurate knowledge about locations, momenta.

◦ Inellastic collisions inside the dice cup.

◦ Inhomogeneous material distribution of the die.

◦ Uneven table surface.

◦ Unknown frictions, airflow etc.

• Model
Outcomes have equal probability.



Example 2: Phone Calls at a Call Center
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• Physical Process
Counting the number of phone calls that arrive
at a call center within a predefined time window.

• Possible Outcomes
The events (if any) happening in time and space.

• Sources of Randomness

◦ Calls are initiated by human beings: no predictability.

◦ Misdialed calls.

◦ Technical problems resulting in lost calls.

• Model
Poisson distribution of number of calls.



Example 3: Bread Rolls at a Bakery
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• Physical Process
Baking a bread roll from a piece of dough.
Measuring its weight (with arbitrary precision).

• Possible Outcomes
Bread rolls.

• Sources of Randomness

◦ Amount of dough put on the baking sheet.

◦ Baking process (ingredients, temperature, time).

• Model
Gaussian distribution of the weight.



Formal Approach on the Model Side
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• We conduct an experiment that has a set Ω of possible outcomes.
E. g.:

◦ Rolling a die (Ω = {1, 2, 3, 4, 5, 6})
◦ Arrivals of phone calls (Ω = N0)

◦ Bread roll weights (Ω = R+)

• Such an outcome is called an elementary event.

• All possible elementary events are called the frame of discernment Ω
(or sometimes universe of discourse).

• The set representation stresses the following facts:

◦ All possible outcomes are covered by the elements of Ω.
(collectively exhaustive).

◦ Every possible outcome is represented by exactly one element of Ω.
(mutual disjoint).



Events
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• Often, we are interested in higher-level events
(e. g. casting an odd number, arrival of at least 5 phone calls or
purchasing a bread roll heavier than 80 grams)

• Any subset A ⊆ Ω is called an event which occurs, if the outcome ω0 ∈ Ω of
the random experiment lies in A:

Event A ⊆ Ω occurs ⇔
∨

ω∈A
(ω = ω0) = true ⇔ ω0 ∈ A

• Since events are sets, we can define for two events A and B:

◦ A ∪ B occurs if A or B occurs; A ∩ B occurs if A and B occurs.

◦ A occurs if A does not occur (i. e., if Ω\A occurs).

◦ A and B are mutually exclusive, iff A ∩ B = ∅.



Event Algebra
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• A family of sets E = {E1, . . . , En} is called an event algebra,
if the following conditions hold:

◦ The certain event Ω lies in E .
◦ If E ∈ E , then E = Ω\E ∈ E .
◦ If E1 and E2 lie in E , then E1 ∪ E2 ∈ E and E1 ∩ E2 ∈ E .

• If Ω is uncountable, we require the additional property:

For a series of events Ei ∈ E , i ∈ N, the events
∞⋃

i=1

Ei and
∞⋂

i=1

Ei are also in E .
E is then called a σ-algebra.

Side remarks:

• Smallest event algebra: E = {∅,Ω}
• Largest event algebra (for finite or countable Ω): E = 2Ω = {A ⊆ Ω | true}



Probability Function
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• Given an event algebra E , we would like to assign every event E ∈ E its
probability with a probability function P : E → [0, 1].

• We require P to satisfy the so-called Kolmogorov Axioms:

◦ ∀E ∈ E : 0 ≤ P (E) ≤ 1

◦ P (Ω) = 1

◦ If E1, E2 ∈ E are mutually exclusive, then P (E1 ∪ E2) = P (E1) + P (E2).

• From these axioms one can conclude the following (incomplete) list of properties:

◦ ∀E ∈ E : P (E) = 1− P (E)

◦ P (∅) = 0

◦ For pairwise disjoint events E1, E2, . . . ∈ E holds:

P (
∞⋃

i=1

Ei) =
∞∑

i=1

P (Ei)

Note that for |Ω| <∞ the union and sum are finite also.



Elementary Probabilities and Densities
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Question 1: How to calculate P ?

Question 2: Are there “default” event algebras?

• Idea for question 1: We have to find a way of distributing (thus the
notion distribution) the unit mass of probability over all elements ω ∈ Ω.

◦ If Ω is finite or countable a probability mass function p is used:

p : Ω→ [0, 1] and
∑

ω∈Ω
p(ω) = 1

◦ If Ω is uncountable (i. e., continuous) a probability density
function f is used:

f : Ω→ R and
∫

Ω
f (ω) dω = 1



“Default” Event Algebras
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• Idea for question 2 (“default” event algebras) we have to distinguish
again between the cardinalities of Ω:

◦ Ω finite or countable: E = 2Ω

◦ Ω uncountable, e. g. Ω = R: E = B(R)

• B(R) is the Borel Algebra, i. e., the smallest σ-algebra
that contains all closed intervals [a, b] ⊂ R with a < b.

• B(R) also contains all open intervals and single-item sets.

• It is sufficient to note here, that all intervals are contained

{[a, b] , ]a, b] , ]a, b[ , [a, b[ ⊂ R | a < b} ⊂ B(R)
because the event of a bread roll having a weight between
80 g and 90 g is represented by the interval [80, 90].



Probability Spaces
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• For a sample space A, an event algebra B (over A)
and a probability function C, we call the triple

(A,B,C)

a probability space.

Real World Model

(Ξ,X , Q) (Ω, E , P )



Reminder: Preimage of a Function
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• Let f : D →M be a function that assigns to every value of D a value in M .

• For every value of y ∈M we can ask which values of x ∈ D are mapped to y:

D ⊇ {x ∈ D | f (x) = y} Def
= f−1(y)

• f−1(y) is called the preimage of y under f , denoted also as {f = y}.
• The notion can be generalized from y ∈M to sets B ⊆M :

D ⊇ {x ∈ D | f (x) ∈ B} Def
= f−1(B)

• If f is bijective then ∀y ∈M :
∣∣∣f−1(y)

∣∣∣ = 1.

• Examples:

◦ sin−1(0) = {k · π | k ∈ Z}
◦ exp−1(1) = {0}
◦ sgn−1(1) = (0,+∞) ⊂ R



Random Variable
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We still need a means of mapping real-world outcomes in Ξ to our space Ω.

• A function X : D →M is called a random variable
iff the preimage of any value of M is an event (in some probability space).

• If X maps Ξ onto Ω, we define

PX(X ∈ A) = Q({ξ ∈ Ξ | X(ξ) ∈ A}).

• X may also map from Ω to another domain: X : Ω→ dom(X).
We then define:

PX(X ∈ A) = P ({ω ∈ Ω | X(ω) ∈ A}).

• If X is numeric, we call F (x) with

F (x) = P (X ≤ x)

the distribution function of X .



Example: Rolling a Die
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Ω = {1, 2, 3, 4, 5, 6} X = id

p1(ω) =
1
6 F1(x) = P (X ≤ x)

1 2 3 4 5 6

1

6

ω

p1(ω)

1 2 3 4 5 6

1

0.5

x

F1(x)

∑

ω∈Ω
p1(ω) =

6∑

i=1

p1(ωi)

=
6∑

i=1

1

6
= 1

P (X ≤ x) =
∑

x′≤x
P (X = x′)

P (a < X ≤ b) = F1(b)− F1(a)

P (X = x) = P ({X = x}) = P (X−1(x)) = P ({ω ∈ Ω | X(ω) = x})



Example: Arriving Phone Calls

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 102

Ω = N0 X = id

p2(k;λ) = e−λ · λkk! F2(k;λ) =
k∑

i=0

e−λ · λ
i

i!

0 1 2 3 4 5 6

1

4

k

p2(k;λ)

· · ·

λ = 2

0 1 2 3 4 5 6

1

0.5

· · · x

F2(x)

∑

k∈N0

p2(k;λ) =
∞∑

k=0

e−λ · λ
k

k!

= e−λ ·
∞∑

k=0

λk

k!
︸ ︷︷ ︸
=eλ

= e−λ · eλ = 1

P (X ≤ x) =
∑

x′≤x
P (X = x′)

P (a < X ≤ b) = F2(b)− F2(a)



Example: Weight of a Bread Roll
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Ω = R X = id

f3(x;µ, σ
2) = 1√

2πσ2
· exp

(
−(x−µ)2

2σ2

)
F3(x) =

∫ x

−∞
f3(x) dx

0 1 2 3 4 5 6 7 8

1

5

x

f3(x;µ, σ)

µ = 4, σ = 1

0 1 2 3 4 5 6 7 8

1

0.5

x

F3(x;µ, σ)

µ = 4, σ = 1

∫ +∞
−∞

f3(x) dx = 1 P (X ≤ x) = P (]−∞, x])

=
∫ x

−∞
f3(x)dx

P (a < X ≤ b) = P (]a, b])

=
∫ b

a
f3(x)dx

= F3(b)− F3(a)



The Big Picture
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Poisson Distribution
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• Limit case of the Binomial distribution:

lim
n→∞ bX(k;n, p) = lim

n→∞

(
n

k

)
pk(1− p)n−k = e−λ · λ

k

k!

with k = 0, 1, 2, . . . and λ = n · p.

• Expected Value: E(X) = λ

• Variance: V (X) = λ

• Models, e. g.

◦ Number of cars that pass a gate.

◦ Number of customers at a register.

◦ Number of calls at a call center.

• λ is the rate parameter (i. e., occurrences per unit time)



Exponential Distribution
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• A continuous random variable with density function

fX(x;λ) =




λ · e−λx if x ≥ 0, λ > 0

0 otherwise

is exponentially distributed.

• Expected Value: E(X) = 1
λ FX(x;λ) =




1− e−λx if x ≥ 0, λ > 0

0 otherwise

• Variance: V (X) = 1
λ2

• Models, e. g.

◦ Lifetime of electrical devices.

◦ Waiting times in a queue.

◦ Time between failures of a system.



Relation between Poisson and Exponential Distributions
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• Assume an arrival process with λ arrivals (per unit time, say 1h)

• The random variable that describes the number of arrivals within the next
unit time interval is Poisson distributed with parameter λ.

• The random variable that describes the probability of the waiting times be-
tween two arrivals is exponentially distributed with (the same!) λ.

Example:

t

• Small ticks denote arrivals, large ticks mark unit time windows.

• 60 arrivals, 15 unit time windows.

• Poisson sample ~xP = (4, 3, 2, 10, 2, 7, 5, 6, 4, 3, 0, 3, 8, 2, 1)

• Exponential sample ~xE = (0.1192, 0.4544, 0.0821, 0.1352, . . .)

• λ = 4
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Inductive Statistics



Inductive Statistics: Main Tasks
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• Parameter Estimation
Given an assumption about the type of distribution of the underlying random
variable the parameter(s) of the distribution function is estimated.

• Hypothesis Testing
A hypothesis about the data generating process is tested by means of the data.

◦ Parameter Test
Test whether a parameter can have certain values.

◦ Goodness-of-Fit Test
Test whether a distribution assumption fits the data.

◦ Dependence Test
Test whether two attributes are dependent.

• Model Selection
Among different models that can be used to explain the data the best fitting is
selected, taking the complexity of the model into account.



Inductive Statistics: Random Samples
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• In inductive statistics probability theory is applied to make inferences about the
process that generated the data. This presupposes that the sample is the result
of a random experiment, a so-called random sample.

• The random variable yielding the sample value xi is denoted Xi.
xi is called a instantiation of the random variable Xi.

• A random sample x = (x1, . . . , xn) is an instantiation of the random vector
X = (X1, . . . , Xn).

• A random sample is called independent if the random variables X1, . . . , Xn are
(stochastically) independent, i. e. if

∀c1, . . . , cn ∈ IR : P




n∧

i=1

Xi ≤ ci


 =

n∏

i=1

P (Xi ≤ ci).

• An independent random sample is called simple if the random variables
X1, . . . , Xn have the same distribution function.



Parameter Estimation
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Given:

• A data set and

• a family of parameterized distributions functions of the same type, e.g.

◦ the family of binomial distributions bX(x; p, n) with the parameters p,
0 ≤ p ≤ 1, and n ∈ IN, where n is the sample size,

◦ the family of normal distributions NX(x;µ, σ2) with the parameters µ
(expected value) and σ2 (variance).

Assumption:

• The process that generated the data can be described well by an element of the
given family of distribution functions.

Desired:

• The element of the given family of distribution functions (determined by its pa-
rameters) that is the best model for the data.



Parameter Estimation
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• Methods that yield an estimate for a parameter are called estimators.

• Estimators are statistics, i.e. functions of the values in a sample.

As a consequence they are functions of (instantiations of) random variables and
thus (instantiations of) random variables themselves.

Therefore we can use all of probability theory to analyze estimators.

• There are two types of parameter estimation:

◦ Point Estimators
Point estimators determine the best value of a parameter
w.r.t. the data and certain quality criteria.

◦ Interval Estimators
Interval estimators yield a region, a so-called confidence interval,
in which the true value of the parameter lies with high certainty.



Point Estimation
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Not all statistics, that is, not all functions of the sample values are reasonable and
useful estimator. Desirable properties are:

• Consistency
With growing data volume the estimated value should get closer and closer to the
true value, at least with higher and higher probability.
Formally: If T is an estimator for the parameter θ, it should be

∀ε > 0 : lim
n→∞P (|T − θ| < ε) = 1,

where n is the sample size.

• Unbiasedness
An estimator should not tend to over- or underestimate the parameter.
Rather it should yield, on average, the correct value.
Formally this means

E(T ) = θ.



Point Estimation
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• Efficiency
The estimation should be as precise as possible, that is, the deviation from the
true value should be as small as possible. Formally: If T and U are two estimators
for the same parameter θ, then T is called more efficient than U if

D2(T ) < D2(U).

• Sufficiency
An estimator should exploit all information about the parameter contained in the
data. More precisely: two samples that yield the same estimate should have the
same probability (otherwise there is unused information).
Formally: an estimator T for a parameter θ is called sufficient iff for all samples x =
(x1, . . . , xn) with T (x) = t the expression

fX1
(x1; θ) · · · fXn

(xn; θ)

fT (t; θ)

is independent of θ.



Point Estimation: Example
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Given: a family of uniform distributions on the interval [0, θ], i. e.

fX(x; θ) =

{
1
θ, if 0 ≤ x ≤ θ,
0, otherwise.

Desired: an estimate for the unknown parameter θ.

• We will now consider two estimators for the parameter θ
and compare their properties.

◦ T = max{X1, . . . , Xn}
◦ U = n+1

n max{X1, . . . , Xn}

• General approach:

◦ Find the probability density function of the estimator.

◦ Check the desirable properties by exploiting this density function.



Point Estimation: Example
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To analyze the estimator T = max{X1, . . . , Xn}, we compute its density function:

fT (t; θ) = d
dt
FT (t; θ) = d

dt
P (T ≤ t)

= d
dt
P (max{X1, . . . , Xn} ≤ t)

= d
dt
P
(∧

n
i=1Xi ≤ t

)
= d

dt

n∏

i=1

P (Xi ≤ t)

= d
dt
(FX(t; θ))n = n · (FX(t; θ))n−1fX(t, θ)

where

FX(x; θ) =
∫ x

−∞
fX(x; θ)dx =





0, if x ≤ 0,
x
θ , if 0 ≤ x ≤ θ,
1, if x ≥ θ.

Therefore it is

fT (t; θ) =
n · tn−1

θn
for 0 ≤ t ≤ θ, and 0 otherwise.



Point Estimation: Example
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• The estimator T = max{X1, . . . , Xn} is consistent:

lim
n→∞P (|T − θ| < ǫ) = lim

n→∞P (T > θ − ǫ)

= lim
n→∞

∫ θ

θ−ǫ
n · tn−1

θn
dt = lim

n→∞

[
tn

θn

]θ

θ−ǫ

= lim
n→∞

(
θn

θn
− (θ − ǫ)n

θn

)

= lim
n→∞

(
1−

(
θ − ǫ

θ

)n)
= 1

• It is not unbiased:

E(T ) =
∫ ∞
−∞

t · fT (t; θ)dt =
∫ θ

0
t · n · t

n−1

θn
dt

=

[
n · tn+1
(n + 1)θn

]θ

0

=
n

n + 1
θ < θ for n <∞.
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• The estimator U = n+1
n max{X1, . . . , Xn} has the density function

fU (u; θ) =
nn+1

(n + 1)n
un−1

θn
for 0 ≤ t ≤ n+1

n θ, and 0 otherwise.

• The estimator U is consistent (without formal proof).

• It is unbiased:
E(U) =

∫ ∞
−∞

u · fU (u; θ)du

=
∫ n+1

n θ

0
u · nn+1

(n + 1)n
un−1

θn
du

=
nn+1

(n + 1)nθn

[
un+1

n + 1

]n+1
n θ

0

=
nn+1

(n + 1)nθn
· 1

n + 1

(
n + 1

n
θ
)n+1

= θ



Densities of Estimators
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What does the density of the estimator W = max{X1, . . . , Xn} look like? (w. r. t. n)

0 θ
0

3

θ

w

fW (w; θ, 3)

0 θ
0

1

θ

w

fW (w; θ, 1)

0 θ
0

n
θ

w

fW (w; θ, n)

0 θ
0

2

θ

w

fW (w; θ, 2)

Note the different scales for the y-axes!
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Given: a family of normal distributions NX(x;µ, σ2)

fX(x;µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)

Desired: estimates for the unknown parameters µ and σ2.

• The median and the arithmetic mean of the sample
are both consistent and unbiased estimators for the parameter µ.

The median is less efficient than the arithmetic mean.

• The function V 2 = 1
n
∑n

i=1(Xi − X̄)2 is a consistent, but biased estimator

for the parameter σ2 (it tends to underestimate the variance).

The function S2 = 1
n−1

∑n
i=1(Xi − X̄)2, however, is a consistent and unbiased

estimator for σ2 (this explains the definition of the empirical variance).



Point Estimation: Example
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Given: a family of polynomial distributions
(synonym: multinomial distribution)

fX1,...,Xk
(x1, . . . , xk; θ1, . . . , θk, n) =

n!
∏k
i=1 xi!

k∏

i=1

θ
xi
i ,

(n is the sample size, the xi are the frequencies of the different values ai, i = 1, . . . , k,
and the θi are the probabilities with which the values ai occur.)

Desired: estimates for the unknown parameters θ1, . . . , θk

• The relative frequencies Ri =
Xi
n of the different values ai, i = 1, . . . , k, are

◦ consistent,

◦ unbiased,

◦ most efficient, and

◦ sufficient estimators for the θi.



Polynomial Distribution: Example
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• Consider the random experiment of picking a person out of a population (with
replacement, technically) and determine her eye color.

• k = 3: a1 =̂ blue, a2 =̂ green, a3 =̂ brown

• θ1 = 0.3, θ2 = 0.3, θ3 = 0.4

The probability of finding 2 persons with blue eyes, 4 persons with green eyes and 4
persons with brown eyes (in a sample of size 10) is:

fX1,X2,X3
(2, 4, 4; θ1, θ2, θ3, 10) =

10!

2!4!4!
· 0.32 · 0.34 · 0.44 ≈ 0.0588

Note:

•
k∑

i=1

xi = n and
k∑

i=1

θi = 1



How Can We Find Estimators?
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• Up to now we analyzed given estimators,
now we consider the question how to find them.

• There are three main approaches to find estimators:

◦ Method of Moments
Derive an estimator for a parameter from the moments of a distribution and
its generator function.
(We do not consider this method here.)

◦ Maximum Likelihood Estimation
Choose the (set of) parameter value(s) that makes the sample most likely.

◦ Maximum A-posteriori Estimation
Choose a prior distribution on the range of parameter values, apply Bayes’ rule
to compute the posterior probability from the sample, and choose the (set of)
parameter value(s) that maximizes this probability.



Maximum Likelihood Estimation
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• General idea: Choose the (set of) parameter value(s)
that makes the sample most likely.

• If the parameter value(s) were known, it would be possible to compute the proba-
bility of the sample. With unknown parameter value(s), however, it is still possible
to state this probability as a function of the parameter(s).

• Formally this can be described as choosing the value θ that maximizes

L(D; θ) = f (D | θ),
where D are the sample data and L is called the Likelihood Function.

• Technically the estimator is determined by

◦ setting up the likelihood function,

◦ forming its partial derivative(s) w.r.t. the parameter(s), and

◦ setting these derivatives equal to zero (necessary condition for a maximum).



Brief Excursion: Function Optimization
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Task: Find values ~x = (x1, . . . , xm) such that f (~x) = f (x1, . . . , xm) is optimal.

Often feasible approach:

• A necessary condition for a (local) optimum (maximum or minimum) is
that the partial derivatives w.r.t. the parameters vanish (Pierre Fermat).

• Therefore: (Try to) solve the equation system that results from setting
all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize f (x, y) = x2 + y2 + xy − 4x− 5y.

Solution procedure:

1. Take the partial derivatives of the objective function and set them to zero:

∂f

∂x
= 2x + y − 4 = 0,

∂f

∂y
= 2y + x− 5 = 0.

2. Solve the resulting (here: linear) equation system: x = 1, y = 2.



Optima of a Function
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• The locations of the optima of a function f do not change if f is composed with
a strictly monotonic (increasing or decreasing) function g.

0 1 2 3 4

f(x) = (x− 1)2(x− 3)2 + 1

0 1 2 3 4

g1(x) = lnx

0 1 2 3 4

g2(x) =
1

x

0 1 2 3 4

(g1 ◦ f)(x)

0 1 2 3 4

(g2 ◦ f)(x)



Maximum Likelihood Estimation: Example
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Given: a family of normal distributions NX(x;µ, σ2)

fX(x;µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)

Desired: estimators for the unknown parameters µ and σ2.

The Likelihood Function, which describes the probability of the data, is

L(x1, . . . , xn;µ, σ
2) =

n∏

i=1

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
.

To simplify the technical task of forming the partial derivatives,
we consider the natural logarithm of the likelihood function, i. e.

lnL(x1, . . . , xn;µ, σ
2) = −n ln

(√
2πσ2

)
− 1

2σ2

n∑

i=1

(xi − µ)2.
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• Estimator for the expected value µ:

∂

∂µ
lnL(x1, . . . , xn;µ, σ

2) =
1

σ2

n∑

i=1

(xi − µ)
!
= 0

⇒
n∑

i=1

(xi − µ) =




n∑

i=1

xi


− nµ

!
= 0 ⇒ µ̂ =

1

n

n∑

i=1

xi

• Estimator for the variance σ2:

∂

∂σ2
lnL(x1, . . . , xn;µ, σ

2) = − n

2σ2
+

1

2σ4

n∑

i=1

(xi − µ)2
!
= 0

⇒ σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2 =
1

n

n∑

i=1

x2i −
1

n2




n∑

i=1

xi



2

(biased!)
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Consider the following three situations:

• A drunkard claims to be able to predict the side on which a thrown coin will land
(head or tails). On ten trials he always states the correct side beforehand.

• A tea lover claims that she is able to taste whether the tea or the milk was poured
into the cup first. On ten trials she always identifies the correct order.

• An expert of classical music claims to be able to recognize from a single sheet of
music whether the composer was Mozart or somebody else. On ten trials he is
indeed correct every time.

Maximum likelihood estimation treats all situations alike, because formally the samples
are the same. However, this is implausible:

• We do not believe the drunkard at all, despite the sample data.

• We highly doubt the tea drinker, but tend to consider the data as evidence.

• We tend to believe the music expert easily.
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• Background knowledge about the plausible values can be incorporated by

◦ using a prior distribution on the domain of the parameter and

◦ adapting this distribution with Bayes’ rule and the data.

• Formally maximum a-posteriori estimation is defined as follows:
find the parameter value θ that maximizes

f (θ | D) =
f (D | θ)f (θ)

f (D)
=

f (D | θ)f (θ)
∫∞
−∞ f (D | θ′)f (θ′)dθ′

• As a comparison: maximum likelihood estimation maximizes

f (D | θ)

• Note that f (D) need not be computed: It is the same for all parameter values
and since we are only interested in the value θ that maximizes f (θ | D) and not
the value of f (θ | D), we can treat it as a normalization constant.
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Given: a family of binomial distributions

fX(x; θ, n) =

(
n

x

)
θx(1− θ)n−x.

Desired: an estimator for the unknown parameter θ.

a) Uniform prior: f (θ) = 1, 0 ≤ θ ≤ 1.

f (θ | D) = γ

(
n

x

)
θx(1− θ)n−x · 1 ⇒ θ̂ =

x

n

b) Tendency towards 1
2: f (θ) = 6θ(1− θ), 0 ≤ θ ≤ 1.

f (θ | D) = γ

(
n

x

)
θx(1− θ)n−x · θ(1− θ) = γ

(
n

x

)
θx+1(1− θ)n−x+1

⇒ θ̂ =
x + 1

n + 2
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• For computing the normalization factors of the probability density functions
that occur with polynomial distributions, Dirichlet’s Integral is helpful:

∫

θ1
. . .
∫

θk

k∏

i=1

θ
xi
i dθ1 . . . dθk =

∏k
i=1 Γ(xi + 1)

Γ(n + k)
, where n =

k∑

i=1

xi

and the Γ-function is the so-called generalized factorial:

Γ(x) =
∫ ∞
0

e−ttx−1dt, x > 0,

which satisfies

Γ(x + 1) = x · Γ(x), Γ(12) =
√
π, Γ(1) = 1.

• Example: the normalization factor α for the binomial distribution prior
f (θ) = α θ2(1− θ)3 is

α =
1

∫
θ θ

2(1− θ)3dθ
=

Γ(5 + 2)

Γ(2 + 1) Γ(3 + 1)
=

6!

2! 3!
=

720

12
= 60.
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f (θ) f (θ) f (θ)

f (D|θ) f (D|θ) f (D|θ)

f (θ|D) f (θ|D) f (θ|D)

θ θ θ

0 0 00.5 0.5 0.51 1 1

θ θ θ

0 0 00.5 0.5 0.51 1 1

θ θ θ

0 0 00.5 0.5 0.51 1 1

drunkard

Dirac pulse

θ̂ = 1
2

tea lover

αθ10(1− θ)10

θ̂ = 2
3

music expert

12 θ(1− θ)

θ̂ = 11
12
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• In general the estimated value of a parameter will differ from the true value.

• It is desirable to be able to make an assertion about the possible deviations.

• The simplest possibility is to state not only a point estimate,
but also the standard deviation of the estimator:

t±D(T ) = t±
√
D2(T ).

• A better possibility is to find intervals that contain the true value with high
probability. Formally they can be defined as follows:
Let A = gA(X1, . . . , Xn) and B = gB(X1, . . . , Xn) be two statistics, such that

P (A < θ < B) = 1− α, P (θ ≤ A) =
α

2
, P (θ ≥ B) =

α

2
.

Then the random interval [A,B] (or an instantiation [a, b] of this interval) is called
(1−α) ·100% confidence interval for θ. The value 1−α is called confidence
level.
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• This definition of a confidence interval is not specific enough:
A and B are not uniquely determined.

• Common solution: Start from a point estimator T for the unknown parameter θ
and define A and B as functions of T :

A = hA(T ) and B = hB(T ).

• Instead of A ≤ θ ≤ B consider the corresponding event w.r.t. the estimator T ,
that is, A∗ ≤ T ≤ B∗.

• Determine A = hA(T ) and B = hB(T ) from the inverse functions A∗ = h−1A (θ)

and B∗ = h−1B (θ).

Procedure: P (A∗ < T < B∗) = 1− α

⇒ P (h−1A (θ) < T < h−1B (θ)) = 1− α
⇒ P (hA(T ) < θ < hB(T )) = 1− α
⇒ P (A < θ < B) = 1− α.



Interval Estimation: Example

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 136

Given: a family of uniform distributions on the interval [0, θ], i.e.

fX(x; θ) =

{
1
θ, if 0 ≤ x ≤ θ,
0, otherwise.

Desired: a confidence interval for the unknown parameter θ.

• Start from the unbiased point estimator U = n+1
n max{X1, . . . , Xn}:

P (U ≤ B∗) =
∫ B∗

0
fU (u; θ)du =

α

2

P (U ≥ A∗) =
∫ n+1

n θ

A∗
fU (u; θ)du =

α

2

• From the study of point estimators we know

fU (u; θ) =
nn+1

(n + 1)n
un−1

θn
.
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• Solving the integrals gives us

B∗ = n

√
α

2

n + 1

n
θ and A∗ = n

√
1− α

2

n + 1

n
θ,

that is,

P
(

n

√
α

2

n + 1

n
θ < U < n

√
1− α

2

n + 1

n
θ
)
= 1− α.

• Computing the inverse functions leads to

P




U

n
√
1− α

2
n+1
n

< θ <
U

n
√

α
2
n+1
n


 = 1− α,

that is,

A =
U

n
√
1− α

2
n+1
n

and B =
U

n
√

α
2
n+1
n

.
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• Since A and B are functions of random variables ~X = (X1, . . . , Xn) (modelling
the underlying random sampling), they are random variables themselves and thus
a statement like

P (A( ~X < θ < B( ~X)) = 1− α
makes sense.

• If, however, applied to a specific random sample ~x the interval borders
a = A(~x) and b = B(~x) become fixed and are not random anymore.

• A probability statement about a < θ < b would be nonsensical
because either θ ∈ [a, b] or θ /∈ [a, b].

• Therefore it is incorrect to say:
“The true parameter θ lies with (1− α) · 100% probability within the
confidence interval.”

• Correct: “This confidence interval has been generated by a proce-
dure which returns for (1 − α) · 100% of all possible samples ~x an
interval that contains the true parameter θ.”
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Relation to sample size n and confidence level α.

• Width of a confidence interval can be considered a measure of imprecision or
inaccuracy, i. e., the smaller the interval the more accurate the estimation.
(although the real parameter may not be within the interval at all, of course).

• Increasing n yields a smaller interval.

• Increasing α yields a smaller interval. (Often misunderstood!)

• Example: random variable X with binomial distribution: bX(x; p, n)

• Let x be the number of positive outcomes in the sample of size n.
The (1− α) · 100% confidence interval for p reads:


r − z1−α

2
·
√
r(1− r)

n− 1
, r + z1−α

2
·
√
r(1− r)

n− 1


 with r =

x

n

(with za = Φ−1(a) and Φ being the standard normal distribution function)
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• A hypothesis test is a statistical procedure with which a decision is made
between two contrary hypothesis about the process that generated the data.

• The two hypotheses can refer to

◦ the value of a parameter (Parameter Test),

◦ a distribution assumption (Goodness-of-Fit Test),

◦ the dependence of two attributes (Dependence Test).

• One of the two hypothesis is preferred, that is, in case of doubt the decision is
made in its favor. (One says that it gets the “benefit of the doubt”.)

• The preferred hypothesis is called the Null Hypothesis H0,
the other hypothesis is called the Alternative Hypothesis Ha.

• Intuitively: the null hypothesis H0 is put on trial.
Only if the evidence is strong enough, it is convicted (i.e. rejected).
If there is doubt, however, it is acquitted (i.e. accepted).
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• The test decision is based on a test statistic,
that is, a function of the sample values.

• The null hypothesis is rejected if the value of the test statistic
lies inside the so-called critical region C.

• Developing a hypothesis test consists in finding the critical region
for a given test statistic and significance level (see below).

• The test decision may be wrong. There are two possible types of errors:

Type 1: The null hypothesis H0 is rejected, even though it is correct.
Type 2: The null hypothesis H0 is accepted, even though it is false.

• Type 1 errors are considered to be more severe,
since the null hypothesis gets “the benefit of the doubt”.

• Therefore it is tried to restrict the probability of a type 1 error to a certain maxi-
mum α. This maximum value α is called significance level.
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• In a parameter test the contrary hypotheses refer to the value of a parameter, for
example (one-sided test):

H0 : θ ≥ θ0, Ha : θ < θ0.

• For such a test usually a point estimator T is chosen as the test statistic.

• The null hypothesis H0 is rejected if the value t of the point estimator does not
exceed a certain value c, the so-called critical value (i.e. C = (−∞, c]).

• Formally the critical value c is determined as follows: We consider

β(θ) = Pθ(H0 is rejected) = Pθ(T ∈ C),

the so-called power β of the test.

• The power must not exceed the significance level α for values θ satisfying H0:

max
θ:θ satisfies H0

β(θ) ≤ α. (here: β(θ0) ≤ α)
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• The probability of a type 1 error is the area under the estimator’s
probability density function f (T | θ0) to the left of the critical value c.
(Note: This example illustrates H0 : θ ≥ θ0 and Ha : θ < θ0.)

T

θ0ccritical region C

f (T | θ0)probability of
a type 1 error

β(θ0)

• Obviously the probability of a type 1 error depends on the location
of the critical value c: higher values mean a higher error probability.

• Idea: Choose the location of the cricital value so that the maximal
probability of a type 1 error equals α, the chosen significance level.
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• What is so special about θ0 that we use f (T | θ0)?

T

θ0ccritical region C θ satisfying H0

f (T | θ)probability of
a type 1 error

β(θ)

• In principle, all θ satisfying H0 have to be considered,
that is, all density functions f (T | θ) with θ ≥ θ0.

• Among these values θ, the one with the highest probability of a type 1 error
(i.e., the one with the highest power β(θ)) determines the critical value.

Intuitively: we consider the worst possible case.
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• We consider a one-sided test of the expected value µ of a normal distributionN(µ, σ2)
with known variance σ2, i.e., we consider the hypotheses

H0 : µ ≥ µ0, Ha : µ < µ0.

• As a test statistic we use the standard point estimator for the expected value

X̄ =
1

n

n∑

i=1

Xi.

This point estimator has the probability density

fX̄(x) = N
(
x;µ, σ

2

n

)
.

• Therefore it is (with the N(0, 1)-distributed random variable Z)

α = β(µ0) = Pµ0(X̄ ≤ c) = P

(
X̄ − µ0
σ/
√
n
≤ c− µ0

σ/
√
n

)
= P

(
Z ≤ c− µ0

σ/
√
n

)
.



Parameter Test: Example

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 146

• We have as a result that

α = Φ

(
c− µ0
σ/
√
n

)
,

where Φ is the distribution function of the standard normal distribution.

• The distribution function Φ is tabulated, because it cannot be represented in closed
form. From such a table we retrieve the value zα satisfying α = Φ(zα).

• Then the critical value is

c = µ0 + zα
σ√
n
.

(Note that the value of zα is negative due to the usually small value of α.
Typical values are α = 0.1, α = 0.05 or α = 0.01.)

• H0 is rejected if the value x̄ of the point estimator X̄ does not exceed c, otherwise
it is accepted.
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• Let σ = 5.4, n = 25 and x̄ = 128. We choose µ0 = 130 and α = 0.05.

• From a standard normal distribution table we retrieve z0.05 ≈ −1.645 and get

c0.05 ≈ 130− 1.645
5.4√
25
≈ 128.22.

Since x̄ = 128 < 128.22 = c, we reject the null hypothesis H0.

• If, however, we had chosen α = 0.01, it would have been (with z0.01 ≈ −2.326):

c0.01 ≈ 130− 2.326
5.4√
25
≈ 127.49

Since x̄ = 128 > 127.49 = c, we would have accepted the null hypothesis H0.

• Instead of fixing a significance level α one may state the so-called p-value

p = Φ

(
128− 130

5.4/
√
25

)
≈ 0.032.

For α ≥ p = 0.032 the null hypothesis is rejected, for α < p = 0.032 accepted.
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• Let t be the value of the test statistic T
that has been computed from a given data set.
(Note: This example illustrates H0 : θ ≥ θ0 and Ha : θ < θ0.)

T

θ0t

f (T | θ0)
p-value of t

• The p-value is the probability that a value of t or less
can be observed for the chosen test statistic T .

• The p-value is a lower limit for the significance level α
that may have been chosen if we wanted to reject the null hypothesis H0.
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Attention: p-values are often misused or misinterpreted!

• A low p-value does not mean that the result is very reliable!

All that matters for the test is whether the computed p-value
is below the chosen significance level or not.

(A low p-value could just be a chance event, an accident!)

• The significance level may not be chosen after computing the p-value,
since we tend to choose lower significance levels if we know that they are met.

Doing so would undermine the reliability of the procedure!

• Stating p-values is only a convenient way of avoiding a fixed significance level.
(Since significance levels are a matter of choice and thus user-dependent.)

However: A significance level must still be chosen
before a reported p-value is looked at.
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• Reminder: There are two possible types of errors:

Type 1: The null hypothesis H0 is rejected, even though it is correct.

Type 2: The null hypothesis H0 is accepted, even though it is false.

• Type-1 errors are considered to be more severe,
since the null hypothesis gets “the benefit of the doubt”.

• However, type-2 errors should not be neglected completely:

◦ It is always possible to achieve a vanishing probability of a type-1 error:
Simply accept the null hypothesis in all instances, regardless of the data.

◦ Unfortunately such an approach maximizes the type-2 error.

• Generally, type-1 and type-2 errors are complementary quantities:

The lower we require the type-1 error to be (the lower the significance level),
the higher will be the probability of a type-2 error.
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• Suppose there are only two possible parameter values θ0 and θ1 with θ1 < θ0.
(That is, we have H0 : θ = θ0 and Ha : θ = θ1.)

T

θ1 θ0c

f (T | θ1) f (T | θ0)

probability of a
type-1 error type-2 error

• Lowering the significance level α moves the critical value c to the left:
lower type-1 error (red), but higher type-2 error (blue).

• Increasing the significance level α moves the critical value c to the right:
higher type-1 error (red), but lower type-2 error (blue).
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Model Selection
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• Objective: select the model that best fits the data,
taking the model complexity into account.

The more complex the model, the better it usually fits the data.

x

y

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7 black line:
regression line
(2 free parameters)

blue curve:
7th order regression polynomial
(8 free parameters)

• The blue curve fits the data points perfectly, but it is not a good model.
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• There is a tradeoff between model complexity and fit to the data.

Question: How much better must a more complex model fit the data
in order to justify the higher complexity?

• One approach to quantify the tradeoff: Information Criteria

Let M be a model and Θ the set of free parameters of M . Then:

ICκ(M,Θ | D) = −2 lnP (D |M,Θ) + κ|Θ|,
where D are the sample data and κ is a parameter.

Special cases:

◦ Akaike Information Criterion (AIC): κ = 2

◦ Bayesian Information Criterion (BIC): κ = lnn,
where n is the sample size.

• The lower the value of these measures, the better the model.
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• Idea: Consider the transmission of the data from a sender to a receiver.

Since the transmission of information is costly,
the length of the message to be transmitted should be minimized.

• A good model of the data can be used to transmit the data with fewer bits.

However, the receiver does not know the model the sender used
and thus cannot decode the message.

Therefore: if the sender uses a model, he/she has to transmit the model, too.

• description length = length of model description
+ length of data description

(A more complex model increases the length of the model description,
but reduces the length of the data description.)

• The model that leads to the smallest total description length is the best.
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• Given: a one-dimensional sample from a polynomial distribution.

• Question: are the probabilities of the attribute values sufficiently different to justify
a non-uniform distribution model?

• Coding using no model (equal probabilities for all values):

l1 = n log2 k,

where n is the sample size and k the number of attribute values.

• Coding using a polynomial distribution model:

l2 = log2
(n + k − 1)!

n!(k − 1)!︸ ︷︷ ︸
model description

+ log2
n!

x1! . . . xk!︸ ︷︷ ︸
data description

(Idea: Use a codebook with one page per configuration, i.e. frequency distribution
(model) and specific sequence (data), and transmit the page number.)
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Some details about the codebook idea:

• Model Description:
There are n objects (the sample cases) that have to be partitioned into k groups
(one for each attribute value). (Model: distribute n balls on k boxes.)

Number of possible distributions:
(n + k − 1)!

n!(k − 1)!

Idea: number of possible sequences of n + k − 1 objects (n balls and k − 1 box
walls) of which n (the objects) and k − 1 (the box walls) are indistinguishable.

• Data Description:
There are k groups of objects with xi, i = 1, . . . , k, elements in them.
(The values of the xk are known from the model description.)

Number of possible sequences:
n!

x1! . . . xk!
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Statistics has two main areas:

• Descriptive Statistics

◦ Display the data in tables or charts.

◦ Summarize the data in characteristic measures.

◦ Reduce the dimensionality of the data with principal component analysis.

• Inductive Statistics

◦ Use probability theory to draw inferences
about the process that generated the data.

◦ Parameter Estimation

◦ Hypothesis Testing

◦ Model Selection

A short script in German can be found at
http://fuzzy.cs.uni-magdeburg.de/studium/ida/
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Regression
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• General Idea of Regression

◦ Method of least squares

• Linear Regression

◦ An illustrative example

• Polynomial Regression

◦ Generalization to polynomial functional relationships

• Multivariate Regression

◦ Generalization to more than one function argument

• Logistic Regression

◦ Generalization to non-polynomial functional relationships

◦ An illustrative example

• Summary
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Also known as: Method of Least Squares (Carl Friedrich Gauß)

Given: • A data set of data tuples
(one or more input values and one output value).

• A hypothesis about the functional relationship
between output and input values.

Desired: • A parameterization of the conjectured function
that minimizes the sum of squared errors (“best fit”).

Depending on

• the hypothesis about the functional relationship and

• the number of arguments to the conjectured function

different types of regression are distinguished.
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Task: Find values ~x = (x1, . . . , xm) such that f (~x) = f (x1, . . . , xm) is optimal.

Often feasible approach:

• A necessary condition for a (local) optimum (maximum or minimum) is
that the partial derivatives w.r.t. the parameters vanish (Pierre Fermat).

• Therefore: (Try to) solve the equation system that results from setting
all partial derivatives w.r.t. the parameters equal to zero.

Example task: Minimize f (x, y) = x2 + y2 + xy − 4x− 5y.

Solution procedure:

1. Take the partial derivatives of the objective function and set them to zero:

∂f

∂x
= 2x + y − 4 = 0,

∂f

∂y
= 2y + x− 5 = 0.

2. Solve the resulting (here: linear) equation system: x = 1, y = 2.
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• Given: data set ((x1, y1), . . . , (xn, yn)) of n data tuples

• Conjecture: the functional relationship is linear, i.e., y = g(x) = a + bx.

Approach: Minimize the sum of squared errors, i.e.

F (a, b) =
n∑

i=1

(g(xi)− yi)
2 =

n∑

i=1

(a + bxi − yi)
2.

Necessary conditions for a minimum:

∂F

∂a
=

n∑

i=1

2(a + bxi − yi) = 0 and

∂F

∂b
=

n∑

i=1

2(a + bxi − yi)xi = 0
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Result of necessary conditions: System of so-called normal equations, i.e.

na +




n∑

i=1

xi


 b =

n∑

i=1

yi,




n∑

i=1

xi


 a +




n∑

i=1

x2i


 b =

n∑

i=1

xiyi.

• Two linear equations for two unknowns a and b.

• System can be solved with standard methods from linear algebra.

• Solution is unique unless all x-values are identical.

• The resulting line is called a regression line.
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x 1 2 3 4 5 6 7 8

y 1 3 2 3 4 3 5 6

y =
3

4
+

7

12
x.

x

y

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6
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A regression line can be interpreted as a maximum likelihood estimator:

Assumption: The data generation process can be described well by the model

y = a + bx + ξ,

where ξ is normally distributed with mean 0 and (unknown) variance σ2

(σ2 independent of x, i.e. same dispersion of y for all x).

As a consequence we have

f (y | x) = 1√
2πσ2

· exp
(
−(y − (a + bx))2

2σ2

)
.

With this expression we can set up the likelihood function

L((x1, y1), . . . (xn, yn); a, b, σ
2)

=
n∏

i=1

f (xi)f (yi | xi) =
n∏

i=1

f (xi) ·
1√
2πσ2

· exp
(
−(yi − (a + bxi))

2

2σ2

)
.



Least Squares and Maximum Likelihood

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 167

To simplify taking the derivatives, we compute the natural logarithm:

lnL((x1, y1), . . . (xn, yn); a, b, σ
2)

= ln
n∏

i=1

f (xi) ·
1√
2πσ2

· exp
(
−(yi − (a + bxi))

2

2σ2

)

=
n∑

i=1

ln f (xi) +
n∑

i=1

ln
1√
2πσ2

− 1

2σ2

n∑

i=1

(yi − (a + bxi))
2

From this expression it becomes clear that (provided f (x) is independent of a, b, and
σ2) maximizing the likelihood function is equivalent to minimizing

F (a, b) =
n∑

i=1

(yi − (a + bxi))
2.

Interpreting the method of least squares as a maximum likelihood estimator works also
for the generalizations to polynomials and multilinear functions discussed next.
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Generalization to polynomials

y = p(x) = a0 + a1x + . . . + amxm

Approach: Minimize the sum of squared errors, i.e.

F (a0, a1, . . . , am) =
n∑

i=1

(p(xi)− yi)
2 =

n∑

i=1

(a0 + a1xi + . . . + amxmi − yi)
2

Necessary conditions for a minimum: All partial derivatives vanish, i.e.

∂F

∂a0
= 0,

∂F

∂a1
= 0, . . . ,

∂F

∂am
= 0.
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System of normal equations for polynomials

na0 +




n∑

i=1

xi


 a1 + . . . +




n∑

i=1

xmi


 am =

n∑

i=1

yi




n∑

i=1

xi


 a0 +




n∑

i=1

x2i


 a1 + . . . +




n∑

i=1

xm+1
i


 am =

n∑

i=1

xiyi

... ...


n∑

i=1

xmi


 a0 +




n∑

i=1

xm+1
i


 a1 + . . . +




n∑

i=1

x2mi


 am =

n∑

i=1

xmi yi,

• m + 1 linear equations for m + 1 unknowns a0, . . . , am.

• System can be solved with standard methods from linear algebra.

• Solution is unique unless the points lie exactly on a polynomial of lower degree.
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Generalization to more than one argument

z = f (x, y) = a + bx + cy

Approach: Minimize the sum of squared errors, i.e.

F (a, b, c) =
n∑

i=1

(f (xi, yi)− zi)
2 =

n∑

i=1

(a + bxi + cyi − zi)
2

Necessary conditions for a minimum: All partial derivatives vanish, i.e.

∂F

∂a
=

n∑

i=1

2(a + bxi + cyi − zi) = 0,

∂F

∂b
=

n∑

i=1

2(a + bxi + cyi − zi)xi = 0,

∂F

∂c
=

n∑

i=1

2(a + bxi + cyi − zi)yi = 0.
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System of normal equations for several arguments

na +




n∑

i=1

xi


 b +




n∑

i=1

yi


 c =

n∑

i=1

zi




n∑

i=1

xi


 a +




n∑

i=1

x2i


 b +




n∑

i=1

xiyi


 c =

n∑

i=1

zixi




n∑

i=1

yi


 a +




n∑

i=1

xiyi


 b +




n∑

i=1

y2i


 c =

n∑

i=1

ziyi

• 3 linear equations for 3 unknowns a, b, and c.

• System can be solved with standard methods from linear algebra.

• Solution is unique unless all data points lie on a straight line.
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General multilinear case:

~y = f (~x1, . . . , ~xm) = a0 +
m∑

k=1

ak~xk

Approach: Minimize the sum of squared errors, i.e.

F (~a) = (X~a− ~y)⊤(X~a− ~y),

where

X =




1 x11 . . . x1m
... ... . . . ...
1 xn1 . . . xnm


 , ~y =




y1
...
yn


 , and ~a =




a0
a1
...
am




Necessary condition for a minimum:

∇~aF (~a) = ∇~a(X~a− ~y)⊤(X~a− ~y) = ~0
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• ∇~a F (~a) may easily be computed by remembering that the differential operator

∇~a =

(
∂

∂a0
, . . . ,

∂

∂am

)

behaves formally like a vector that is “multiplied” to the sum of squared errors.

• Alternatively, one may write out the differentiation componentwise.
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• What is the derivative of ~x⊤~x w. r. t. ~x ?

∇~x~x⊤~x =

(
∂~x⊤~x
∂x1

, · · · , ∂~x
⊤~x

∂xm

)

• We get: k = 1, . . . ,m

∂~x⊤~x
∂xk

=
∂

∂xk

m∑

i=1

xixi

=
∂

∂xk

(
x21 + · · · + x2k + · · · + x2m

)

=
∂

∂xk
x21 + · · · +

∂

∂xk
x2k + · · · +

∂

∂xk
x2m

= 2xk

• Therefore we get:

∇~x~x⊤~x = (2x1, . . . , 2xk, . . . , 2xm) = 2~x
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With the former method we obtain for the derivative:

∇~a (X~a− ~y)⊤(X~a− ~y)

= (∇~a (X~a− ~y))⊤ (X~a− ~y) + ((X~a− ~y)⊤ (∇~a (X~a− ~y)))⊤

= (∇~a (X~a− ~y))⊤ (X~a− ~y) + (∇~a (X~a− ~y))⊤ (X~a− ~y)

= 2X⊤(X~a− ~y)

= 2X⊤X~a− 2X⊤~y = ~0
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Necessary condition for a minimum therefore:

∇~aF (~a) = ∇~a(X~a− ~y)⊤(X~a− ~y)

= 2X⊤X~a− 2X⊤~y !
= ~0

As a consequence we get the system of normal equations:

X⊤X~a = X⊤~y

This system has a unique solution if X⊤X is not singular. Then we have

~a = (X⊤X)−1X⊤~y.

(X⊤X)−1X⊤ is called the (Moore–Penrose) pseudoinverse of the matrix X.

With the matrix-vector representation of the regression problem an extension to mul-
tipolynomial regression is straighforward:
Simply add the desired products of powers to the matrix X.
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Generalization to non-polynomial functions

Idea: Find transformation to linear/polynomial case.

Simple example: The function y = axb

can be transformed into ln y = ln a + b · ln x.

Special case: logistic function

y =
Y

1 + ea+bx
⇔ 1

y
=

1 + ea+bx

Y
⇔ Y − y

y
= ea+bx.

Result: Apply so-called Logit Transformation

ln

(
Y − y

y

)
= a + bx.
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x 1 2 3 4 5

y 0.4 1.0 3.0 5.0 5.6

Transform the data with

z = ln

(
Y − y

y

)
, Y = 6.

The transformed data points are

x 1 2 3 4 5

z 2.64 1.61 0.00 −1.61 −2.64

The resulting regression line is

z ≈ −1.3775x + 4.133.
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1 2 3 4 5

−4
−3
−2
−1
0

1

2

3

4

x

z

0

1

2

3

4

5

6

0 1 2 3 4 5

Y = 6

x

y

• Attention: The sum of squared errors is minimized only in the space the trans-
formation maps to, not in the original space.

• Nevertheless this approach usually leads to very good results.
The result may be improved by a gradient descent in the original space.
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Example logistic function for two arguments x1 and x2:

y =
1

1 + exp(4− x1 − x2)
=

1

1 + exp
(
4− (1, 1)(x1, x2)⊤

)

4

3

2

1

0 0
1

2
3

4

4

3

2

1

0
0 1 2 3 4

0.1 0.2 0.3 0.4 0.5

0.6

0.7

0.8

0.9
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• Let C be a class attribute, dom(C)={c1, c2}, and ~X an m-dim. random vector.

Let P (C = c1 | ~X = ~x) = p(~x) and P (C = c2 | ~X = ~x) = 1− p(~x).

• Given: A set of data points X = {~x1, . . . , ~xn} (realizations of ~X),
each of which belongs to one of the two classes c1 and c2.

• Desired: A simple description of the function p(~x).

• Approach: Describe p by a logistic function:

p(~x) =
1

1 + ea0+~a~x
=

1

1 + exp
(
a0 +

∑m
i=1 aixi

)

Apply logit transformation to p(x):

ln

(
1− p(~x)

p(~x)

)
= a0 + ~a~x = a0 +

m∑

i=1

aixi

The values p(~xi) may be obtained by kernel estimation.
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• Idea: Define an “influence function” (kernel), which describes how strongly a
data point influences the probability estimate for neighboring points.

• Common choice for the kernel function: Gaussian function

K(~x, ~y) =
1

(2πσ2)
m
2

exp

(
−(~x− ~y)⊤(~x− ~y)

2σ2

)

• Kernel estimate of probability density given a data set X = {~x1, . . . , ~xn}:

f̂ (~x) =
1

n

n∑

i=1

K(~x, ~xi).

• Kernel estimation applied to a two class problem:

p̂(~x) =

∑n
i=1 c(~xi)K(~x, ~xi)∑n

i=1K(~x, ~xi)
.

(It is c(~xi) = 1 if xi belongs to class c1 and c(~xi) = 0 otherwise.)
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• Minimize the Sum of Squared Errors

◦ Write the sum of squared errors
as a function of the parameters to be determined.

• Exploit Necessary Conditions for a Minimum

◦ Partial derivatives w.r.t. the parameters to determine must vanish.

• Solve the System of Normal Equations

◦ The best fit parameters are the solution of the system of normal equations.

• Non-polynomial Regression Functions

◦ Find a transformation to the multipolynomial case.

◦ Logistic regression can be used to solve two class classification problems.



Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 184

Bayes Classifiers
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• Probabilistic Classification and Bayes’ Rule

• Naive Bayes Classifiers

◦ Derivation of the classification formula

◦ Probability estimation and Laplace correction

◦ Simple examples of naive Bayes classifiers

◦ A naive Bayes classifier for the Iris data

• Full Bayes Classifiers

◦ Derivation of the classification formula

◦ Comparison to naive Bayes classifiers

◦ A simple example of a full Bayes classifier

◦ A full Bayes classifier for the Iris data

• Summary



Probabilistic Classification

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 186

• A classifier is an algorithm that assigns a class from a predefined set to a case or
object, based on the values of descriptive attributes.

• An optimal classifier maximizes the probability of a correct class assignment.

◦ Let C be a class attribute with dom(C) = {c1, . . . , cnC},
which occur with probabilities pi, 1 ≤ i ≤ nC .

◦ Let qi be the probability with which a classifier assigns class ci.
(qi ∈ {0, 1} for a deterministic classifier)

◦ The probability of a correct assignment is

P (correct assignment) =
nC∑

i=1

piqi.

◦ Therefore the best choice for the qi is

qi =

{
1, if pi = max

nC
k=1 pk,

0, otherwise.
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• Consequence: An optimal classifier should assign the most probable class.

• This argument does not change if we take descriptive attributes into account.

◦ Let U = {A1, . . . , Am} be a set of descriptive attributes
with domains dom(Ak), 1 ≤ k ≤ m.

◦ Let A1 = a1, . . . , Am = am be an instantiation of the descriptive attributes.

◦ An optimal classifier should assign the class ci for which

P (C = ci | A1 = a1, . . . , Am = am) =

max
nC
j=1 P (C = cj | A1 = a1, . . . , Am = am)

• Problem: We cannot store a class (or the class probabilities) for every
possible instantiation A1 = a1, . . . , Am = am of the descriptive attributes.
(The table size grows exponentially with the number of attributes.)

• Therefore: Simplifying assumptions are necessary.
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• Bayes’ rule is a formula that can be used to “invert” conditional probabilities:
Let X and Y be events, P (X) > 0. Then

P (Y | X) =
P (X | Y ) · P (Y )

P (X)
.

• Bayes’ rule follows directly from the definition of conditional probability:

P (Y | X) =
P (X ∩ Y )

P (X)
and P (X | Y ) =

P (X ∩ Y )

P (Y )
.

• Bayes’ classifiers: Compute the class probabilities as

P (C = ci | A1 = a1, . . . , Am = am) =

P (A1 = a1, . . . , Am = am | C = ci) · P (C = ci)

P (A1 = a1, . . . , Am = am)
.

• Looks unreasonable at first sight: Even more probabilities to store.
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Naive Assumption:
The descriptive attributes are conditionally independent given the class.

Bayes’ Rule:

P (C = ci | ω) =
P (A1 = a1, . . . , Am = am | C = ci) · P (C = ci)

P (A1 = a1, . . . , Am = am) ← p0
abbrev. for the

normalizing constant

Chain Rule of Probability:

P (C = ci | ω) =
P (C = ci)

p0
·

m∏

k=1

P (Ak = ak | A1 = a1, . . . , Ak−1 = ak−1, C = ci)

Conditional Independence Assumption:

P (C = ci | ω) =
P (C = ci)

p0
·

m∏

k=1

P (Ak = ak | C = ci)
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• Based on the product rule of probability:

P (A ∧B) = P (A | B) · P (B)

(Multiply definition of conditional probability with P (B).)

• Multiple application of the product rule yields:

P (A1, . . . , Am) = P (Am | A1, . . . , Am−1) · P (A1, . . . , Am−1)
= P (Am | A1, . . . , Am−1)
· P (Am−1 | A1, . . . , Am−2) · P (A1, . . . , Am−2)
= ...

=
m∏

k=1

P (Ak | A1, . . . , Ak−1)

• The scheme works also if there is already a condition in the original expression:

P (A1, . . . , Am | C) =
m∏

i=1

P (Ak | A1, . . . , Ak−1, C)
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• Reminder: stochastic independence (unconditional)

P (A ∧ B) = P (A) · P (B)

(Joint probability is the product of the individual probabilities.)

• Comparison to the product rule

P (A ∧B) = P (A | B) · P (B)

shows that this is equivalent to

P (A | B) = P (A)

• The same formulae hold conditionally, i.e.

P (A ∧ B | C) = P (A | C) · P (B | C) and

P (A | B,C) = P (A | C).

• Conditional independence allows us to cancel some conditions.
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(Weak) Dependence in the entire dataset: X and Y dependent.
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No Dependence in Group 1: X and Y conditionally independent given Group 1.
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No Dependence in Group 2: X and Y conditionally independent given Group 2.
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• The next table shows four 3-dimensional probability distributions (one per row).

• The (in)dependencies are always w. r. t. A and B.

• The condition variable is C.

a1 a2
b1 b2 b1 b2

marginal conditional c1 c2 c1 c2 c1 c2 c1 c2

indep. indep. 0.03 0.01 0.27 0.09 0.006 0.054 0.054 0.486

dep. dep. 0.01 0.03 0.126 0.234 0.1275 0.3825 0.0315 0.0585

dep. indep. 0.12 0.085 0.18 0.015 0.024 0.459 0.036 0.081

indep. dep. 0.008 0.032 0.144 0.216 0.018 0.042 0.054 0.486

• All combinations are possible.
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• Consequence: Manageable amount of data to store.
Store distributions P (C = ci) and ∀1 ≤ k ≤ m : P (Ak = ak | C = ci).

• It is not necessary to compute p0 explicitely, because it can be computed implicitly
by normalizing the computed values to sum 1.

Estimation of Probabilities:

• Nominal/Symbolic Attributes

P̂ (Ak = ak | C = ci) =
#(Ak = ak, C = ci) + γ

#(C = ci) + nAk
γ

γ is called Laplace correction: Assume for every class ci some number of
hypothetical samples for every value of Ak to prevent the estimate to be 0 if
#(Ak = ak, C = ci) = 0.

γ = 0: Maximum likelihood estimation.

Common choices: γ = 1 or γ = 1
2.



Naive Bayes Classifiers

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 197

Estimation of Probabilities:

• Metric/Numeric Attributes: Assume a normal distribution.

P (Ak = ak | C = ci) =
1√

2πσk(ci)
exp

(
−(ak − µk(ci))

2

2σ2k(ci)

)

• Estimate of mean value

µ̂k(ci) =
1

#(C = ci)

#(C=ci)∑

j=1

ak(j)

• Estimate of variance

σ̂2k(ci) =
1

ξ

#(C=ci)∑

j=1

(ak(j)− µ̂k(ci))
2

ξ = #(C = ci) : Maximum likelihood estimation
ξ = #(C = ci)− 1: Unbiased estimation
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No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B
10 female 30 normal A
11 female 26 low B
12 male 54 high A

P (Drug) A B

0.5 0.5

P (Sex | Drug) A B

male 0.5 0.5
female 0.5 0.5

P (Age | Drug) A B

µ 36.3 47.8

σ2 161.9 311.0

P (Blood Pr. | Drug) A B

low 0 0.5
normal 0.5 0.5
high 0.5 0

A simple database and estimated (conditional) probability distributions.



Naive Bayes Classifiers: Simple Example 1

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 199

P (Drug A | male, 61, normal)

= c1 · P (Drug A) · P (male | Drug A) · P (61 | Drug A) · P (normal | Drug A)

≈ c1 · 0.5 · 0.5 · 0.004787 · 0.5 = c1 · 5.984 · 10−4 = 0.219

P (Drug B | male, 61, normal)

= c1 · P (Drug B) · P (male | Drug B) · P (61 | Drug B) · P (normal | Drug B)

≈ c1 · 0.5 · 0.5 · 0.017120 · 0.5 = c1 · 2.140 · 10−3 = 0.781

P (Drug A | female, 30, normal)

= c2 · P (Drug A) · P (female | Drug A) · P (30 | Drug A) · P (normal | Drug A)

≈ c2 · 0.5 · 0.5 · 0.027703 · 0.5 = c2 · 3.471 · 10−3 = 0.671

P (Drug B | female, 30, normal)

= c2 · P (Drug B) · P (female | Drug B) · P (30 | Drug B) · P (normal | Drug B)

≈ c2 · 0.5 · 0.5 · 0.013567 · 0.5 = c2 · 1.696 · 10−3 = 0.329
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• 100 data points, 2 classes

• Small squares: mean values

• Inner ellipses:
one standard deviation

• Outer ellipses:
two standard deviations

• Classes overlap:
classification is not perfect

Naive Bayes Classifier
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• 20 data points, 2 classes

• Small squares: mean values

• Inner ellipses:
one standard deviation

• Outer ellipses:
two standard deviations

• Attributes are not conditionally
independent given the class

Naive Bayes Classifier
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• 150 data points, 3 classes

Iris setosa (red)
Iris versicolor (green)
Iris virginica (blue)

• Shown: 2 out of 4 attributes

sepal length
sepal width
petal length (horizontal)
petal width (vertical)

• 6 misclassifications
on the training data
(with all 4 attributes) Naive Bayes Classifier
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• Restricted to metric/numeric attributes (only the class is nominal/symbolic).

• Simplifying Assumption:
Each class can be described by a multivariate normal distribution.

f (A1 = a1, . . . , Am = am | C = ci)

=
1√

(2π)m|Σi|
exp

(
−1
2
(~a− ~µi)

⊤Σ−1i (~a− ~µi)
)

~µi: mean value vector for class ci

Σi: covariance matrix for class ci

• Intuitively: Each class has a bell-shaped probability density.

• Naive Bayes classifiers: Covariance matrices are diagonal matrices.
(Details about this relation are given below.)
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Estimation of Probabilities:

• Estimate of mean value vector

~̂µi =
1

#(C = ci)

#(C=ci)∑

j=1

~a(j)

• Estimate of covariance matrix

Σ̂i =
1

ξ

#(C=ci)∑

j=1

(
~a(j)− ~̂µi

) (
~a(j)− ~̂µi

)⊤

ξ = #(C = ci) : Maximum likelihood estimation
ξ = #(C = ci)− 1: Unbiased estimation

~x⊤ denotes the transpose of the vector ~x.

~x~x⊤ is the so-called outer product or matrix product of ~x with itself.
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Naive Bayes classifiers for metric/numeric data are equivalent
to full Bayes classifiers with diagonal covariance matrices:

f (A1 = a1, . . . , Am = am | C = ci)

=
1√

(2π)m|Σi|
· exp

(
−1
2
(~a− ~µi)

⊤Σ−1i (~a− ~µi)
)

=
1√

(2π)m
∏m
k=1 σ

2
i,k

· exp
(
−1
2
(~a− ~µi)

⊤ diag
(
σ−2i,1 , . . . , σ

−2
i,m

)
(~a− ~µi)

)

=
1

∏m
k=1

√
2πσ2i,k

· exp

−1

2

m∑

k=1

(ak − µi,k)
2

σ2i,k




=
m∏

k=1

1√
2πσ2i,k

· exp

−(ak − µi,k)

2

2σ2i,k


 =̂

m∏

k=1

f (Ak = ak | C = ci),

where f (Ak = ak | C = ci) are the density functions used by a naive Bayes classifier.
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Naive Bayes Classifier Full Bayes Classifier
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• 150 data points, 3 classes

Iris setosa (red)
Iris versicolor (green)
Iris virginica (blue)

• Shown: 2 out of 4 attributes

sepal length
sepal width
petal length (horizontal)
petal width (vertical)

• 2 misclassifications
on the training data
(with all 4 attributes) Full Bayes Classifier
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• Probabilistic Classification: Assign the most probable class.

• Bayes’ Rule: “Invert” the conditional class probabilities.

• Naive Bayes Classifiers

◦ Simplifying Assumption:
Attributes are conditionally independent given the class.

◦ Can handle nominal/symbolic as well as metric/numeric attributes.

• Full Bayes Classifiers

◦ Simplifying Assumption:
Each class can be described by a multivariate normal distribution.

◦ Can handle only metric/numeric attributes.
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Decision and Regression Trees
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• Classification with a Decision Tree

• Top-down Induction of Decision Trees

◦ A simple example

◦ The general algorithm

◦ Attribute selection measures

◦ Treatment of numeric attributes and missing values

• Pruning Decision Trees

◦ General approaches

◦ A simple example

• Regression Trees

• Summary
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Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B
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Recursive Descent:

• Start at the root node.

• If the current node is an leaf node:

◦ Return the class assigned to the node.

• If the current node is an inner node:

◦ Test the attribute associated with the node.

◦ Follow the branch labeled with the outcome of the test.

◦ Apply the algorithm recursively.

Intuitively: Follow the path corresponding to the case to be classified.
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Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B
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Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B
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Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B
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• Top-down approach

◦ Build the decision tree from top to bottom
(from the root to the leaves).

• Greedy Selection of a Test Attribute

◦ Compute an evaluation measure for all attributes.

◦ Select the attribute with the best evaluation.

• Divide and Conquer / Recursive Descent

◦ Divide the example cases according to the values of the test attribute.

◦ Apply the procedure recursively to the subsets.

◦ Terminate the recursion if – all cases belong to the same class

– no more test attributes are available
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Patient database

• 12 example cases

• 3 descriptive attributes

• 1 class attribute

Assignment of drug

(without patient attributes)

always drug A or always drug B:

50% correct (in 6 of 12 cases)

No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B
10 female 30 normal A
11 female 26 low B
12 male 54 high A
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Sex of the patient

• Division w.r.t. male/female.

Assignment of drug

male: 50% correct (in 3 of 6 cases)

female: 50% correct (in 3 of 6 cases)

total: 50% correct (in 6 of 12 cases)

No Sex Drug

1 male A
6 male A
12 male A
4 male B
8 male B
9 male B

3 female A
5 female A
10 female A
2 female B
7 female B
11 female B
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Age of the patient

• Sort according to age.

• Find best age split.
here: ca. 40 years

Assignment of drug

≤ 40: A 67% correct (in 4 of 6 cases)

> 40: B 67% correct (in 4 of 6 cases)

total: 67% correct (in 8 of 12 cases)

No Age Drug

1 20 A
11 26 B
6 29 A
10 30 A
4 33 B
3 37 A

8 42 B
5 48 A
7 52 B
12 54 A
9 61 B
2 73 B
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Blood pressure of the patient

• Division w.r.t. high/normal/low.

Assignment of drug

high: A 100% correct (in 3 of 3 cases)

normal: 50% correct (in 3 of 6 cases)

low: B 100% correct (in 3 of 3 cases)

total: 75% correct (in 9 of 12 cases)

No Blood pr. Drug

3 high A
5 high A
12 high A

1 normal A
6 normal A
10 normal A
2 normal B
7 normal B
9 normal B

4 low B
8 low B
11 low B
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Current Decision Tree:

Blood pressure

high
normal

low

Drug A ? Drug B
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Blood pressure and sex

• Only patients
with normal blood pressure.

• Division w.r.t. male/female.

Assignment of drug

male: A 67% correct (2 of 3)

female: B 67% correct (2 of 3)

total: 67% correct (4 of 6)

No Blood pr. Sex Drug

3 high A
5 high A
12 high A

1 normal male A
6 normal male A
9 normal male B

2 normal female B
7 normal female B
10 normal female A

4 low B
8 low B
11 low B
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Blood pressure and age

• Only patients
with normal blood pressure.

• Sort according to age.

• Find best age split.
here: ca. 40 years

Assignment of drug

≤ 40: A 100% correct (3 of 3)

> 40: B 100% correct (3 of 3)

total: 100% correct (6 of 6)

No Blood pr. Age Drug

3 high A
5 high A
12 high A

1 normal 20 A
6 normal 29 A
10 normal 30 A

7 normal 52 B
9 normal 61 B
2 normal 73 B

11 low B
4 low B
8 low B
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Assignment of a drug to a patient:

Blood pressure

high
normal

low

Drug A Age Drug B

≤ 40 > 40

Drug A Drug B
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S a set of case or object descriptions

C the class attribute

A(1), . . . , A(m) other attributes (index dropped in the following)

dom(C) = {c1 , . . . , cnC
}, nC : number of classes

dom(A) = {a1, . . . , anA
}, nA: number of attribute values

N.. total number of case or object descriptions i.e. N.. = |S|
Ni. absolute frequency of the class ci

N.j absolute frequency of the attribute value aj

Nij absolute frequency of the combination of the class ci and the attribute value aj.
It is Ni. =

∑nA

j=1Nij and N.j =
∑nC

i=1Nij.

pi. relative frequency of the class ci, pi. =
Ni.

N..

p.j relative frequency of the attribute value aj, p.j =
N.j

N..

pij relative frequency of the combination of class ci and attribute value aj, pij =
Nij

N..

pi|j relative frequency of the class ci in cases having attribute value aj, pi|j =
Nij

N.j
= pij

p.j
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function grow tree (S : set of cases) : node;
begin

best v := WORTHLESS;
for all untested attributes A do

compute frequencies Nij, Ni., N.j for 1 ≤ i ≤ nC and 1 ≤ j ≤ nA;
compute value v of an evaluation measure using Nij, Ni., N.j;
if v > best v then best v := v; best A := A; end;

end
if best v = WORTHLESS
then create leaf node x;

assign majority class of S to x;
else create test node x;

assign test on attribute best A to x;
for all a ∈ dom(best A) do x.child[a] := grow tree(S|best A=a); end;

end;
return x;

end;



Evaluation Measures

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 227

• Evaluation measure used in the above example:
rate of correctly classified example cases.

◦ Advantage: simple to compute, easy to understand.

◦ Disadvantage: works well only for two classes.

• If there are more than two classes, the rate of misclassified example cases neglects
a lot of the available information.

◦ Only the majority class—that is, the class occurring most often in (a subset
of) the example cases—is really considered.

◦ The distribution of the other classes has no influence. However, a good choice
here can be important for deeper levels of the decision tree.

• Therefore: Study also other evaluation measures. Here:

◦ Information gain and its various normalizations.

◦ χ2 measure (well-known in statistics).
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Information Gain (Kullback and Leibler 1951, Quinlan 1986)

Based on Shannon Entropy H = −
n∑

i=1

pi log2 pi (Shannon 1948)

Igain(C,A) = H(C) − H(C|A)

=

︷ ︸︸ ︷

−
nC∑

i=1

pi. log2 pi. −

︷ ︸︸ ︷
nA∑

j=1

p.j


−

nC∑

i=1

pi|j log2 pi|j




H(C) Entropy of the class distribution (C: class attribute)

H(C|A) Expected entropy of the class distribution
if the value of the attribute A becomes known

H(C)−H(C|A) Expected entropy reduction or information gain
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• Information gain for drug and sex:

H(Drug) = −
(
1

2
log2

1

2
+
1

2
log2

1

2

)
= 1

H(Drug | Sex) = 1

2

(
−1
2
log2

1

2
− 1

2
log2

1

2︸ ︷︷ ︸
H(Drug|Sex=male)

)
+

1

2

(
−1
2
log2

1

2
− 1

2
log2

1

2︸ ︷︷ ︸
H(Drug|Sex=female)

)
= 1

Igain(Drug, Sex) = 1− 1 = 0

• No gain at all since the initial the uniform distribution of drug is splitted into two
(still) uniform distributions.
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• Information gain for drug and age:

H(Drug) = −
(
1

2
log2

1

2
+
1

2
log2

1

2

)
= 1

H(Drug | Age) = 1

2

(
−2
3
log2

2

3
− 1

3
log2

1

3︸ ︷︷ ︸
H(Drug|Age≤40)

)
+

1

2

(
−1
3
log2

1

3
− 2

3
log2

2

3︸ ︷︷ ︸
H(Drug|Age>40)

)
≈ 0.9183

Igain(Drug,Age) = 1− 0.9183 = 0.0817

• Splitting w. r. t. age can reduce the overall entropy.
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• Information gain for drug and blood pressure:

H(Drug) = −
(
1

2
log2

1

2
+
1

2
log2

1

2

)
= 1

H(Drug | Blood pr) =
1

4
· 0 + 1

2

(
−2
3
log2

2

3
− 1

3
log2

1

3︸ ︷︷ ︸
H(Drug|Blood pr=normal)

)
+

1

4
· 0 = 0.5

Igain(Drug,Blood pr) = 1− 0.5 = 0.5

• Largest information gain, so we first split w. r. t. blood pressure (as in the example
with misclassification rate).
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• Next level: Subtree blood pressure is normal.

• Information gain for drug and sex:

H(Drug) = −
(
1

2
log2

1

2
+
1

2
log2

1

2

)
= 1

H(Drug | Sex) = 1

2

(
−2
3
log2

2

3
− 1

3
log2

1

3︸ ︷︷ ︸
H(Drug|Sex=male)

)
+

1

2

(
−1
3
log2

1

3
− 2

3
log2

2

3︸ ︷︷ ︸
H(Drug|Sex=female)

)
= 0.9183

Igain(Drug, Sex) = 0.0817

• Entropy can be decreased.
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• Next level: Subtree blood pressure is normal.

• Information gain for drug and age:

H(Drug) = −
(
1

2
log2

1

2
+
1

2
log2

1

2

)
= 1

H(Drug | Age) = 1

2
· 0 + 1

2
· 0 = 0

Igain(Drug,Age) = 1

• Maximal information gain, that is we result in a perfect classification (again, as in
the case of using misclassification rate).
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• Let S = {s1, . . . , sn} be a finite set of alternatives having positive probabilities
P (si), i = 1, . . . , n, satisfying

∑n
i=1 P (si) = 1.

• Shannon Entropy:

H(S) = −
n∑

i=1

P (si) log2 P (si)

• Intuitively: Expected number of yes/no questions that have to be
asked in order to determine the obtaining alternative.

◦ Suppose there is an oracle, which knows the obtaining alternative,
but responds only if the question can be answered with “yes” or “no”.

◦ A better question scheme than asking for one alternative after the other can
easily be found: Divide the set into two subsets of about equal size.

◦ Ask for containment in an arbitrarily chosen subset.

◦ Apply this scheme recursively → number of questions bounded by ⌈log2 n⌉.
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P (s1) = 0.10, P (s2) = 0.15, P (s3) = 0.16, P (s4) = 0.19, P (s5) = 0.40

Shannon entropy: −∑i P (si) log2 P (si) = 2.15 bit/symbol

Linear Traversal

s4, s5

s3, s4, s5

s2, s3, s4, s5

s1, s2, s3, s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5
1 2 3 4 4

Code length: 3.24 bit/symbol
Code efficiency: 0.664

Equal Size Subsets

s1, s2, s3, s4, s5

0.25 0.75
s1, s2 s3, s4, s5

0.59
s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5
2 2 2 3 3

Code length: 2.59 bit/symbol
Code efficiency: 0.830
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• Splitting into subsets of about equal size can lead to a bad arrangement of the
alternatives into subsets → high expected number of questions.

• Good question schemes take the probability of the alternatives into account.

• Shannon-Fano Coding (1948)

◦ Build the question/coding scheme top-down.

◦ Sort the alternatives w.r.t. their probabilities.

◦ Split the set so that the subsets have about equal probability
(splits must respect the probability order of the alternatives).

• Huffman Coding (1952)

◦ Build the question/coding scheme bottom-up.

◦ Start with one element sets.

◦ Always combine those two sets that have the smallest probabilities.



Question/Coding Schemes

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 237

P (s1) = 0.10, P (s2) = 0.15, P (s3) = 0.16, P (s4) = 0.19, P (s5) = 0.40

Shannon entropy: −∑i P (si) log2 P (si) = 2.15 bit/symbol

Shannon–Fano Coding (1948)

s1, s2, s3, s4, s5

0.25

0.41

s1, s2

s1, s2, s3
0.59
s4, s5

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5
3 3 2 2 2

Code length: 2.25 bit/symbol
Code efficiency: 0.955

Huffman Coding (1952)

s1, s2, s3, s4, s5

0.60
s1, s2, s3, s4

0.25 0.35
s1, s2 s3, s4

0.10 0.15 0.16 0.19 0.40
s1 s2 s3 s4 s5
3 3 3 3 1

Code length: 2.20 bit/symbol
Code efficiency: 0.977
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• It can be shown that Huffman coding is optimal if we have to determine the
obtaining alternative in a single instance.
(No question/coding scheme has a smaller expected number of questions.)

• Only if the obtaining alternative has to be determined in a sequence of (indepen-
dent) situations, this scheme can be improved upon.

• Idea: Process the sequence not instance by instance, but combine two, three
or more consecutive instances and ask directly for the obtaining combination of
alternatives.

• Although this enlarges the question/coding scheme, the expected number of ques-
tions per identification is reduced (because each interrogation identifies the ob-
taining alternative for several situations).

• However, the expected number of questions per identification cannot be made ar-
bitrarily small. Shannon showed that there is a lower bound, namely the Shannon
entropy.
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P (s1) =
1
2, P (s2) =

1
4, P (s3) =

1
8, P (s4) =

1
16, P (s5) =

1
16

Shannon entropy: −∑i P (si) log2 P (si) = 1.875 bit/symbol

If the probability distribution allows for a
perfect Huffman code (code efficiency 1),
the Shannon entropy can easily be inter-
preted as follows:

−
∑

i

P (si) log2 P (si)

=
∑

i

P (si)
︸ ︷︷ ︸

occurrence
probability

· log2
1

P (si)︸ ︷︷ ︸
path length

in tree

.

In other words, it is the expected number
of needed yes/no questions.

Perfect Question Scheme

s4, s5

s3, s4, s5

s2, s3, s4, s5

s1, s2, s3, s4, s5

1
2

1
4

1
8

1
16

1
16

s1 s2 s3 s4 s5
1 2 3 4 4

Code length: 1.875 bit/symbol
Code efficiency: 1
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Normalized Information Gain

• Information gain is biased towards many-valued attributes.

• Normalization removes / reduces this bias.

Information Gain Ratio (Quinlan 1986 / 1993)

Igr(C,A) =
Igain(C,A)

HA
=

Igain(C,A)

−∑nA
j=1 p.j log2 p.j

Symmetric Information Gain Ratio (López de Mántaras 1991)

I
(1)
sgr(C,A) =

Igain(C,A)

HAC
or I

(2)
sgr(C,A) =

Igain(C,A)

HA +HC



Bias of Information Gain

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 241

• Information gain is biased towards many-valued attributes,
i.e., of two attributes having about the same information content it tends to select
the one having more values.

• The reasons are quantization effects caused by the finite number of example cases
(due to which only a finite number of different probabilities can result in estima-
tions) in connection with the following theorem:

• Theorem: Let A, B, and C be three attributes with finite domains and let
their joint probability distribution be strictly positive, i.e., ∀a ∈ dom(A) : ∀b ∈
dom(B) : ∀c ∈ dom(C) : P (A = a,B = b, C = c) > 0. Then

Igain(C,AB) ≥ Igain(C,B),

with equality obtaining only if the attributes C and A are conditionally indepen-
dent given B, i.e., if P (C = c | A = a,B = b) = P (C = c | B = b).

(A detailed proof of this theorem can be found, for example, in [Borgelt and Kruse 2002], p. 311ff.)
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χ2 Measure

• Compares the actual joint distribution
with a hypothetical independent distribution.

• Uses absolute comparison.

• Can be interpreted as a difference measure.

χ2(C,A) =
nC∑

i=1

nA∑

j=1

N..
(pi.p.j − pij)

2

pi.p.j

• Side remark: Information gain can also be interpreted as a difference measure.

Igain(C,A) =
nC∑

i=1

nA∑

j=1

pij log2
pij
pi.p.j
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General Approach: Discretization

• Preprocessing I

◦ Form equally sized or equally populated intervals.

• During the tree construction

◦ Sort the example cases according to the attribute’s values.

◦ Construct a binary symbolic attribute for every possible split
(values: “≤ threshold” and “> threshold”).

◦ Compute the evaluation measure for these binary attributes.

◦ Possible improvements: Add a penalty depending on the number of splits.

• Preprocessing II / Multisplits during tree construction

◦ Build a decision tree using only the numeric attribute.

◦ Flatten the tree to obtain a multi-interval discretization.
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Induction

• Weight the evaluation measure with the fraction of cases with known values.

◦ Idea: The attribute provides information only if it is known.

• Try to find a surrogate test attribute with similar properties
(CART, Breiman et al. 1984)

• Assign the case to all branches, weighted in each branch with the relative frequency
of the corresponding attribute value (C4.5, Quinlan 1993).

Classification

• Use the surrogate test attribute found during induction.

• Follow all branches of the test attribute, weighted with their relative number
of cases, aggregate the class distributions of all leaves reached, and assign the
majority class of the aggregated class distribution.
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Pruning serves the purpose

• to simplify the tree (improve interpretability),

• to avoid overfitting (improve generalization).

Basic ideas:

• Replace “bad” branches (subtrees) by leaves.

• Replace a subtree by its largest branch if it is better.

Common approaches:

• Reduced error pruning

• Pessimistic pruning

• Confidence level pruning

• Minimum description length pruning
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• Classify a set of new example cases with the decision tree.
(These cases must not have been used for the induction!)

• Determine the number of errors for all leaves.

• The number of errors of a subtree is the sum of the errors of all of its leaves.

• Determine the number of errors for leaves that replace subtrees.

• If such a leaf leads to the same or fewer errors than the subtree,
replace the subtree by the leaf.

• If a subtree has been replaced,
recompute the number of errors of the subtrees it is part of.

Advantage: Very good pruning, effective avoidance of overfitting.

Disadvantage: Additional example cases needed.
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• Classify a set of example cases with the decision tree.
(These cases may or may not have been used for the induction.)

• Determine the number of errors for all leaves and
increase this number by a fixed, user-specified amount r.

• The number of errors of a subtree is the sum of the errors of all of its leaves.

• Determine the number of errors for leaves that replace subtrees
(also increased by r).

• If such a leaf leads to the same or fewer errors than the subtree,
replace the subtree by the leaf and recompute subtree errors.

Advantage: No additional example cases needed.

Disadvantage: Number of cases in a leaf has no influence.
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• Like pessimistic pruning, but the number of errors is computed as follows:

◦ See classification in a leaf as a Bernoulli experiment (error / no error).

◦ Estimate an interval for the error probability based on a user-specified confi-
dence level α.
(use approximation of the binomial distribution by a normal distribution)

◦ Increase error number to the upper level of the confidence interval
times the number of cases assigned to the leaf.

◦ Formal problem: Classification is not a random experiment.

Advantage: No additional example cases needed, good pruning.

Disadvantage: Statistically dubious foundation.
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Pessimistic Pruning with r = 0.8 and r = 0.4:

c 1: 13, c 2: 7
leaf: 7.0 errors

r = 0.8: 7.8 errors (prune subtree)
r = 0.4: 7.4 errors (keep subtree)

a1 a2 a3

c 1: 5, c 2: 2

2.8 errors
2.4 errors

c 1: 6, c 2: 2

2.8 errors
2.4 errors

c 1: 2, c 2: 3

2.8 errors
2.4 errors

total: 6.0 errors

r = 0.8: 8.4 errors
r = 0.4: 7.2 errors
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A decision tree for the Iris data
(induced with information gain ratio, unpruned)
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A decision tree for the Iris data
(pruned with confidence level pruning, α = 0.8, and pessimistic pruning, r = 2)

• Left: 7 instead of 11 nodes, 4 instead of 2 misclassifications.

• Right: 5 instead of 11 nodes, 6 instead of 2 misclassifications.

• The right tree is “minimal” for the three classes.
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• Target variable is not a class,
but a numeric quantity.

• Simple regression trees:
predict constant values in leaves.
(blue lines)

• More complex regression trees:
predict linear functions in leaves.
(red line)

x

y

30 60

x: input variable, y: target variable
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distributions of
the target value

split w.r.t.
a test attribute

a1 a2

• The variance / standard deviation is compared to
the variance / standard deviation in the branches.

• The attribute that yields the highest reduction is selected.
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A regression tree for the Iris data (petal width)
(induced with reduction of sum of squared errors)
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• Decision Trees are Classifiers with Tree Structure

◦ Inner node: Test of a descriptive attribute

◦ Leaf node: Assignment of a class

• Induction of Decision Trees from Data

(Top-Down Induction of Decision Trees, TDIDT)

◦ Divide and conquer approach / recursive descent

◦ Greedy selection of the test attributes

◦ Attributes are selected based on an evaluation measure,
e.g. information gain, χ2 measure

◦ Recommended: Pruning of the decision tree

• Numeric Target: Regression Trees
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• General method to evaluate / predict the performance of classifiers.

• Serves the purpose to estimate the error rate on new example cases.

• Procedure of cross validation:

◦ Split the given data set into n so-called folds of equal size
(n-fold cross validation).

◦ Combine n− 1 folds into a training data set,
build a classifier, and test it on the n-th fold.

◦ Do this for all n possible selections of n− 1 folds
and average the error rates.

• Special case: Leave-1-out cross validation.
(use as many folds as there are example cases)

• Final classifier is learned from the full data set.
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Clustering
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• General Idea of Clustering

◦ Similarity and distance measures

• Prototype-based Clustering

◦ Classical c-means clustering

◦ Learning vector quantization

◦ Fuzzy c-means clustering

◦ Expectation maximization for Gaussian mixtures

• Hierarchical Agglomerative Clustering

◦ Merging clusters: Dendrograms

◦ Measuring the distance of clusters

◦ Choosing the clusters

• Summary
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• Goal: Arrange the given data tuples into classes or clusters.

• Data tuples assigned to the same cluster should be as similar as possible.

• Data tuples assigned to different clusters should be as dissimilar as possible.

• Similarity is most often measured with the help of a distance function.
(The smaller the distance, the more similar the data tuples.)

• Often: restriction to data points in IRm (although this is not mandatory).

d : IRm× IRm → IR+
0 is a distance function if it satisfies ∀~x, ~y, ~z ∈ IRm :

(i) d(~x, ~y) = 0 ⇔ ~x = ~y,

(ii) d(~x, ~y) = d(~y, ~x) (symmetry),

(iii) d(~x, ~z) ≤ d(~x, ~y) + d(~y, ~z) (triangle inequality).
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Illustration of distance functions: Minkowski Family

dk(~x, ~y) =




n∑

i=1

(xi − yi)
k




1
k

Well-known special cases from this family are:

k = 1 : Manhattan or city block distance,
k = 2 : Euclidean distance,
k →∞ : maximum distance, i.e. d∞(~x, ~y) = max n

i=1|xi − yi|.

k = 1 k = 2 k →∞
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• Choose a number c of clusters to be found (user input).

• Initialize the cluster centers randomly
(for instance, by randomly selecting c data points).

• Data point assignment:
Assign each data point to the cluster center that is closest to it
(i.e. closer than any other cluster center).

• Cluster center update:
Compute new cluster centers as the mean vectors of the assigned data points.
(Intuitively: center of gravity if each data point has unit weight.)

• Repeat these two steps (data point assignment and cluster center update)
until the clusters centers do not change anymore.

• It can be shown that this scheme must converge,
i.e., the update of the cluster centers cannot go on forever.
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Data set to cluster.

Choose c = 3 clusters.
(From visual inspection, can be
difficult to determine in general.)

Initial position of cluster centers.

Randomly selected data points.
(Alternative methods include
e.g. latin hypercube sampling)
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• Dots represent cluster centers (quantization vectors).

• Left: Delaunay Triangulation
(The circle through the corners of a triangle does not contain another point.)

• Right: Voronoi Diagram
(Midperpendiculars of the Delaunay triangulation: boundaries of the regions of
points that are closest to the enclosed cluster center (Voronoi cells)).
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• Delaunay Triangulation: simple triangle (shown in grey on the left)

• Voronoi Diagram: midperpendiculars of the triangle’s edges
(shown in blue on the left, in grey on the right)
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c-Means Clustering: Local Minima
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• Clustering is successful in this example:
The clusters found are those that would have been formed intuitively.

• Convergence is achieved after only 5 steps.
(This is typical: convergence is usually very fast.)

• However: The clustering result is fairly sensitive to the initial positions of
the cluster centers.

• With a bad initialization clustering may fail
(the alternating update process gets stuck in a local minimum).

• Fuzzy c-means clustering and the estimation of a mixture of Gaussians are much
more robust (to be discussed later).

• Research issue: Can we determine the number of clusters automatically?
(Some approaches exists, but none of them is too successful.)
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Adaptation of reference vectors / codebook vectors

• Like “online” c-means clustering (update after each data point).

• For each training pattern find the closest reference vector.

• Adapt only this reference vector (winner neuron).

• For classified data the class may be taken into account.
(reference vectors are assigned to classes)

Attraction rule (data point and reference vector have same class)

~r (new) = ~r (old) + η
(
~p− ~r (old)

)
,

Repulsion rule (data point and reference vector have different class)

~r (new) = ~r (old) − η
(
~p− ~r (old)

)
.
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Adaptation of reference vectors / codebook vectors

~r1

~r2

~r3~p

d
ηd

attraction rule

~r1

~r2

~r3~p

d ηd

repulsion rule

• ~p: data point, ~ri: reference vector
• η = 0.4 (learning rate)
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Problem: fixed learning rate can lead to oscillations

Solution: time dependent learning rate

η(t) = η0α
t, 0 < α < 1, or η(t) = η0t

κ, κ < 0.
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Adaptation of reference vectors / codebook vectors

• Left: Online training with learning rate η = 0.1,

• Right: Batch training with learning rate η = 0.05.
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• Classical Logic: only truth values true and false.
Classical Algebra: either is element or is not element.

• The bivalence of the classical theories is often not appropriate.

Illustrating example: Sorites Paradoxon (Greek sorites: heap)

◦ One billion grains of sand is a heap of sand. (true)

◦ If you remove a grain of sand from a heap of sand,
a heap of sand remains. (true)

Thus it follows:

◦ 999 999 999 grains are a heap of sand. (true)

Multiple repetition of the same conclusion finally leads to

◦ 1 grain of sand is a heap of sand. (false!)

At which number of grains the conclusion does not preserve the truth?
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• Obviously: There is no exact determined number of grains of sand,
where the conclusion to the next smaller number is wrong.

• Problem: Terms of natural language (e.g., “heap of sand”, “bald headed”,
“warm”, “fast”, “high pressure”, “light” etc.) are vague.

• Note: Though vague terms may be inexact , but not useless.

◦ Also for vague terms there exist situations/objects,
where they are for sure applicable and
where they are for sure not applicable .

◦ Between this a penumbra (Latin semi-shade) of situations is located, where
it is unclear, whether the terms are applicable, or whether they are only ap-
plicable with restrictions (“small heap of sand”).

◦ The fuzzy theory tries to model this penumbra mathematically
(“soft transition” between applicable and not applicable).
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• Fuzzy logic is an extension of the classical logic
to intermediate values between true and false.

• As truth value, any value from the real interval [0, 1] can appear,
whereas 0 =̂ false and 1 =̂ true.

• Thus necessary: Extension of the logical operators

◦ Negation classical: ¬a, fuzzy: ∼ a Fuzzy Negation

◦ Conjunction classical: a ∧ b, fuzzy: ⊤(a, b) t-Norm

◦ Disjunction classical: a ∨ b, fuzzy: ⊥(a, b) t-Conorm

• Basic principles of the extension:

◦ For the extreme values 0 and 1, the operators shall behave the same way like
the classical examples (marginal/edge constraints).

◦ For the intermediate values, the behavior shall be monotone.

◦ As far as possible the laws of the classical logical shall be preserved.
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• Allow degrees of membership of a datum to different clusters.
(Classical c-means clustering assigns data crisply.)

Objective Function: (to be minimized)

J(X,B,U) =
c∑

i=1

n∑

j=1

uwijd
2(~βi, ~xj)

• U = [uij] is the c× n fuzzy partition matrix,

uij ∈ [0, 1] is the membership degree of the data point ~xj to the i-th cluster.

• B = {~β1, . . . , ~βc} is the set of cluster prototypes.
• w is the so-called “fuzzifier” (the higher w, the softer the cluster boundaries).

• Constraints:

∀i ∈ {1, . . . , c} :
n∑

j=1

uij > 0 and ∀j ∈ {1, . . . , n} :
c∑

i=1

uij = 1.
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Relation to Classical c-Means Clustering:

• c-means clustering can be seen as optimizing the objective function

J(X,B,U) =
c∑

i=1

n∑

j=1

uij d
2(~βi, ~xj),

where ∀i, j : uij ∈ {0, 1} (i.e. hard assignment of the data points)

and the cluster prototypes ~βi consist only of cluster centers.

• To obtain a fuzzy assignment of the data points, it is not enough
to extend the range of values for the uij to the unit interval [0, 1]:
The objective function J is optimized for a hard assignment
(each data point is assigned to the closest cluster center).

• Necessary for degrees of membership:
Apply a convex function h : [0, 1]→ [0, 1] to the membership degrees uij.
Most common choice: h(u) = uw, usually with w = 2.
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Task: Find values ~x = (x1, . . . , xm) such that f (~x) = f (x1, . . . , xm) is optimal.

Often feasible approach:

• A necessary condition for a (local) optimum (maximum or minimum) is
that the partial derivatives w. r. t. the parameters vanish (Pierre Fermat).

• Therefore: (Try to) solve the equation system that results from setting
all partial derivatives w. r. t. the parameters equal to zero.

Example task: Minimize f (x, y) = x2 + y2 + xy − 4x− 5y.

Solution procedure:

1. Take the partial derivatives of the objective function and set them to zero:

∂f

∂x
= 2x + y − 4 = 0,

∂f

∂y
= 2y + x− 5 = 0.

2. Solve the resulting (here: linear) equation system: x = 1, y = 2.
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Often a function has to be optimized subject to certain constraints.

Here: restriction to k equality constraints Ci(~x) = 0, i = 1, . . . , k.

Note: the equality constraints describe a subspace of the domain of the function.

Problem of optimization with constraints:

• The gradient of the objective function f may vanish outside the constrained sub-
space, leading to an unacceptable solution (violating the constraints).

• At an optimum in the constrained subspace the derivatives need not vanish.

One way to handle this problem are generalized coordinates:

• Exploit the dependence between the parameters specified in the constraints to
express some parameters in terms of the others and thus reduce the set ~x to a set
~x′ of independent parameters (generalized coordinates).

• Problem: Can be clumsy and cumbersome, if possible at all, because the form of
the constraints may not allow for expressing some parameters as proper functions
of the others.
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Contour Lines: Given a function f : R2 → R, the contour plot is obtained
by drawing the contour sets for equidistant levels, i. e., plot
the following sets of points:

Mkc = {(x1, x2) ∈ R
2 | f (x1, x2) = kc}

for k ∈ N and fixed c ∈ R≥0

Example: f (x1, x2) = x21 + x22
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• The gradient of a function f: Rn → R consists of the vector of its partial deriva-
tives w. r. t. the arguments:

∇~x f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)⊤

• The gradient evaluated at a point ~x∗, written as

∇~x f |~x∗ =

(
∂f

∂x1

∣∣∣∣∣
x∗1

, . . . ,
∂f

∂xn

∣∣∣∣∣
x∗n

)⊤
,

points into the direction of largest increase of f .

• Formally, the gradient of a function with domain R
n has n dimensions although

it is often depicted as an n + 1-dimensional vector.
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f1(x1, x2) = x21 + x22

∇~x f1 =

(
2x1
2x2

)

f2(x1, x2) = x1 + x2 − 1

∇~x f2 =

(
1
1

)
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Problem: If the global optimum of f lies outside the feasible region
the gradient does not vanish at the constrained optimum ~x∗.

Which criteria do hold at the constrained optimum?

• Assume we move ~x∗ throughout the feasible region to find the optimum “manu-
ally”. If we cross a contour line of f , the crossing point cannot be an optimum:
because crossing a contour line means descending or ascending.

• However, if we touch a contour line we have found an optimum because stepping
backward or forward will increase (or decrease) the value.

• At the “touching point” ~x∗ the gradient of f and the gradient of g are parallel.

∇f = λ∇g

• We only need both gradients to be parallel. Since they can have opposite directions
and different lengths λ is used to rescale ∇g.
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Task: Minimize f (x1, x2) = x21 + x22 subject to g : x + y = 1.

• Crossing a contour line: Point 1 cannot
be a constrained minimum because ∇f has
a non-zero component in the constrained
space. Walking in opposite direction to this
component can further decrease f .

• Touching a contour line: Point 2 is a
constrained minimum: both gradients are
parallel, hence there is no component of ∇f
in the constrained space that might lead us
to a lower value of f .
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• Therefore, at the constrained optimum ~x∗ we require:

∇f (~x∗) = λ∇g(~x∗) and g(~x∗) = 0

• More compact representation:

L(~x, λ) = f (~x)− λg(~x) and ∇L = 0

• Taking the partial derivatives reveals the initial conditions:

∂

∂~x
L(~x, λ) = ∇f (~x)− λ∇g(~x) = 0

∇f (~x) = λ∇g(~x)
∂

∂λ
L(~x, λ) = g(~x) = 0

• The negative sign in the Lagrange function L can be incorporated into λ, i. e. we
will from now on replace it by a positive sign.



Lagrange Theory: Example 1

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 285

Example task: Minimize f (x, y) = x2 + y2 subject to x + y = 1.

Solution procedure:

1. Rewrite the constraint, so that one side gets zero: x + y − 1 = 0.

2. Construct the Lagrange function by incorporating the constraint
into the objective function with a Lagrange multiplier λ:

L(x, y, λ) = x2 + y2 + λ(x + y − 1).

3. Take the partial derivatives of the Lagrange function and set them to zero
(necessary conditions for a minimum):

∂L

∂x
= 2x + λ = 0,

∂L

∂y
= 2y + λ = 0,

∂L

∂λ
= x + y − 1 = 0.

4. Solve the resulting (here: linear) equation system:

λ = −1, x = y = 1
2.
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Let ~x∗ be a (local) optimum of f (~x) in the constrained subspace. Then:

• The gradient ∇~xf (~x∗), if it does not vanish, must be perpendicular to the
constrained subspace. (If ∇~xf (~x∗) had a component in the constrained subspace,
~x∗ would not be a (local) optimum in this subspace.)

• The gradients ∇~x gj(~x∗), 1 ≤ j ≤ k, must all be perpendicular to the
constrained subspace, because they are constant, namely 0, in this subspace.
Together they span the subspace perpendicular to the constrained subspace.

• Therefore it must be possible to find values λj, 1 ≤ j ≤ k, such that

∇~xf (~x∗) +
s∑

j=1

λj∇~x gj(~x∗) = 0.

If the constraints (and thus their gradients) are linearly independent, the values
λj are uniquely determined. This equation can be used to compensate the
gradient of f (~x∗) so that it vanishes at ~x∗.
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As a consequence of these insights we obtain the

Method of Lagrange Multipliers:

Given: ◦ a function f (~x), which is to be optimized,
◦ k equality constraints gj(~x) = 0, 1 ≤ j ≤ k.

Procedure:

1. Construct the so-called Lagrange function by incorporating the equality con-
straints gi, i = 1, . . . , k, with (unknown) Lagrange multipliers λi:

L(~x, λ1, . . . , λk) = f (~x) +
k∑

i=1

λigi(~x).

2. Set the partial derivatives of the Lagrange function equal to zero:

∂L

∂x1
= 0, . . . ,

∂L

∂xm
= 0,

∂L

∂λ1
= 0, . . . ,

∂L

∂λk
= 0.

3. (Try to) solve the resulting equation system.
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Example task: Minimize f (x, y) = x2 + y2 subject to x + y = 1.

x

y

0

1

0 0.5 1

unconstrained
minimum
~p0 = (0, 0)

minimum in the
constrained subspace
~p1 = (12,

1
2)

constrained
subspace
x + y = 1

f (x, y) = x2+y2

The unconstrained minimum is not in the constrained subspace, and
at the minimum in the constrained subspace the gradient does not vanish.
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Example task: Minimize f (x, y) = x2 + y2 subject to x + y = 1.

x

y

C(x, y) = x + y − 1

x + y − 1 = 0
x

y

0

0.5

1

0
10.5

L(x, y,−1) = x2+y2−(x+y−1)
minimum ~p1 = (12,

1
2)

The gradient of the constraint is perpendicular to the constrained subspace.
The (unconstrained) minimum of the Lagrange function L(x, y, λ)
is the minimum of the objective function f (x, y) in the constrained subspace.
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Example task: Find the side lengths x, y, z of a box with maximum volume
for a given area S of the surface.

Formally: Maximize f (x, y, z) = xyz
subject to 2xy + 2xz + 2yz = S.

Solution procedure:

1. The constraint is C(x, y, z) = 2xy + 2xz + 2yz − S = 0.

2. The Lagrange function is

L(x, y, z, λ) = xyz + λ(2xy + 2xz + 2yz − S).

3. Taking the partial derivatives yields (in addition to the constraint):

∂L

∂x
= yz+2λ(y+z) = 0,

∂L

∂y
= xz+2λ(x+z) = 0,

∂L

∂y
= xy+2λ(x+y) = 0.

4. The solution is: λ = −1
4

√
S
6 , x = y = z =

√
S
6 (i.e., the box is a cube).
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Observations:

• Due to the representation of the gradient of f (~x) at a local optimum ~x∗ in the
constrained subspace (see above) the gradient of L w.r.t. ~x vanishes at ~x∗.
→ The standard approach works again!

• If the constraints are satisfied, the additional terms have no influence.

→ The original task is not modified (same objective function).

• Taking the partial derivative w.r.t. a Lagrange multiplier
reproduces the corresponding equality constraint:

∀j; 1 ≤ j ≤ k :
∂

∂λj
L(~x, λ1, . . . , λk) = Cj(~x),

→ Constraints enter the equation system to solve in a natural way.

Remark:

• Inequality constraints can be handled with the Kuhn–Tucker theory.
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Objective function: (to be minimized)

J(X,B,U) =
c∑

i=1

n∑

j=1

uwijd
2(~xj, ~βi)

Constraints:

∀i ∈ {1, . . . , c} :
n∑

j=1

uij > 0 and ∀j ∈ {1, . . . , n} :
c∑

i=1

uij = 1.

• Problem: The objective function J cannot be minimized directly.

• Therefore: Alternating Optimization

◦ Optimize membership degrees for fixed cluster parameters.

◦ Optimize cluster parameters for fixed membership degrees.

(Update formulae are derived by differentiating the objective function J)

◦ Iterate until convergence (checked, e.g., by change of cluster center).
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First Step: Fix the cluster parameters.

Introduce Lagrange multipliers λj, 0 ≤ j ≤ n, to incorporate the constraints ∀j; 1 ≤
j ≤ n :

∑c
i=1 uij = 1. This yields the Lagrange function (to be minimized)

L(X,B,U,Λ) =
c∑

i=1

n∑

j=1

uwij d
2
ij

︸ ︷︷ ︸
=J(X,B,U)

+
n∑

j=1

λj


1−

c∑

i=1

uij


 ,

A necessary condition for the minimum is that the partial derivatives of the
Lagrange function w.r.t. the membership degrees vanish, i.e.,

∂

∂ukl
L(X,B,U,Λ) = w uw−1kl d2kl − λl

!
= 0,

which leads to

∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n : uij =


 λj

w d2ij




1
w−1

.
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Summing these equations over the clusters (in order to be able to exploit
the corresponding constraints on the membership degrees), we get

1 =
c∑

i=1

uij =
c∑

i=1


 λj

w d2ij




1
w−1

.

Consequently the λj, 1 ≤ j ≤ n, are

λj =




c∑

i=1

(
w d2ij

) 1
1−w



1−w

.

Inserting this into the equation for the membership degrees yields

∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n : uij =
d

2
1−w
ij

∑c
k=1 d

2
1−w
kj

.

This update formula results regardless of the distance measure.
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Fuzzy C-Means Algorithm: Euclidean distance

d 2
fcm(~xj,

~βi) = (~xj − ~µi)
⊤(~xj − ~µi) with ~βi = (~µi)

Necessary condition for a minimum: gradients w.r.t. cluster centers vanish.

∇~µk Jfcm(X,B,U) = ∇~µk
c∑

i=1

n∑

j=1

uwij (~xj − ~µi)
⊤(~xj − ~µi)

=
n∑

j=1

uwkj ∇~µk(~xj − ~µk)
⊤(~xj − ~µk)

= −2
n∑

j=1

uwkj (~xj − ~µk)
!
= ~0

Resulting update rule for the cluster centers (second step of alt. optimization):

∀i; 1 ≤ i ≤ c : ~µi =

∑n
j=1 u

w
ij~xj∑n

j=1 u
w
ij
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Gustafson–Kessel Algorithm: Mahalanobis distance

d 2
gk(~xj,

~βi) = (~xj − ~µi)
⊤C−1i (~xj − ~µi) with ~βi = (~µi,Σi)

Additional constraints: |Ci| = 1 (all cluster have unit size).
These constraints are incorporated again by Lagrange multipliers.

A similar derivation as for the fuzzy c-means algorithm
yields the same update rule for the cluster centers:

∀i; 1 ≤ i ≤ c : ~µi =

∑n
j=1 u

w
ij~xj∑n

j=1 u
w
ij

Update rule for the covariance matrices (m is the number of dimensions):

Ci =
1

m
√
|Σi|

Σi where Σi =
n∑

j=1

uwij(~xj − ~µi)(~xj − ~µi)
⊤.
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Classical c-Means Fuzzy c-Means
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Fuzzy c-Means Gustafson–Kessel
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• Assumption: Data was generated by sampling a set of normal distributions.
(The probability density is a mixture of Gaussian distributions.)

• Formally: We assume that the probability density can be described as

f ~X
(~x;C) =

c∑

y=1

f ~X,Y
(~x, y;C) =

c∑

y=1

pY (y;C) · f ~X|Y (~x|y;C).

C is the set of cluster parameters

~X is a random vector that has the data space as its domain

Y is a random variable that has the cluster indices as possible
values (i.e., dom( ~X) = IRm and dom(Y ) = {1, . . . , c})

pY (y;C) is the probability that a data point belongs to (is generated
by) the y-th component of the mixture

f ~X|Y (~x|y;C) is the conditional probability density function of a data point
given the cluster (specified by the cluster index y)
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• Basic idea: Do a maximum likelihood estimation of the cluster parameters.

• Problem: The likelihood function,

L(X;C) =
n∏

j=1

f ~Xj
(~xj;C) =

n∏

j=1

c∑

y=1

pY (y;C) · f ~X|Y (~xj|y;C),

is difficult to optimize, even if one takes the natural logarithm (cf. the maximum
likelihood estimation of the parameters of a normal distribution), because

lnL(X;C) =
n∑

j=1

ln
c∑

y=1

pY (y;C) · f ~X|Y (~xj|y;C)

contains the natural logarithms of complex sums.

• Approach: Assume that there are “hidden” variables Yj stating the clusters
that generated the data points ~xj, so that the sums reduce to one term.

• Problem: Since the Yj are hidden, we do not know their values.
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• Formally: Maximize the likelihood of the “completed” data set (X, ~y),
where ~y = (y1, . . . , yn) combines the values of the variables Yj. That is,

L(X, ~y;C) =
n∏

j=1

f ~Xj,Yj
(~xj, yj;C) =

n∏

j=1

pYj(yj;C) · f ~Xj|Yj(~xj|yj;C).

• Problem: Since the Yj are hidden, the values yj are unknown
(and thus the factors pYj(yj;C) cannot be computed).

• Approach to find a solution nevertheless:

◦ See the Yj as random variables (the values yj are not fixed) and
consider a probability distribution over the possible values.

◦ As a consequence L(X, ~y;C) becomes a random variable,
even for a fixed data set X and fixed cluster parameters C.

◦ Try to maximize the expected value of L(X, ~y;C) or lnL(X, ~y;C)
(hence the name expectation maximization).
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• Formally: Find the cluster parameters as

Ĉ = argmax
C

E([ln]L(X, ~y;C) | X;C),

that is, maximize the expected likelihood

E(L(X, ~y;C) | X;C) =
∑

~y∈{1,...,c}n
p~Y |X (~y |X;C) ·

n∏

j=1

f ~Xj,Yj
(~xj, yj;C)

or, alternatively, maximize the expected log-likelihood

E(lnL(X, ~y;C) | X;C) =
∑

~y∈{1,...,c}n
p~Y |X (~y |X;C) ·

n∑

j=1

ln f ~Xj,Yj
(~xj, yj;C).

• Unfortunately, these functionals are still difficult to optimize directly.

• Solution: Use the equation as an iterative scheme, fixing C in some terms
(iteratively compute better approximations, similar to Heron’s algorithm).
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• Task: Find the square root of a given number x, i.e., find y =
√
x.

• Approach: Rewrite the defining equation y2 = x as follows:

y2 = x ⇔ 2y2 = y2 + x ⇔ y =
1

2y
(y2 + x) ⇔ y =

1

2

(
y +

x

y

)
.

• Use the resulting equation as an iteration formula, i.e., compute the sequence

yk+1 =
1

2

(
yk +

x

yk

)
with y0 = 1.

• It can be shown that 0 ≤ yk −
√
x ≤ yk−1 − yn for k ≥ 2.

Therefore this iteration formula provides increasingly better approximations of the
square root of x and thus is a safe and simple way to compute it.
Example x = 2: y0 = 1, y1 = 1.5, y2 ≈ 1.41667, y3 ≈ 1.414216, y4 ≈ 1.414213.

• Heron’s algorithm converges very quickly and is often used in pocket calculators
and microprocessors to implement the square root.
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• Iterative scheme for expectation maximization:
Choose some initial set C0 of cluster parameters and then compute

Ck+1 = argmax
C

E(lnL(X, ~y;C) | X;Ck)

= argmax
C

∑

~y∈{1,...,c}n
p~Y |X (~y |X;Ck)

n∑

j=1

ln f ~Xj,Yj
(~xj, yj;C)

= argmax
C

∑

~y∈{1,...,c}n




n∏

l=1

p
Yl| ~Xl

(yl|~xl;Ck)




n∑

j=1

ln f ~Xj,Yj
(~xj, yj;C)

= argmax
C

c∑

i=1

n∑

j=1

p
Yj| ~Xj

(i|~xj;Ck) · ln f ~Xj,Yj
(~xj, i;C).

• It can be shown that each EM iteration increases the likelihood of the data
and that the algorithm converges to a local maximum of the likelihood function
(i.e., EM is a safe way to maximize the likelihood function).
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Justification of the last step on the previous slide:

∑

~y∈{1,...,c}n




n∏

l=1

p
Yl| ~Xl

(yl|~xl;Ck)




n∑

j=1

ln f ~Xj,Yj
(~xj, yj;C)

=
c∑

y1=1

· · ·
c∑

yn=1




n∏

l=1

p
Yl| ~Xl

(yl|~xl;Ck)




n∑

j=1

c∑

i=1

δi,yj ln f ~Xj,Yj
(~xj, i;C)

=
c∑

i=1

n∑

j=1

ln f ~Xj,Yj
(~xj, i;C)

c∑

y1=1

· · ·
c∑

yn=1

δi,yj

n∏

l=1

p
Yl| ~Xl

(yl|~xl;Ck)

=
c∑

i=1

n∑

j=1

p
Yj| ~Xj

(i|~xj;Ck) · ln f ~Xj,Yj
(~xj, i;C)

c∑

y1=1

· · ·
c∑

yj−1=1

c∑

yj+1=1

· · ·
c∑

yn=1

n∏

l=1,l 6=j
p
Yl| ~Xl

(yl|~xl;Ck)

︸ ︷︷ ︸
=
∏n

l=1,l 6=j

∑c
yl=1 pYl| ~Xl

(yl|~xl;Ck) =
∏n

l=1,l 6=j 1 = 1

.



Expectation Maximization

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 306

• The probabilities p
Yj| ~Xj

(i|~xj;Ck) are computed as

p
Yj| ~Xj

(i|~xj;Ck) =
f ~Xj,Yj

(~xj, i;Ck)

f ~Xj
(~xj;Ck)

=
f ~Xj|Yj(~xj|i;Ck) · pYj(i;Ck)

∑c
l=1 f ~Xj|Yj(~xj|l;Ck) · pYj(l;Ck)

,

that is, as the relative probability densities of the different clusters (as specified
by the cluster parameters) at the location of the data points ~xj.

• The p
Yj| ~Xj

(i|~xj;Ck) are the posterior probabilities of the clusters

given the data point ~xj and a set of cluster parameters Ck.

• They can be seen as case weights of a “completed” data set:

◦ Split each data point ~xj into c data points (~xj, i), i = 1, . . . , c.

◦ Distribute the unit weight of the data point ~xj according to the above proba-
bilities, i.e., assign to (~xj, i) the weight pYj| ~Xj

(i|~xj;Ck), i = 1, . . . , c.



Expectation Maximization: Cookbook Recipe

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 307

Core Iteration Formula

Ck+1 = argmax
C

c∑

i=1

n∑

j=1

p
Yj| ~Xj

(i|~xj;Ck) · ln f ~Xj,Yj
(~xj, i;C)

Expectation Step

• For all data points ~xj:
Compute for each normal distribution the probability p

Yj| ~Xj
(i|~xj;Ck)

that the data point was generated from it
(ratio of probability densities at the location of the data point).
→ “weight” of the data point for the estimation.

Maximization Step

• For all normal distributions:
Estimate the parameters by standard maximum likelihood estimation
using the probabilities (“weights”) assigned to the data points
w.r.t. the distribution in the expectation step.
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Expectation Step: Use Bayes’ rule to compute

p
C| ~X(i|~x;C) =

pC(i; ci) · f ~X|C(~x|i; ci)
f ~X

(~x;C)
=

pC(i; ci) · f ~X|C(~x|i; ci)∑c
k=1 pC(k; ck) · f ~X|C(~x|k; ck)

.

→ “weight” of the data point ~x for the estimation.

Maximization Step: Use maximum likelihood estimation to compute

̺
(t+1)
i =

1

n

n∑

j=1

p
C| ~Xj

(i|~xj;C(t)), ~µ
(t+1)
i =

∑n
j=1 pC| ~Xj

(i|~xj;C(t)) · ~xj
∑n

j=1 pC| ~Xj
(i|~xj;C(t))

,

and Σ
(t+1)
i =

∑n
j=1 pC| ~Xj

(i|~xj;C(t)) ·

~xj − ~µ

(t+1)
i




~xj − ~µ

(t+1)
i



⊤

∑n
j=1 pC| ~Xj

(i|~xj;C(t))

Iterate until convergence (checked, e.g., by change of mean vector).
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• If a fully general mixture of Gaussian distributions is used,
the likelihood function is truly optimized if

◦ all normal distributions except one are contracted to single data points and

◦ the remaining normal distribution is the maximum likelihood estimate for the
remaining data points.

• This undesired result is rare,
because the algorithm gets stuck in a local optimum.

• Nevertheless it is recommended to take countermeasures,
which consist mainly in reducing the degrees of freedom, like

◦ Fix the determinants of the covariance matrices to equal values.

◦ Use a diagonal instead of a general covariance matrix.

◦ Use an isotropic variance instead of a covariance matrix.

◦ Fix the prior probabilities of the clusters to equal values.
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• Start with every data point in its own cluster.
(i.e., start with so-called singletons: single element clusters)

• In each step merge those two clusters that are closest to each other.

• Keep on merging clusters until all data points are contained in one cluster.

• The result is a hierarchy of clusters that can be visualized in a tree structure
(a so-called dendrogram — from the Greek δέντ̺ων (dendron): tree)

• Measuring the Distances

◦ The distance between singletons is simply the distance between the (single)
data points contained in them.

◦ However: How do we compute the distance between clusters that contain more
than one data point?
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• Centroid (red)
Distance between the centroids (mean value vectors) of the two clusters.

• Average Linkage
Average distance between two points of the two clusters.

• Single Linkage (green)
Distance between the two closest points of the two clusters.

• Complete Linkage (blue)
Distance between the two farthest points of the two clusters.
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• Single linkage can “follow chains” in the data
(may be desirable in certain applications).

• Complete linkage leads to very compact clusters.

• Average linkage also tends clearly towards compact clusters.

Single Linkage Complete Linkage
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• The cluster merging process arranges the data points in a binary tree.

• Draw the data tuples at the bottom or on the left
(equally spaced if they are multi-dimensional).

• Draw a connection between clusters that are merged, with the distance to the data
points representing the distance between the clusters.

data
tuples

distance between clusters
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• Example: Clustering of the 1-dimensional data set {2, 12, 16, 25, 29, 45}.
• All three approaches to measure the distance between clusters
lead to different dendrograms.

2 12 16 25 29 45 2 12 16 25 29 45 2 12 16 25 29 45

Centroid

14 27

10

16.8

21.5

Single Linkage Complete Linkage
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• Hierarchical agglomerative clustering can be implemented by processing the matrix
D = (dij)1≤i,j≤n containing the pairwise distances of the data points. (The data
points themselves are actually not needed.)

• In each step the rows and columns corresponding to the two clusters that are
closest to each other are deleted.

• A new row and column corresponding to the cluster formed by merging these
clusters is added to the matrix.

• The elements of this new row/column are computed according to

∀k : dk∗ = d∗k = αidik + αjdjk + βdij + γ|dik − djk|

i, j indices of the two clusters that are merged
k indices of the old clusters that are not merged
∗ index of the new cluster (result of merger)
αi, αj, β, γ parameters specifying the method (single linkage etc.)
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• The parameters defining the different methods are
(ni, nj, nk are the numbers of data points in the clusters):

method αi αj β γ

centroid method
ni

ni+nj

nj
ni+nj

− ninj
ni+nj

0

median method 1
2

1
2 −1

4 0

single linkage 1
2

1
2 0 −1

2

complete linkage 1
2

1
2 0 +1

2

average linkage
ni

ni+nj

nj
ni+nj

0 0

Ward’s method
ni+nk

ni+nj+nk

nj+nk
ni+nj+nk

0 0
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• Simplest Approach:

◦ Specify a minimum desired distance between clusters.

◦ Stop merging clusters if the closest two clusters
are farther apart than this distance.

• Visual Approach:

◦ Merge clusters until all data points are combined into one cluster.

◦ Draw the dendrogram and find a good cut level.

◦ Advantage: Cut need not be strictly horizontal.

• More Sophisticated Approaches:

◦ Analyze the sequence of distances in the merging process.

◦ Try to find a step in which the distance between the two clusters merged is
considerably larger than the distance of the previous step.

◦ Several heuristic criteria exist for this step selection.



Summary Clustering

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 318

• Prototype-based Clustering

◦ Alternating adaptation of data point assignment and cluster parameters.

◦ Online or batch adaptation of the cluster center.

◦ Crisp or fuzzy/probabilistic assignment of a datum to a cluster.

◦ Local minima can pose a problem.

◦ Fuzzy/probabilistic approaches are usually more robust.

• Hierarchical Agglomerative Clustering

◦ Start with singletons (one element clusters).

◦ Always merge those clusters that are closest.

◦ Different ways to measure the distance of clusters.

◦ Cluster hierarchy can be depicted as a dendrogram.
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Association Rules and Frequent Item Sets
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• Frequent Item Set Mining is a method for market basket analysis.

• It aims at finding regularities in the shopping behavior of customers
of supermarkets, mail-order companies, on-line shops etc.

• More specifically:
Find sets of products that are frequently bought together.

• Possible applications of found frequent item sets:

◦ Improve arrangement of products in shelves, on a catalog’s pages.

◦ Support cross-selling (suggestion of other products), product bundling.

◦ Fraud detection, technical dependence analysis.

• Often found patterns are expressed as association rules, for example:

If a customer buys bread and wine,
then she/he will probably also buy cheese.
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• Let A = {a1, . . . , am} be a set of items.

Items may be products, special equipment items, service options etc.

• Any subset I ⊆ A is called an item set.

An item set may be any set of products that can be bought (together).

• Let T = (t1, . . . , tn) with ∀i, 1 ≤ i ≤ n : ti ⊆ A
be a vector of transactions over A.

Each transaction is an item set, but some item sets may not appear in T .

Transactions need not be pairwise different: it may be ti = tk for i 6= k.

T may also be defined as a bag or multiset of transactions.

The set A may not be explicitely given, but only implicitely as A =
⋃n
i=1 ti.

A vector of transactions can list, for example, the sets of products bought
by the customers of a supermarket in a given period of time.
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Let I ⊆ A be an item set and T a vector of transactions over A.

• A transaction t ∈ T covers the item set I or
the item set I is contained in a transaction t ∈ T iff I ⊆ t.

• The set KT (I) = {k ∈ {1, . . . , n} | I ⊆ tk} is called the cover of I w.r.t. T .

The cover of an item set is the index set of the transactions that cover it.

It may also be defined as a vector of all transactions that cover it
(which, however, is complicated to write in formally correct way).

• The value sT (I) = |KT (I)| is called the (absolute) support of I w.r.t. T .

The value σT (I) =
1
n |KT (I)| is called the relative support of I w.r.t. T .

The support of I is the number or fraction of transactions that contain it.

Sometimes σT (I) is also called the (relative) frequency of I w.r.t. T .
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Given:

• a set A = {a1, . . . , am} of items,

• a vector T = (t1, . . . , tn) of transactions over A,

• a number smin ∈ IN, 0 < smin ≤ n or (equivalently)

a number σmin ∈ IR, 0 < σmin ≤ 1, the minimum support.

Desired:

• the set of frequent item sets, that is,

the set FT (smin) = {I ⊆ A | sT (I) ≥ smin} or (equivalently)
the set ΦT (σmin) = {I ⊆ A | σT (I) ≥ σmin}.

Note that with the relations smin = ⌈nσmin⌉ and σmin =
1
nsmin

the two versions can easily be transformed into each other.
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

frequent item sets

0 items 1 item 2 items 3 items

∅: 100% {a}: 70% {a, c}: 40% {a, c, d}: 30%
{b}: 30% {a, d}: 50% {a, c, e}: 30%
{c}: 70% {a, e}: 60% {a, d, e}: 40%
{d}: 60% {b, c}: 30%
{e}: 70% {c, d}: 40%

{c, e}: 40%
{d, e}: 40%

• The minimum support is smin = 3 or σmin = 0.3 = 30% in this example.

• There are 25 = 32 possible item sets over A = {a, b, c, d, e}.
• There are 16 frequent item sets (but only 10 transactions).
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• A brute force approach that enumerates all possible item sets, determines
their support, and discards infrequent item sets is usually infeasible:

The number of possible item sets grows exponentially with the number of items.

A typical supermarket has thousands of different products.

• Idea: Consider the properties of the support, in particular:

∀I : ∀J ⊇ I : KT (J) ⊆ KT (I).

This property holds, since ∀t : ∀I : ∀J ⊇ I : J ⊆ t→ I ⊆ t.

Each additional item is another condition a transaction has to satisfy.
Transactions that do not satisfy this condition are removed from the cover.

• It follows:
∀I : ∀J ⊇ I : sT (I) ≥ sT (J).

That is: If an item set is extended, its support cannot increase.

One also says that support is anti-monotone or downward closed.
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• From ∀I : ∀J ⊇ I : sT (I) ≥ sT (J) it follows

∀smin : ∀I : ∀J ⊇ I : sT (I) < smin → sT (J) < smin.

That is: No superset of an infrequent item set can be frequent.

• This property is often referred to as the Apriori Property.

Rationale: Sometimes we can know a priori, that is, before checking its support
by accessing the given transaction vector, that an item set cannot be frequent.

• Of course, the contraposition of this implication also holds:

∀smin : ∀I : ∀J ⊆ I : sT (I) ≥ smin → sT (J) ≥ smin.

That is: All subsets of a frequent item set are frequent.

• This suggests a compressed representation of the set of frequent item sets.
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• Consider the set of maximal (frequent) item sets:

MT (smin) = {I ⊆ A | sT (I) ≥ smin ∧ ∀J ⊃ I : sT (J) < smin}.
That is: An item set is maximal if it is frequent,

but none of its proper supersets is frequent.

• Since with this definition we know that

∀smin : ∀I : I ∈MT (smin) ∨ ∃J ⊃ I : sT (J) ≥ smin

it follows (can easily be proven by successively extending the item set I)

∀smin : ∀I : I ∈ FT (smin) → ∃J ∈MT (smin) : I ⊆ J.

That is: Every frequent item set has a maximal superset.

• Therefore:
∀smin : FT (smin) =

⋃

I∈MT (smin)

2I



Maximal Frequent Item Sets: Example

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 328

transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

frequent item sets

0 items 1 item 2 items 3 items

∅: 100% {a}: 70% {a, c}: 40% {a, c, d}: 30%
{b}: 30% {a, d}: 50% {a, c, e}: 30%
{c}: 70% {a, e}: 60% {a, d, e}: 40%
{d}: 60% {b, c}: 30%
{e}: 70% {c, d}: 40%

{c, e}: 40%
{d, e}: 40%

• The maximal item sets are:

{b, c}, {a, c, d}, {a, c, e}, {a, d, e}.
• Every frequent item set is a subset of at least one of these sets.
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• The set of maximal item sets captures the set of all frequent item sets,
but then we know only the support of the maximal item sets.

• About the support of a non-maximal frequent item set we only know:

∀smin : ∀I ∈ FT (smin)−MT (smin) : sT (I) ≥ max
J∈MT (smin),J⊃I

sT (J).

This relation follows immediately from ∀I : ∀J ⊇ I : sT (I) ≥ sT (J),
that is, an item set cannot have a lower support than any of its supersets.

• Note that we have generally

∀smin : ∀I ∈ FT (smin) : sT (I) ≥ max
J∈MT (smin),J⊇I

sT (J).

• Question: Can we find a subset of the set of all frequent item sets,
which also preserves knowledge of all support values?
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• Consider the set of closed (frequent) item sets:

CT (smin) = {I ⊆ A | sT (I) ≥ smin ∧ ∀J ⊃ I : sT (J) < sT (I)}.
That is: An item set is closed if it is frequent,

but none of its proper supersets has the same support.

• Since with this definition we know that

∀smin : ∀I : I ∈ CT (smin) ∨ ∃J ⊃ I : sT (J) = sT (I)

it follows (can easily be proven by successively extending the item set I)

∀smin : ∀I : I ∈ FT (smin) → ∃J ∈ CT (smin) : I ⊆ J.

That is: Every frequent item set has a closed superset.

• Therefore:
∀smin : FT (smin) =

⋃

I∈CT (smin)

2I
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• However, not only has every frequent item set a closed superset,
but it has a closed superset with the same support:

∀smin : ∀I : I ∈ FT (smin) → ∃J ⊇ I : J ∈ CT (smin) ∧ sT (J) = sT (I).

(Proof: see the considerations on the next slide)

• The set of all closed item sets preserves knowledge of all support values:

∀smin : ∀I ∈ FT (smin) : sT (I) = max
J∈CT (smin),J⊇I

sT (J).

• Note that the weaker statement

∀smin : ∀I ∈ FT (smin) : sT (I) ≥ max
J∈CT (smin),J⊇I

sT (J)

follows immediately from ∀I : ∀J ⊇ I : sT (I) ≥ sT (J), that is,
an item set cannot have a lower support than any of its supersets.
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• Alternative characterization of closed item sets:

I closed ⇔ sT (I) ≥ smin ∧ I =
⋂

k∈KT (I)

tk.

Reminder: KT (I) = {k ∈ {1, . . . , n} | I ⊆ tk} is the cover of I w.r.t. T .

• This is derived as follows: since ∀k ∈ KT (I) : I ⊆ tk, it is obvious that

∀smin : ∀I ∈ FT (smin) : I ⊆
⋂

k∈KT (I)

tk,

If I ⊂ ⋂k∈KT (I)
tk, it is not closed, since

⋂
k∈KT (I)

tk has the same support.

On the other hand, no superset of
⋂
k∈KT (I)

tk has the cover KT (I).

• Note that the above characterization allows us to construct the (uniquely deter-
mined) closed superset of a frequent item set that has the same support.
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

frequent item sets

0 items 1 item 2 items 3 items

∅: 100% {a}: 70% {a, c}: 40% {a, c, d}: 30%
{b}: 30% {a, d}: 50% {a, c, e}: 30%
{c}: 70% {a, e}: 60% {a, d, e}: 40%
{d}: 60% {b, c}: 30%
{e}: 70% {c, d}: 40%

{c, e}: 40%
{d, e}: 40%

• All frequent item sets are closed with the exception of {b} and {d, e}.
• {b} is a subset of {b, c}, both have support 30%.
{d, e} is a subset of {a, d, e}, both have a support of 40%.
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• Frequent Item Set
Any frequent item set (support is higher than the minimal support):

I frequent ⇔ sT (I) ≥ smin

• Closed Item Set
A frequent item set is called closed if no superset has the same support:

I closed ⇔ sT (I) ≥ smin ∧ ∀J ⊃ I : sT (J) < sT (I)

• Maximal Item Set
A frequent item set is called maximal if no superset is frequent:

I maximal ⇔ sT (I) ≥ smin ∧ ∀J ⊃ I : sT (J) < smin

• Obvious relations between these types of item sets:

◦ All maximal and all closed item sets are frequent.

◦ All maximal item sets are closed.



Types of Frequent Item Sets: Example

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 335

0 items 1 item 2 items 3 items

∅+: 100% {a}+: 70% {a, c}+: 40% {a, c, d}+∗: 30%
{b}: 30% {a, d}+: 50% {a, c, e}+∗: 30%
{c}+: 70% {a, e}+: 60% {a, d, e}+∗: 40%
{d}+: 60% {b, c}+∗: 30%
{e}+: 70% {c, d}+: 40%

{c, e}+: 40%
{d, e}: 40%

• Frequent Item Set
Any frequent item set (support is higher than the minimal support).

• Closed Item Set (marked with +)
A frequent item set is called closed if no superset has the same support.

• Maximal Item Set (marked with ∗)
A frequent item set is called maximal if no superset is frequent.
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• We know that it suffices to find the closed item sets together with their support.

• The characterization of closed item sets by

I closed ⇔ sT (I) ≥ smin ∧ I =
⋂

k∈KT (I)

tk

suggests to find them by forming all possible intersections of the transactions
and checking their support.

However, approaches using this idea are not competitive with other methods.

• If the support of all frequent item sets is needed, it can be clumsy and tedious to
compute the support of a non-closed frequent item set with

∀smin : ∀I ∈ FT (smin)− CT (smin) : sT (I) = max
J∈CT (smin),J⊃I

sT (J).

• In order to find the closed sets one may have to visit many frequent sets anyway.
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Idea: Use the properties
of the support to organize
the search for all frequent
item sets, especially

∀I : ∀J ⊃ I :

sT (I) < smin

→ sT (J) < smin.

Since these properties re-
late the support of an item
set to the support of its
subsets and supersets,
it is reasonable to orga-
nize the search based on
the subset lattice of the
set A, the set of all items.

A subset lattice for five items {a, b, c, d, e}:

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde Hasse diagram
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

Blue boxes are frequent
item sets, white boxes
infrequent item sets.

subset lattice with frequent item sets (smin = 3):

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

Red boxes are closed
item sets, white boxes
infrequent item sets.

subset lattice with closed item sets (smin = 3):

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

Red boxes are maximal
item sets, white boxes
infrequent item sets.

subset lattice with maximal item sets (smin = 3):

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde
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The Apriori Algorithm

[Agrawal and Srikant 1994]
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One possible scheme for the search:

• Determine the support of the one element item sets
and discard the infrequent items.

• Form candidate item sets with two items (both items must be frequent),
determine their support, and discard the infrequent item sets.

• Form candidate item sets with three items (all pairs must be frequent),
determine their support, and discard the infrequent item sets.

• Continue by forming candidate item sets with four, five etc. items
until no candidate item set is frequent.

This is the general scheme of the Apriori Algorithm.

It is based on two main steps: candidate generation and pruning.

All frequent item set mining algorithms are based on these steps in some form.
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function apriori (A, T, smin) (∗ Apriori algorithm ∗)
begin

k := 1; (∗ initialize the item set size ∗)
Ek :=

⋃
a∈A{{a}}; (∗ start with single element sets ∗)

Fk := prune(Ek, T, smin); (∗ and determine the frequent ones ∗)
while Fk 6= ∅ do begin (∗ while there are frequent item sets ∗)

Ek+1 := candidates(Fk); (∗ create item sets with one item more ∗)
Fk+1 := prune(Ek+1, T, smin); (∗ and determine the frequent ones ∗)
k := k + 1; (∗ increment the item counter ∗)

end;

return
⋃k
j=1 Fj; (∗ return the frequent item sets ∗)

end (∗ apriori ∗)



The Apriori Algorithm 2

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 344

function candidates (Fk) (∗ generate candidates with k + 1 items ∗)
begin

E := ∅; (∗ initialize the set of candidates ∗)
forall f1, f2 ∈ Fk (∗ traverse all pairs of frequent item sets ∗)
with f1 = {a1, . . . , ak−1, ak} (∗ that differ only in one item and ∗)
and f2 = {a1, . . . , ak−1, a′k} (∗ are in a lexicographic order ∗)
and ak < a′k do begin (∗ (the order is arbitrary, but fixed) ∗)

f := f1 ∪ f2 = {a1, . . . , ak−1, ak, a′k}; (∗ union has k + 1 items ∗)
if ∀a ∈ f : f − {a} ∈ Fk (∗ only if all subsets are frequent, ∗)
then E := E ∪ {f}; (∗ add the new item set to the candidates ∗)

end; (∗ (otherwise it cannot be frequent) ∗)
return E; (∗ return the generated candidates ∗)

end (∗ candidates ∗)



The Apriori Algorithm 3

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 345

function prune (E, T, smin) (∗ prune infrequent candidates ∗)
begin

forall e ∈ E do (∗ initialize the support counters ∗)
sT (e) := 0; (∗ of all candidates to be checked ∗)

forall t ∈ T do (∗ traverse the transactions ∗)
forall e ∈ E do (∗ traverse the candidates ∗)

if e ⊆ t (∗ if transaction contains the candidate, ∗)
then sT (e) := sT (e) + 1; (∗ increment the support counter ∗)

F := ∅; (∗ initialize the set of frequent candidates ∗)
forall e ∈ E do (∗ traverse the candidates ∗)

if sT (e) ≥ smin (∗ if a candidate is frequent, ∗)
then F := F ∪ {e}; (∗ add it to the set of frequent candidates ∗)

return F ; (∗ return the pruned set of candidates ∗)
end (∗ prune ∗)
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• The Apriori algorithm searches the subset lattice top-down level by level.

• Collecting the frequent item sets of size k in a set Fk has drawbacks:
A frequent item set of size k + 1 can be formed in

j =
k(k + 1)

2

possible ways. (For infrequent item sets the number may be smaller.)

As a consequence, the candidate generation step may carry out a lot of
redundant work, since it suffices to generate each candidate item set once.

• Question: Can we reduce or even eliminate this redundant work?

More generally:
How can we make sure that any candidate item set is generated at most once?

• Idea: Assign to each item set a unique parent item set,
from which this item set is to be generated.
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• A core problem is that an item set of size k (that is, with k items)
can be generated in k! different ways (on k! paths in the Hasse diagram),
because in principle the items may be added in any order.

• If we consider an item by item process of building an item set
(which can be imagined as a levelwise traversal of the lattice),
there are k possible ways of forming an item set of size k
from item sets of size k − 1 by adding the remaining item.

• It is obvious that it suffices to consider each item set at most once in order
to find the frequent ones (infrequent item sets need not be generated at all).

• Question: Can we reduce or even eliminate this variety?

More generally:
How can we make sure that any candidate item set is generated at most once?

• Idea: Assign to each item set a unique parent item set,
from which this item set is to be generated.
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• We have to search the item subset lattice / its Hasse diagram.

• Assigning unique parents turns the Hasse diagram into a tree.

• Traversing the resulting tree explores each item set exactly once.

Subset lattice (Hasse diagram) and a possible tree for five items:
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Principle of a Search Algorithm based on Unique Parents:

• Base Loop:

◦ Traverse all one-element item sets (their unique parent is the empty set).

◦ Recursively process all one-element item sets that are frequent.
• Recursive Processing:

For a given frequent item set I :

◦ Generate all extensions J of I by one item (that is, J ⊃ I , |J | = |I| + 1)
for which the item set I is the chosen unique parent.

◦ For all J : if J is frequent, process J recursively, otherwise discard J .
• Questions:

◦ How can we formally assign unique parents?

◦ How can we make sure that we generate only those extensions
for which the item set that is extended is the chosen unique parent?
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• Item sets sharing the same longest proper prefix
are siblings, because they have the same unique parent.

• This allows us to represent the unique parent tree as a prefix tree or trie.

Canonical parent tree and corresponding prefix tree for five items:
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

• Example transaction database with 5 items and 10 transactions.

• Minimum support: 30%, i.e., at least 3 transactions must contain the item set.

• All one item sets are frequent → full second level is needed.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

a b c d

• Determining the support of item sets: For each item set traverse the database and
count the transactions that contain it (highly inefficient).

• Better: Traverse the tree for each transaction and find the item sets it contains
(efficient: can be implemented as a simple doubly recursive procedure).
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

a b c d

• Minimum support: 30%, i.e., at least 3 transactions must contain the item set.

• Infrequent item sets: {a, b}, {b, d}, {b, e}.
• The subtrees starting at these item sets can be pruned.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: ? e: ? e: ? d: ? e: ? e: ?

a b c d

c d c d

• Generate candidate item sets with 3 items (parents must be frequent).

• Before counting, check whether the candidates contain an infrequent item set.

◦ An item set with k items has k subsets of size k − 1.

◦ The parent is only one of these subsets.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: ? e: ? e: ? d: ? e: ? e: ?

a b c d

c d c d

• The item sets {b, c, d} and {b, c, e} can be pruned, because

◦ {b, c, d} contains the infrequent item set {b, d} and
◦ {b, c, e} contains the infrequent item set {b, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: 3 e: 3 e: 4 d: ? e: ? e: 2

a b c d

c d c d

• Only the remaining four item sets of size 3 are evaluated.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: 3 e: 3 e: 4 d: ? e: ? e: 2

a b c d

c d c d

• Minimum support: 30%, i.e., at least 3 transactions must contain the item set.

• Infrequent item set: {c, d, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: 3 e: 3 e: 4 d: ? e: ? e: 2

e: ?

a b c d

c d c d

d

• Generate candidate item sets with 4 items (parents must be frequent).

• Before counting, check whether the candidates contain an infrequent item set.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6 c: 3 d: 1 e: 1 d: 4 e: 4 e: 4

d: 3 e: 3 e: 4 d: ? e: ? e: 2

e: ?

a b c d

c d c d

d

• The item set {a, c, d, e} can be pruned,
because it contains the infrequent item set {c, d, e}.
• Consequence: No candidate item sets with four items.

• Fourth access to the transaction database is not necessary.
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Idea: Optimize the organization of the counters and the child pointers.

Direct Indexing:

• Each node is a simple vector (array) of counters.

• An item is used as a direct index to find the counter.

• Advantage: Counter access is extremely fast.

• Disadvantage: Memory usage can be high due to “gaps” in the index space.

Sorted Vectors:

• Each node is a vector (array) of item/counter pairs.

• A binary search is necessary to find the counter for an item.

• Advantage: Memory usage may be smaller, no unnecessary counters.

• Disadvantage: Counter access is slower due to the binary search.
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Hash Tables:

• Each node is a vector (array) of item/counter pairs (closed hashing).

• The index of a counter is computed from the item code.

• Advantage: Faster counter access than with binary search.

• Disadvantage: Higher memory usage than sorted vectors (pairs, fill rate).
The order of the items cannot be exploited.

Child Pointers:

• The deepest level of the item set tree does not need child pointers.

• Fewer child pointers than counters are needed.

→ It pays to represent the child pointers in a separate array.

• The sorted array of item/counter pairs can be reused for a binary search.
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• Items are coded as consecutive integers starting with 0
(needed for the direct indexing approach).

• The size and the number of the “gaps” in the index space
depends on how the items are coded.

• Idea: It is plausible that frequent item sets consist of frequent items.

◦ Sort the items w.r.t. their frequency (group frequent items).

◦ Sort descendingly: Prefix tree has fewer nodes.

◦ Sort ascendingly: There are fewer and smaller index “gaps”.

◦ Empirical evidence: sorting ascendingly is better.

• Extension: Sort items w.r.t. the sum of the sizes
of the transacions that cover them.

◦ Empirical evidence: Better than simple item frequencies.
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• The items in a transaction are sorted (ascending item codes).

• Processing a transaction is then a doubly recursive procedure.
To process a transaction for a node of the item set tree:

◦ Go to the child corresponding to the first item in the transaction and
count the remainder of the transaction recursively for that child.

(In the currently deepest level of the tree we increment the counter
corresponding to the item instead of going to the child node.)

◦ Discard the first item of the transaction and
process it recursively for the node itself.

• Optimizations:

◦ Directly skip all items preceding the first item in the node.

◦ Abort the recursion if the first item is beyond the last one in the node.

◦ Abort the recursion if a transaction is too short to reach the deepest level.
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Direct Representation:

• Each transaction is represented as an array of items.

• The transactions are stored in a simple list.

Organization as a Prefix Tree:

• The items in each transaction are sorted.

• Transactions with the same prefix are grouped together.

• Advantage: a common prefix is processed only once.

• Gains from this organization depend on how the items are coded:

◦ Common transaction prefixes are more likely
if the items are sorted with descending frequency.
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Basic Processing Scheme

• Breadth-first/levelwise traversal of the subset lattice.

• Candidates are formed by merging item sets that differ in only one item.

• Support counting is done with a doubly recursive procedure.

Advantages

• “Perfect” pruning of infrequent candidate item sets (with infrequent subsets).

Disadvantages

• Can require a lot of memory (since all frequent item sets are represented).

• Support counting takes very long for large transactions.

Software

• http://www.borgelt.net/apriori.html
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• In contrast to the levelwise search of the Apriori algorithm,
the Eclat Algorithm executes a depth-first search in the prefix tree.

• This depth-first search can also be seen as a divide-and-conquer scheme:

◦ Let the item order be a < b < c . . ..

◦ Restrict the transaction vector to those transactions that contain a.
This is the conditional database for the prefix a.

Recursively search this conditional database for frequent item sets
and add the prefix a to all frequent item sets found in the recursion.

◦ Remove the item a from the transactions in the full transaction vector.
This is the conditional database for item sets without a.

Recursively search this conditional database for frequent item sets.

• With this scheme only frequent one-element item sets have to be determined.
Larger item sets result from adding possible prefixes.
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a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d

b c d c d d

c d d d

d
split into subproblems w.r.t. item a

• blue : item set consisting of only item a.
green: item sets containing item a (and at least one other item).
red : item sets not containing item a (but at least one other item).

• green: database with transactions containing a.
red : database with all transactions, but with item a removed.
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a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d

b c d c d d

c d d d

d
split into subproblems w.r.t. item b

• blue : item sets {a} and {a, b}.
green: item sets containing items a and b (and at least one other item).
red : item sets containing item a, but not item b.

• green: database with transactions containing a and b.
red : database with transactions containing a, but with b removed.
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a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abde acde bcde

abcde

a b c d

b c d c d d

c d d d

d
split into subproblems w.r.t. item b

• blue : item set consisting of only item b.
green: item sets containing item b, but not item a.
red : item sets containing neither item a nor item b.

• green: database with transactions containing b, but not a.
red : database with all transactions, but with a and b removed.
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The Eclat Algorithm

[Zaki, Parthasarathy, Ogihara, and Li 1997]
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• The item sets are checked in lexicographic order
(depth-first traversal of the prefix tree).

• Eclat generates more candidate item sets than Apriori,
because it does not store the support of all visited item sets.

• Eclat uses a vertical transaction representation
(see next slide for details).

• No subset tests and no subset generation is needed for the support computation.
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• The Apriori algorithm uses a horizontal transaction representation:
each transaction is an array of the contained items.

◦ Note that the alternative prefix tree organization
is still an essentially horizontal representation.

• The Eclat algorithm uses a vertical transaction representation:

◦ For each item a transaction list is created.

◦ The transaction list of item a indicates the transactions that contain it,
that is, it represents its cover KT ({a}).
◦ Advantage: the transaction list for a pair of items can be computed by

intersecting the transaction lists of the individual items.

◦ Generally, a vertical transaction representation can exploit

∀I, J ⊆ A : KT (I ∪ J) = KT (I) ∩KT (J).
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

• Form a transaction list for each item. Here: bit vector representation.

◦ grey: item is contained in transaction

◦ white: item is not contained in transaction

• Transaction database is needed only once (for the single item transaction lists).
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

a

• Intersect the transaction list for item a
with the transaction lists of all other items (conditional database).

• Count the number of set bits (number of containing transactions).

• The item set {a, b} is infrequent and can be pruned.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

a

• Intersect the transaction list for item a
with the transaction lists of all other items (conditional database).

• Count the number of set bits (number of containing transactions).

• The item set {a, b} is infrequent and can be pruned.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

d: 3 e: 3

a

c

• Intersect the transaction list for {a, c}
with the transaction lists of {a, x}, x ∈ {d, e}.
• Result: Transaction lists for the item sets {a, c, d} and {a, c, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

d: 3 e: 3

e: 2

a

c

d

• Intersect the transaction list for {a, c, d} and {a, c, e}.
• Result: Transaction list for the item set {a, c, d, e}.
• With Apriori this item set could be pruned before counting,
because it was known that {c, d, e} is infrequent.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

d: 3 e: 3

e: 2

a

c

d

• Intersect the transaction list for {a, c, d} and {a, c, e}.
• Result: Transaction list for the item set {a, c, d, e}.
• With Apriori this item set could be pruned before counting,
because it was known that {c, d, e} is infrequent.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

b: 0 c: 4 d: 5 e: 6

e: 4d: 3 e: 3

a

d

• Backtrack to the second level of the search tree and
intersect the transaction list for {a, d} and {a, e}.
• Result: Transaction list for {a, d, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 1 e: 1

d: 3 e: 3 e: 4

b

• Backtrack to the first level of the search tree and
intersect the transaction list for b with the transaction lists for c, d, and e.

• Result: Transaction lists for the item sets {b, c}, {b, d}, and {b, e}.
• Only one item set with sufficient support → prune all subtrees.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 1 e: 1

d: 3 e: 3 e: 4

b

• Backtrack to the first level of the search tree and
intersect the transaction list for b with the transaction lists for c, d, and e.

• Result: Transaction lists for the item sets {b, c}, {b, d}, and {b, e}.
• Only one item set with sufficient support → prune all subtrees.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 4 e: 4

d: 3 e: 3 e: 4

c

• Backtrack to the first level of the search tree and
intersect the transaction list for c with the transaction lists for d and e.

• Result: Transaction lists for the item sets {c, d} and {c, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 4 e: 4

d: 3 e: 3 e: 4 e: 2

c

d

• Intersect the transaction list for {c, d} and {c, e}.
• Result: Transaction list for {c, d, e}.
• Infrequent item set: {c, d, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 4 e: 4

d: 3 e: 3 e: 4 e: 2

c

d

• Intersect the transaction list for {c, d} and {c, e}.
• Result: Transaction list for {c, d, e}.
• Infrequent item set: {c, d, e}.
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1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

a: 7 b: 3 c: 7 d: 6 e: 7

c: 4 d: 5 e: 6 c: 3 d: 4 e: 4 e: 4

d: 3 e: 3 e: 4

d

• Backtrack to the first level of the search tree and
intersect the transaction list for d with the transaction list for e.

• Result: Transaction list for the item set {d, e}.
• With this step the search is finished.
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Bit Matrices

• Represent transactions as a bit matrix:

◦ Each column corresponds to an item.

◦ Each row corresponds to a transaction.

• Normal and sparse representation of bit matrices:

◦ Normal: one memory bit per matrix bit, zeros represented.

◦ Sparse: lists of column indices of set bits (transaction lists).

• Which representation is preferable depends on
the ratio of set bits to cleared bits.

Item Coding

• Sorting the item descendingly w.r.t. their frequency (individual or transaction size
sum) leads to a better structure of the search tree.
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Basic Processing Scheme

• Depth-first traversal of the prefix tree.

• Data is represented as lists of transaction ids (one per item).

• Support counting is done by intersecting lists of transaction ids.

Advantages

• Depth-first search reduces memory requirements.

• Usually (considerably) faster than Apriori.

Disadvantages

• Difficult to execute for modern processors (branch prediction).

Software

• http://www.borgelt.net/eclat.html
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• General problem of frequent item set mining:

The number of frequent item sets, even the number of closed or maximal item
sets, can exceed the number of transactions in the database by far.

• Therefore: Additional filtering is necessary to find
the ’‘relevant” or “interesting” frequent item sets.

• General idea: Compare support to expectation.

◦ Item sets consisting of items that appear frequently
are likely to have a high support.

◦ However, this is not surprising:
we expect this even if the occurrence of the items is independent.

◦ Additional filtering should remove item sets with a support
close to the support expected from an independent occurrence.
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Full Independence

• Evaluate item sets with

̺fi(I) =
sT (I) · n|I|−1∏
a∈I sT ({a})

=
p̂T (I)∏

a∈I p̂T ({a})
.

an require a minimum value for this measure.
(p̂T is the probability estimate based on T .)

• Assumes full independence of the items in order
to form an expectation about the support of an item set.

• Advantage: Can be computed from only the support of the item set
and the support values of the individual items.

• Disadvantage: If some item set I scores high on this measure,
then all J ⊃ I are also likely to score high,
even if the items in J − I are independent of I .
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Incremental Independence

• Evaluate item sets with

̺ii(I) = min
a∈I

n sT (I)

sT (I − {a}) · sT ({a})
= min

a∈I
p̂T (I)

p̂T (I − {a}) · p̂T ({a})
.

an require a minimum value for this measure.
(p̂T is the probability estimate based on T .)

• Advantage: If I contains independent items,
the minimum ensures a low value.

• Disadvantages: We need to know the support values of all subsets I − {a}.
If there exist high scoring independent subsets I1 and I2
with |I1| > 1, |I2| > 1, I1 ∩ I2 = ∅ and I1 ∪ I2 = I ,
the item set I still receives a high evaluation.
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Subset Independence

• Evaluate item sets with

̺si(I) = min
J⊂I,J 6=∅

n sT (I)

sT (I − J) · sT (J)
= min

J⊂I,J 6=∅
p̂T (I)

p̂T (I − J) · p̂T (J)
.

an require a minimum value for this measure.
(p̂T is the probability estimate based on T .)

• Advantage: Detects all cases where a decomposition is possible
and evaluates them with a low value.

• Disadvantages: We need to know the support values of all proper subsets J .

• Improvement: Use incremental independence and in the minimum consider
only items {a} for which I − {a} has been evaluated high.

This captures subset independence “incrementally”.
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• Algorithms for frequent item set mining differ in:

◦ the traversal order of the prefix tree:
(breadth-first/levelwise versus depth-first traversal)

◦ the transaction representation:
horizontal (item arrays) versus vertical (transaction lists)
versus specialized data structures like FP-trees

◦ the types of frequent item sets found:
frequent versus closed versus maximal item sets
(additional pruning methods for closed and maximal item sets)

• Additional filtering is necessary to reduce the size of the output.
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• Often found patterns are expressed as association rules, for example:

If a customer buys bread and wine,
then she/he will probably also buy cheese.

• Formally, we consider rules of the form X → Y ,
with X, Y ⊆ A and X ∩ Y = ∅.

• Support of a Rule X → Y :

Either: ςT (X → Y ) = σT (X ∪ Y ) (more common: rule is correct)

Or: ςT (X → Y ) = σT (X) (more plausible: rule is applicable)

• Confidence of a Rule X → Y :

cT (X → Y ) =
σT (X ∪ Y )

σT (X)
=

sT (X ∪ Y )

sT (X)
=

sT (I)

sT (X)

The confidence can be seen as an estimate of P (Y | X).
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Given:

• a set A = {a1, . . . , am} of items,

• a vector T = (t1, . . . , tn) of transactions over A,

• a real number ςmin, 0 < ςmin ≤ 1, the minimum support,

• a real number cmin, 0 < cmin ≤ 1, the minimum confidence.

Desired:

• the set of all association rules, that is, the set

R = {R : X → Y | ςT (R) ≥ ςmin ∧ cT (R) ≥ cmin}.

General Procedure:

• Find the frequent item sets.

• Construct rules and filter them w.r.t. ςmin and cmin.
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• Which minimum support has to be used for finding the frequent item sets
depends on the definition of the support of a rule:

◦ If ςT (X → Y ) = σT (X ∪ Y ),

then σmin = ςmin or equivalently smin = ⌈nςmin⌉.
◦ If ςT (X → Y ) = σT (X),

then σmin = ςmincmin or equivalently smin = ⌈nςmincmin⌉.

• After the frequent item sets have been found,
the rule construction then traverses all frequent item sets I and
splits them into disjoint subsets X and Y (X ∩ Y = ∅ and X ∪ Y = I),
thus forming rules X → Y .

◦ Filtering rules w.r.t. confidence is always necessary.

◦ Filtering rules w.r.t. support is only necessary if ςT (X → Y ) = σT (X).
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• From ∀I : ∀J ⊆ I : sT (I) ≤ sT (J) it obviously follows

∀X, Y : ∀a ∈ X :
sT (X ∪ Y )

sT (X)
≥ sT (X ∪ Y )

sT (X − {a})
and therefore

∀X, Y : ∀a ∈ X : cT (X → Y ) ≥ cT (X − {a} → Y ∪ {a}).
That is: Moving an item from the antecedent to the consequent

cannot increase the confidence of a rule.

• As an immediate consequence we have

∀X, Y : ∀a ∈ X : cT (X → Y ) < cmin → cT (X − {a} → Y ∪ {a}) < cmin.

That is: If a rule fails to meet the minimum confidence,
no rules over the same item set and with
a larger consequent need to be considered.
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function rules (F); (∗ — generate association rules ∗)
R := ∅; (∗ initialize the set of rules ∗)
forall f ∈ F do begin (∗ traverse the frequent item sets ∗)

m := 1; (∗ start with rule heads (consequents) ∗)
Hm :=

⋃
i∈f{{i}}; (∗ that contain only one item ∗)

repeat (∗ traverse rule heads of increasing size ∗)
forall h ∈ Hm do (∗ traverse the possible rule heads ∗)

if
sT (f )

sT (f−h) ≥ cmin (∗ if the confidence is high enough, ∗)
then R := R ∪ {[(f − h)→ h]}; (∗ add rule to the result ∗)
else Hm := Hm − {h}; (∗ otherwise discard the head ∗)

Hm+1 := candidates(Hm); (∗ create heads with one item more ∗)
m := m + 1; (∗ increment the head item counter ∗)

until Hm = ∅ or m ≥ |f |; (∗ until there are no more rule heads ∗)
end; (∗ or antecedent would become empty ∗)
return R; (∗ return the rules found ∗)

end; (∗ rules ∗)
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function candidates (Fk) (∗ generate candidates with k + 1 items ∗)
begin

E := ∅; (∗ initialize the set of candidates ∗)
forall f1, f2 ∈ Fk (∗ traverse all pairs of frequent item sets ∗)
with f1 = {a1, . . . , ak−1, ak} (∗ that differ only in one item and ∗)
and f2 = {a1, . . . , ak−1, a′k} (∗ are in a lexicographic order ∗)
and ak < a′k do begin (∗ (the order is arbitrary, but fixed) ∗)

f := f1 ∪ f2 = {a1, . . . , ak−1, ak, a′k}; (∗ union has k + 1 items ∗)
if ∀a ∈ f : f − {a} ∈ Fk (∗ only if all subsets are frequent, ∗)
then E := E ∪ {f}; (∗ add the new item set to the candidates ∗)

end; (∗ (otherwise it cannot be frequent) ∗)
return E; (∗ return the generated candidates ∗)

end (∗ candidates ∗)
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transaction vector

1: {a, d, e}
2: {b, c, d}
3: {a, c, e}
4: {a, c, d, e}
5: {a, e}
6: {a, c, d}
7: {b, c}
8: {a, c, d, e}
9: {c, b, e}
10: {a, d, e}

frequent item sets

0 items 1 item 2 items 3 items

∅: 100% {a}: 70% {a, c}: 40% {a, c, d}: 30%
{b}: 30% {a, d}: 50% {a, c, e}: 30%
{c}: 70% {a, e}: 60% {a, d, e}: 40%
{d}: 60% {b, c}: 30%
{e}: 70% {c, d}: 40%

{c, e}: 40%
{d, e}: 40%

• The minimum support is smin = 3 or σmin = 0.3 = 30% in this example.

• There are 25 = 32 possible item sets over A = {a, b, c, d, e}.
• There are 16 frequent item sets (but only 10 transactions).
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Example: I = {a, c, e}, X = {c, e}, Y = {a}.

cT (c, e→ a) =
sT ({a, c, e})
sT ({c, e})

=
30%

40%
= 75%

Minimum confidence: 80%

association support of support of confidence
rule all items antecedent

b→ c: 30% 30% 100%
d→ a: 50% 60% 83.3%
e→ a: 60% 70% 85.7%
a→ e: 60% 70% 85.7%
d, e→ a: 40% 40% 100%
a, d→ e: 40% 50% 80%
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The two rule support definitions are not equivalent:

transaction vector

1: {a, c, e}
2: {b, d}
3: {b, c, d}
4: {a, e}
5: {a, b, c, d}
6: {c, e}
7: {a, b, d}
8: {a, c, d}

two association rules

association support of support of confidence
rule all items antecedent

a→ c 3 (37.5%) 5 (62.5%) 67.7%
b→ d 4 (50.0%) 4 (50.0%) 100.0%

Let the minimum confidence be cmin = 65%.

• For ςT (R) = σ(X ∪ Y ) and 3 < ςmin ≤ 4 only the rule b→ d is generated,
but not the rule a→ c.

• For ςT (R) = σ(X) there is no value ςmin that generates only the rule b→ d,
but not at the same time also the rule a→ c.
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Simple Measures

• General idea: Compare p̂T (Y | X) = cT (X → Y )
and p̂T (Y ) = cT ( ∅ → Y ) = σT (Y ).

• (Absolute) confidence difference to prior:

dT (R) = |cT (X → Y )− σT (Y )|

• (Absolute) difference of confidence quotient to 1:

qT (R) =

∣∣∣∣∣1−min

{
cT (X → Y )

σT (Y )
,

σT (Y )

cT (X → Y )

}∣∣∣∣∣

• Confidence to prior ratio (lift):

lT (R) =
cT (X → Y )

σT (Y )
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More Sophisticated Measures

• Consider the 2× 2 contingency table or the estimated probability table:

X 6⊆ t X ⊆ t

Y 6⊆ t n00 n01 n0.
Y ⊆ t n10 n11 n1.

n.0 n.1 n..

X 6⊆ t X ⊆ t

Y 6⊆ t p00 p01 p0.
Y ⊆ t p10 p11 p1.

p.0 p.1 1

• n.. is the total number of transactions.
n1. is the number of transactions to which the rule is applicable.
n11 is the number of transactions for which the rule is correct.

It is pij =
nij
n..

, pi. =
ni.
n..
, p.j =

n.j
n..

for i, j = 1, 2.

• General idea: Use measures for the strength of dependence of X and Y .
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Information Gain (Kullback and Leibler 1951, Quinlan 1986)

Based on Shannon Entropy H = −
n∑

i=1

pi log2 pi (Shannon 1948)

Igain(X, Y ) = H(Y ) − H(Y |X)

=

︷ ︸︸ ︷

−
kY∑

i=1

pi. log2 pi. −

︷ ︸︸ ︷
kX∑

j=1

p.j


−

kY∑

i=1

pi|j log2 pi|j




H(Y ) Entropy of the distribution of Y

H(Y |X) Expected entropy of the distribution of Y
if the value of the X becomes known

H(Y )−H(Y |X) Expected entropy reduction or information gain
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χ2 Measure

• Compares the actual joint distribution
with a hypothetical independent distribution.

• Uses absolute comparison.

• Can be interpreted as a difference measure.

χ2(X, Y ) =
kX∑

i=1

kY∑

j=1

n..
(pi.p.j − pij)

2

pi.p.j

• Side remark: Information gain can also be interpreted as a difference measure.

Igain(X, Y ) =
kX∑

j=1

kY∑

i=1

pij log2
pij
pi.p.j
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χ2 Measure

• Compares the actual joint distribution
with a hypothetical independent distribution.

• Uses absolute comparison.

• Can be interpreted as a difference measure.

χ2(X, Y ) =
kX∑

i=1

kY∑

j=1

n..
(pi.p.j − pij)

2

pi.p.j

For kX = kY = 2 (as for rule evaluation) the χ2 measure simplifies to

χ2(X, Y ) = n..
(p1. p.1 − p11)

2

p1.(1− p1.)p.1(1− p.1)
= n..

(n1.n.1 − n..n11)
2

n1.(n.. − n1.)n.1(n.. − n.1)
.
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• Association Rule Induction is a Two Step Process

◦ Find the frequent item sets (minimum support).

◦ Form the relevant association rules (minimum confidence).

• Generating the Association Rules

◦ Form all possible association rules from the frequent item sets.

◦ Filter “interesting” association rules
based on minimum support and minimum confidence.

• Filtering the Association Rules

◦ Compare rule confidence and consequent support.

◦ Information gain

◦ χ2 measure
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• Car manufacturer collects servicing tasks on all their vehicles.

◦ What are interesting subgroups of cars?

◦ How do these subgroups behave over time?

◦ Which cars’ suspension failure rate is strongly increasing in winter?

• Bank assesses credit contracts w. r. t. terminability.

◦ What changes were there in the past?

◦ Any common factors?

◦ How do I communicate this to a non-statistician?

• Tracking user activity in a virtual environment

◦ Are there any oddities in user behavior?

◦ How do I parameterize “odd” things?
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Given:

• High-dimensional data

• Many-valued data

• Time-stamped data

Asked for:

• Easy-to-understand patterns (rules)

• Exploratory tools (visualization and inspection)

• Natural way of interaction

• Exploit temporal information (if desired)
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• Every rule

〈A1 = a1 ∧ · · · ∧ Ak = ak〉 → C = c

of a given rule set is represented as an icon:

◦ For every possible item there is a reserved segment on the outer border.
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• Every rule

〈A1 = a1 ∧ · · · ∧ Ak = ak〉 → C = c

of a given rule set is represented as an icon:

◦ For every possible item there is a reserved segment on the outer border.

◦ If the item is present in the antecedent, the segment is colored.
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• Every rule

〈A1 = a1 ∧ · · · ∧ Ak = ak〉 → C = c

of a given rule set is represented as an icon:

◦ For every possible item there is a reserved segment on the outer border.

◦ If the item is present in the antecedent, the segment is colored.

◦ Interior encodes a rule-measure: here confidence.
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• The cover of two rules may be non-empty. Use a percentage bar to display the
mutual overlap.

• Special case: inclusion

Gender = male→ Cancer = yes

Gender = male ∧ Smoker = yes→ Cancer = yes



Rule Icons: Overlapping

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 414

• The cover of two rules may be non-empty. Use a percentage bar to display the
mutual overlap.

• General case:
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• Finally, arrange the icons in a two-dimensional chart.

• Choose association rule measures for the two axes and the size of the icon

• Our suggestion: For a rule X → Y choose the following measures:

◦ x-coordinate: recall, i. e. cT (Y → X)

◦ y-coordinate: lift, i. e. cT (X → Y )/σT (Y )

◦ size: support, i. e. σT (X ∪ Y )
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Car database

• 300 000 vehicles

• subset of 180 attributes

• 2 to 300 values per attribute

• Probabilistic Dependency Network
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Real-world Example: Daimler AG
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Explorative Analysis Tool
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Customer database

• Car and customer information

• Assessment of vehicle quality
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• Why considering the temporal development of rules?
(i. e. the change of certain rule evaluation measures)

◦ Failure patterns usually do not arise out of a sudden
but rather evolve slowly over time.

◦ A fixed problem takes some while to have a measurable effect.

• How to present this evolution to the user?

◦ Create a time series for every measure used for locating
and scaling the rule icon.

◦ Interpolate between the frames and present an animation.

• Problem: Need to reduce the number of rules.
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Real-world dataset



How does that look like?
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Obviously, there is a demand for
post-processing the rule set!
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Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 423

• Divide dataset into reasonable time frames

• Run respective pattern induction algorithm

• Quantify each pattern w. r. t. any desired measure(s)

• Generate time series for each measure and each pattern

• Match the time series against a user-specified concept

• Rank them according to the membership of the concept



User-driven Post-processing
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Users often have an idea in which direction to investigate but cannot explicitly phrase
a query to a Data Mining system. However, we can use intentions like

“Show me only those rules that had a strong increasing support and a in-
creasing confidence in the last quarter.”

or

“Which patterns exhibit an increasing lift while the support was stable or at
most slightly decreasing?”

to thin out the rule set.



User-driven Post-processing
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1. Specify a fuzzy partition on the change rate domain
of every pattern evaluation measure.



User-driven Post-processing
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1. Specify a fuzzy partition on the change rate domain
of every pattern evaluation measure.

2. Encode the user-concept as a fuzzy antecedent.

E. g. “lift is unchanged and confidence is increasing”:

〈∆liftis unch ∧ ∆confis incr〉

will be evaluated as

⊤
(
µ
(unch)
∆lift

(~a→ c), µ
(incr)
∆conf

(~a→ c)
)

where⊤ is a t-norm that represents a fuzzy conjunction.



User-driven Post-processing
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1. Specify a fuzzy partition on the change rate domain
of every pattern evaluation measure.

2. Encode the user-concept as a fuzzy antecedent.

3. Order the patterns w. r. t. concept membership degrees.



Summary Industrial Applications
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Requirements

• Easy-to-understand patterns

• Exploratory visual tools

• Natural and intuitive interaction

• Exploitation of temporal information

Desired Properties of Rules

• Almost free of parameters (support and confidence have a clear notion and can
even be increased after the induction)

• No black box approach

• Intuitive type of patterns (decision rules, business rules)

• Natural way of treating missing values.

• Light data preprocessing overhead
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Time Series Analysis



Time Series
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• Motivation

• Decomposition Models

◦ Additive models, multiplicative models

• Global Approaches

◦ Regression
◦ With and without seasonal component

• Local Approaches

◦ Moving Averages Smoothing
◦ With and without seasonal component

• Summary



Motivation: Temperatures
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Example: Temperatures data set (fictive)

• The plot shows the average temperature per day for 50 years.

• Is there any trend visible?

• How to extract seasonal effects?



Decomposition Models
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• The time series is given as a sequence of values

y1, . . . , yt, . . . , yn

• We assume that every yt is a composition of (some of) the following components:

◦ gt trend component

◦ st seasonal component

◦ ct cyclical variation

◦ ǫt irregular component (random factors, noise)

• Assume a functional dependency:

yt = f (gt, st, ct, ǫt)



Components of Time Series
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Trend Component

• Reflects long-term developments.

• Often assumed to be a monotone function of time.

• Represents the actual component we are interested in.

Cyclic Component

• Reflects mid-term developments.

• Models economical cycles such as booms and recessions.

• Variable cycle length.

• We do not consider this component here.

Remark: Often, both components are combined.



Components of Time Series
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Seasonal Component

• Reflects short-term developments.

• Constant cycle length (i. e., 12 months)

• Represents changes that (re)occur rather regularly.

Irregular Component

• Represents everything else that cannot be related to the other components.

• Combines irregular changes, random noise and local fluctuations.

• We assume that the values are small and have an average of zero.



Decompositions
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Additive Decomposition

yt = gt + st + ǫt

• Pure trend model: yt = gt + ǫt (stock market, no season)

• Possible extension: yt = gt + st + xtβ + ǫt (calendar effects)

Multiplicative Decomposition

yt = gt · st · ǫt
• Seasonal changes may increase with trend.

• Transform into additive model:

ỹt = log yt + log st + log ǫt



Time Series Analysis
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Goal: Estimate the components from a given time series, i. e.

ĝt + ŝt + ǫt ≈ yt

Application: With the estimates, we can compute the

• trend-adjusted series: yt − ĝt

• season-adjusted series: yt − ŝt

• We only consider additive models here.

⇒ Additional assumptions necessary in order to find ways
to infer the desired components.



Overview
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• Global approach: There is a fix functional dependence
throughout the entire time range. (⇒ regression models)

• Local approach: We do not postulate a global model and
rather use local estimations to describe the respective components.

• Seasonal effects: We have to decide beforehand whether
to assume a seasonal component or not.

Global Local

without Season Regression Smoothing Averages

with Season Dummy Variables Smoothing Averages



Global Approach (without Season)
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Model: yt = gt + ǫt

Assumptions:

• No seasonal component: st = 0

• Depending on gt, use regression analysis to estimate the
parameter(s) to define the trend component.

◦ linear trend: gt = β0 + β1t

◦ quadratic trend: gt = β0 + β1t + β2t
2

◦ polynomial trend: gt = β0 + β1t + · · · + βqt
q

◦ exponential trend: gt = β0 exp(β1t)

◦ logistic trend: gt =
β0

β1+exp(−β2t)



Global Approach (with Season)
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Model: yt = st + ǫt (no trend)

Assumptions:

• No trend component: gt = 0

• Seasonal component does not change from period to period.

• Introduce dummy variables for every time span (here: months) that
serve as indicator functions to determine to which
month a specific t belongs:

sm(t) =




1, if t belongs to month m

0, otherwise

• The seasonal component is then set up as st =
12∑

m=1

βmsm(t).

• Determine the monthly effects βm with normal least squares method.



Global Approach (with Season)
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Model: yt = gt + st + ǫt

Assumptions:

• Estimate ĝt while temporarily ignoring st.

• Estimate st from the trend-adjusted ỹt = yt − ĝt.

Model: yt = α1t + · · · + αqt
q + · · · + β1s1(t) + · · · + β12s12(t) + ǫt

Assumptions:

• Seasonal component does not change from period to period.

• Model the seasonal effects with trigonometric functions:

st = β0 +
6∑

m=1

βm cos
(
2π

m

12
t
)
+

5∑

m=1

γm sin
(
2π

m

12
t
)

• Determine α1, . . . , αq, β0, . . . , β6 and γ1, . . . , γ5 with normal least squares method.



Local Approach (without Season)
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General Idea: Smooth the time series.

• Estimate the trend component gt at time t as the average of the values around
time t.

For a given time series y1, . . . , yn, the Smoothing Average y⋆t of order r
is defined as follows:

y⋆t =





1

2k + 1
·

k∑

j=−k
yt+j, if r = 2k + 1

1

2k
· (1

2
yt−k +

k−1∑

j=−k+1
yt+j +

1

2
yt+k), if r = 2k



Local Approach (without Season)
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Model: yt = gt + ǫt

Assumptions:

• In every time frame of width 2k + 1 the time series can be assumed to be linear.

• ǫt averages to zero.

• Then we use the smoothing average to estimate the trend component:

ĝt = y⋆t



Local Approach (with Season)
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Model: yt = gt + st + ǫt

Assumptions:

• Seasonal component has period length p (repeats after p points):

st = st+p, t = 1, . . . , n− p

• Sum of seasonal values is zero:
p∑

j=1

sj = 0

• Trend component is linear in time frames of width p (if p is odd)
or p + 1 (if p is even).

• Irregular component averages to zero.



Local Approach (with Season)
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Let k = p−1
2 (for odd p) or k = p

2 (for even p).

Then:
• Estimate the trend component with smoothing average:

ĝt = y⋆t , k + 1 ≤ t ≤ n− k

• Estimate the seasonal components s1, . . . , sp as follows:

ŝi = s̃i −
1

p

p∑

j=1

s̃j with s̃t
1

mi − li + 1

mi∑

j=l

(yi+jp − y⋆i+jp), 1 ≤ i ≤ p

where
mi = max {m ∈ N0 | i +mp ≤ n− k}

and
li = min {l ∈ N0 | i + lp ≥ k + 1}



Example (from motivation)
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• We can extract an increase and decrease of 1 degree during 50 years even though
the amount of noise is more than twice as large than the actual trend.



Example

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 446

5 years period, trend ±8 degrees, noise amount ±2 degrees



Example
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100 years period, trend ±1 degree, noise amount ±3 degrees



Summary
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• Definition of the problem domain

◦ Consider a time series to be composed of subcomponents.
◦ Additive and multiplicative models.

• Global and local approaches

◦ With and without seasonal components.

• Robust to noise

◦ Noise can be higher than the trend component itself.
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Häufige Muster in zeitbezogenen Daten
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• Häufige Muster in zeitbezogenen Daten

◦ Motivation / Problemstellung
◦ Abgrenzung zu bekannten Verfahren
◦ Algorithmen / Beispiel



Qualitätsüberwachung von Fahrzeugen
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Qualitätsüberwachung von Fahrzeugen
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Vorserienfahrzeuge
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Vorserienfahrzeuge
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Was ist ein temporales Muster?
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Was ist ein temporales Muster?
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• Häufige Muster in zeitbezogenen Daten

◦ Motivation / Problemstellung
◦ Abgrenzung zu bekannten Verfahren
◦ Algorithmen / Beispiel



Agrawal 1995
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• Viele Kunden mit einer Historie von Itemsets

• Sucht Sequenzen
◦ z.B. {a, b} → {c} → {b, c}

• Keine Regeln

• Kein Zeitfenster

• Support: Zählen
◦ Supportzähler einer Sequenz wird inkrementiert, wenn sie bei einem Kunden
vorkommt



Höppner 2002
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• Ein einziger Zeitstrahl, Ereignisse haben zeitliche Ausdehnung

• Sucht Muster
◦ a enthält b und trifft auf c

• Aus Mustern werden Regeln abgeleitet

• Benutzt ein Zeitfenster in dem Muster vorkommen muss

• Support: Temporal Support



Verwandte Verfahren
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• Häufige Muster in zeitbezogenen Daten

◦ Motivation / Problemstellung
◦ Abgrenzung zu bekannten Verfahren
◦ Algorithmen / Beispiel



Partielles Apriori-Kriterium
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• Alle Suffixe eines häufigen Musters sind häufig.



Kandidaten Generation
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Support Evaluation
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• Ausnutzen der Eigenschaften von normalisierten Mustern, durch endliche Auto-
maten



Endliche Automaten bleiben stecken
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• Ein endlicher Automat bleibt nach akzeptieren des 1. a’s stecken.

• Lösung des Problems durch Anlegen von Kopien und Filtern der gefundenen
Vorkommen



Beispiel: Qualitätsüberwachung von Fahrzeugen
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• 101 250 Fahrzeuge

◦ Werkstattaufenthalte

◦ Fahrzeugkonfigurationsmerkmale

◦ 1,4 Mio. temporale Intervalle



Anzahl häufiger Muster
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Laufzeit
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Motive in Zeitreihen effizient finden
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• Motive in Zeitreihen effizient finden

◦ Data Mining in Zeitreihen
◦ Speicherplatzeffiziente Repräsentationen
◦ Symbolische Aggregat-Approximation (SAX)
◦ Finden von Motiven in Zeitreihen mit SAX
◦ Anwendungsbeispiel



Data Mining in Zeitreihen
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• große Herausforderung: Finden von nützlichen Informationen aus Zeitreihen

• typische Problemen: Clustering, Klassifizierung, Entdeckung von häufigenMustern
und Regeln, Visualisierung, Erkennung von Anomalien

• Probleme reduzieren sich wegen großer Datenfülle häufig auf das Finden von
wiederkehrenden, sich (einander) ähnelnden Teilsequenzen

• benötigt: Ähnlichkeitsmaß um Teilsequenzen miteinander zu vergleichen

• z.B. Euklidischer Abstand

d(Q,C) =

√√√√
n∑

i=1

(qi − ci)2

zwischen 2 standardnormalverteilten Teilsequenzen Q = (q1, . . . , qn)
T und C =

(c1, . . . , cn)
T

• Problem: sehr viele Vergleiche und Kapazität des schnellen Arbeitsspeichers meist
zu klein um alle Daten zu laden



Speicherplatzeffiziente Repräsentationen
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• Problem: viele, langsame Zugriffe auf Originaldaten

• Lösung: Approximation der Zeitreihen, die in Arbeitsspeicher passt und interes-
sante Eigenschaften erhält

• z.B. diskrete Fourier-Transformation (DFT), diskreteWavelet-Transformation (DWT),
stückweise lineare (PLA) und adaptiv stückweise konstante Modelle (APCA), Sin-
gulärwertzerlegung (SVD)

• hier: symbolische Repräsentationen

• Vorteile: Algorithmen der Textverarbeitung und Bioinformatik anwendbar, z.B.
Hashing, Markov-Modelle, Suffixbäume, usw.



Zeitreihen-Repräsentationen
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Repräsentationen

modellbasiert

HMM ARMA

nicht datenadaptiv

Wavelets

Orthonormal

Haar Daubechies

Bi-orthonormal

Coiflets Symlets

zufällig PAA Spektral

DFT DCT Chebyshev

datengetrieben

gestutzt
phasen-
basiert

Gitter

datenadaptiv

Sortierte
Koef-
fizien-
ten

stück-
weise

polyno-
mial

stück-
weise
linear

Interpolation Regression

APCA

SVD Symbolisch

NLG Strings

SAX
wert-
basiert

anstiegs-
basiert

Bäume



Die meist genutzten Repräsentationen
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DFT PLA Haar wavelet APCA



Stückweise aggregierte Approximation (PAA)
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Reduktion von 128 auf 8 Datenpunkte



Symbolische Aggregat-Approximation (SAX)
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• jede Sequenz der Länge n wird ein Wort definierter Länge w über ein gewähltes
Alphabet A = {α1, . . . , αa} mit |A| = a

• simpler Algorithmus:
1. Teile Teilsequenz in w gleichgroße Intervalle

2. PAA: Bilde von jedem Intervall dessen Mittelwert (Repräsentant)
C = (c1, . . . , cn)

T wird abgebildet auf C̄ = (c̄1, . . . , c̄w) durch

c̄i =
w

n

n
wi∑

j=n
w(i−1)+1

cj

3. Bilde jeden Mittelwert c̄i von C̄ auf einen der a Buchstaben durch
âi = αj ⇔ βj−1 ≤ c̄i ≤ βj

• Annahmen: Wertebereich der PAA-Sequenz sei normalverteilt und Auftreten jedes
Buchstaben ist gleich wahrscheinlich

• Abbildung c̄i 7→ b ∈ A durch “Bruchstellen” β1, . . . , βa−1



“Bruchstellen” der Normalverteilung
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|A| 3 4 5 6 7 8 9 10
β1 −.43 −.67 −.84 −.97 −1.07 −1.15 −1.22 −1.28
β2 0.43 0 0.25 0.43 0.57 0.67 0.76 0.84
β3 0.67 0.25 0 −.18 −.32 −.43 −.52
β4 0.84 0.43 0.18 0 −.14 −.25
β5 0.97 0.57 0.32 0.14 0
β6 1.07 0.67 0.43 0.25
β7 1.15 0.76 0.52
β8 1.22 0.84
β9 1.28

• Bruchstellen teilen Normalverteilung in gleichwahrscheinliche Regionen



Beispiel: SAX
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• hier: n = 128, w = 8, a = 3

• Ergebnis: baabccbc



Abstandsmaß für SAX
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• PAA: untere Schranke zum Euklidischen Abstand durch

dr(Q̄, C̄) =

√
n

w

√√√√
w∑

i=1

(q̄i − c̄i)2

• SAX:

d∗(Q̂, Ĉ) =

√
n

w

√√√√
w∑

i=1

d∗a(q̂i, ĉi)2

• Abstandsmaß d∗a sollte über Lookup-Tabelle definiert werden, z.B. für a = 4
a b c d

a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.340 0.67 0 0

d∗a(r, c) =




0 falls |r − c| ≤ 1,

βmax(r,c)−1 − βmin(r,c) sonst



Vergleich der Abstandsmaße
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SAX-Vorteil: untere Schranke

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 482

• d∗(Q̂, Ĉ) ist untere Schranke des Euklidischen Abstandes d(Q,C) der Originalse-
quenzen Q und C

d∗(Q̂, Ĉ) ≤ d(Q,C)

• falls Q̂ und Ĉ zueinander unähnlich sind, so sind es auch Q und C

• SAX-basierte Algorithmen produzieren identische Resultate verglichen mit Algo-
rithmen, die auf Originaldaten arbeiten

• “nur” ähnliche SAX-Worte sollten im Originalraum verglichen werden

• meist jedoch nur wenige Zugriffe auf Originaldaten



Finden von Motiven in Zeitreihen
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• Motive: Primitive, häufige (ähnliche) Muster, Prototypen

• Herausforderungen:
◦ Motive sind vorher unbekannt
◦ vollständige Suche ist kostspielig mit O(n2)
◦ Ausreißer beeinflüssen euklidischen Abstand



Erstellen der SAX-Matrix
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• Finden aller Motive einer Zeitreihe
der Länge m durch “Sliding Win-
dow”

• Fensterbreite n führt zu (m− n+1)
Teilsequenzen

• Transformation jeder Sequenz in ein
SAX-Wort der Länge w

• Speicherung in Zeilenmatrix (sog.
SAX-Matrix)

• hat w Spalten und (m−n+1) Zeilen



Zufallsprojektion
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• Erraten der Motiv-Positionen durch sog. Zufallsprojektion

• paarweise Vergleiche der SAX-Worte

• Kollisionsmatrix M mit (m− n + 1)2 Feldern für jeden der Vergleiche

• M durch Hash-Tabelle effizient implementieren!

• anfangs M(i, j) = 0 für 1 ≤ i, j ≤ m− n + 1

• Idee: Zeichen für Zeichen zweier Worte in SAX-Matrix miteinander vergleichen

• bessere Annahme: “don’t care symbols” in Sequenzen mit unbekanntem Ort

• z.B. verrauschtes Motiv oder Streckung bzw. Stauchung einer Sequenz



Zufallsprojektion
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• folglich: SAX-Matrix wird auf 1 ≤ k < w zufällig ausgewählte Spalten projiziert

• Vergleich aller Zeilen der projizierten Matrix

• falls 2 projizierte SAX-Worte in Zeilen i und j identisch, so wird M(i, j) inkre-
mentiert

• Projizieren wird t mal wiederholt, weil einige Motive sich nach t Iterationen
wahrscheinlich zusammen einen Eintrag in M teilen werden

• es ist auch unwahrscheinlich, dass viele zufällige Sequenzen zusammen mit einem
bereits gefundenen Motiv kollidieren werden

• nutzerdefinierter Schwellenwert s mit 1 ≤ s ≤ k für Kollisionseinträge in M

• alle M(i, j) ≥ s wären demnach Kandidaten für Motive

• aber: in unmittelbarer Nachbarschaft einer Sequenz i kommen ähnliche Sequenzen
vor (sog. triviale Übereinstimmungen)

• diese werden abschließend gestrichen



Zufallsprojektion
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• ersten zwei Iterationen der Zufallsprojektion



Subdimensionale Motive
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• Zufallsprojektion für Motive in univariaten SAX-Zeitreihen kann auch multivariat
verwendet werden

• Idee: Inkrementiere pro Attribut j ∈ {1, . . . , p} die Kollisionsmatrix M für jedes
projiziertes SAX-Wort

• Problem: relevanten Dimensionen der potentiellen subdimensionalen Motive sind
unbekannt

• Lösung:
◦ Schätzen eine Verteilung P (dj) über Abstände zwischen nicht-trivialen Über-
einstimmungen durch Ziehen einer Stichprobe

◦ Bestimmung der Abstände d∗1, . . . , d
∗
p für jeden Eintrag M(i, j) ≥ s

◦ falls P (dj ≤ d∗j) < rrelj (nutzerspezifische Dimensionsrelevanz ), dann ist
j-tes Attribut relevant



Anwendungsbeispiel

Prof. R. Kruse, P. Held, C. Moewes Intelligent Data Analysis 489

• Experte identifizierte p = 9 von insgesamt 130 Messkanälen als wichtig

• Motiv dauert mindestens n = 400ms

• 10 Zeitreihen gegeben zum Suchen nach subdimensionalen Motiven



Subdimensionales Motiv in zwei Zeitreihen
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Clustering der Motive
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• Aufstellen einer Unähnlichkeitsma-
trix durch paarweiser Vergleiche aller
gefundenen Muster der 10 Zeitreihen
basierend auf d∗

• Matrix ist symmetrisch, positiv und
enthält auf Hauptdiagonale Nullele-
mente

• kann zum Gruppieren der Vorkom-
men genutzt werden, um Motive zu
finden, die in mehreren Zeitreihen
verteilt auftreten

• hier: hierarchisches Clustern aller
Motive, die Attribute attr 1

attr 3 enthielten


