Exercise Sheet 4

Exercise 13 Estimators

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be the random vector underlying a random sample of size n. We assume that the random variables X_{i} are independent and identically distributed according to the exponential distribution $f_{X}(x ; \theta)=\frac{1}{\theta} e^{-\frac{x}{\theta}}, x>0$. We desire to estimate the parameter θ of this distribution. The most commonly used estimator for θ is $W_{1}=$ $\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Here, however, we consider the estimator $W_{2}=n \cdot X_{\min }=n \min _{i=1}^{n} X_{i}$. Determine the probability density function of this estimator, that is, $f_{W_{2}}(w ; \theta)$.
Hint: Recall the technical trick to consider the complementary event instead of the event itself, which we already used in exercise 1.

Exercise 14 Properties of Estimators

Show: the relative frequency r_{A}, with which an event A occurs in a given random sample of size n, is a consistent and unbiased estimator for the parameter $p=P(A)$ of a binomial distribution $b_{X}(x ; p, n)$. (p is the probability, with which A occurs in a single instance of the random experiment - which is a Bernoulli experiment).
Hint: Consider the arithmetical mean of n independent random variables Y_{1}, \ldots, Y_{n} for n Bernoulli experiments with

$$
Y_{i}= \begin{cases}1, & \text { if event } A \text { occurs in the } i \text {-th trial } \\ 0, & \text { otherwise }\end{cases}
$$

Exercise 15 Unbiasedness of Estimators

a) Let W_{1} and W_{2} be two unbiased estimators for the unknown parameter θ. If we want $W=a W_{1}+b W_{2}$ to be an unbiased estimator for θ as well, what conditions must hold for a and b ?
b) Show: if we desire to estimate the parameter $\mu=E(X)$, then $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is always an unbiased estimator for μ.

Exercise 16 Efficiency of Estimators

In the lecture we considered $W_{1}=\frac{n+1}{n} X_{\max }=\frac{n+1}{n} \max _{i=1}^{n} X_{i}$ as an unbiased estimator for the parameter θ of a uniform distribution on the interval $[0, \theta]$. As an alternative,
one may use the (also unbiased) estimator $W_{2}=(n+1) X_{\min }=(n+1) \min _{i=1}^{n} X_{i}$, which can be derived in a similar way. Which of these two estimators is more efficient?

