Exercise Sheet 6

Exercise 21 Method of Least Squares/Regression

Determine a best fit line y = a + bx (regression line) for the data set already considered in exercise 10, that is, for

x	0	1	1	2	3	3	4	5	5	6
y	0	1	2	3	2	3	4	4	6	5

- a) using the covariance and the variances/standard deviations (see the lecture slides, section on correlation coefficients)
- b) using the method of least squares/the system of normal equations!

Draw a diagram of the data points and the regression line!

Exercise 22 Method of Least Squares/Regression

Determine a best fit parabola $y = a + bx + cx^2$ (regression parabola) for the data set (x, y) = ((0, 0), (2, 1), (3, 2), (4, 4)) with the method of least squares and draw this parabola!

Exercise 23 Multilinear Regression

Determine a best fit plane z = a + bx + cy for the following data set with the method of least squares: (x, y, z) = ((0, 1, 0), (0, 4, 2), (2, 0, 1), (3, 1, 2), (2, 3, 3), (4, 4, 4)).

Exercise 24 Logistic Regression

The following table shows the number of American intercontinental ballistic missiles (ICBMs) in the years from 1960 to 1969:

year, x	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
number, y	18	63	294	424	834	854	904	1054	1054	1054

Find a best fit curve for this data set using logistic regression (Y = 1060)! Draw the original data and sketch the curve $y = \frac{1060}{1 + e^{a + bx}}!$

Additional Exercise Exponential Regression

Radioactive substances decay according to the law $N(t) = N_0 e^{-\lambda t}$, where t is the time, λ a substance-specific decay parameter, N_0 the number of atoms of the substance at the beginning and N(t) the number of remaining atoms at time point t. With the help of Geiger-Müller counter the following values n were measured for the number of α particles that were emitted by a small amount of a radioactive substance up to different time points t:

$t ext{ (in s)}$	0	30	60	90	120	150	180	210	240
n	0	306	552	655	768	863	901	919	956

Each counted α particle indicates that one atom of the radioactive substance decayed. Determine the half-life of the radioactive substance! What element is this substance?

Procedure: Find a best fit curve $n = n_0(1 - e^{a+bt})!$

(Hint: You have to find a transformation that reduces the problem to the problem of finding a best fit line (regression line); $n_0 = 1000$.) Although the value for a may differ from zero with this approach, -b may be seen as an approximation of the decay parameter λ , from which the half-life can easily be determined. The half-life of a substance is the time after which only half of the originally present atoms remain.