# 9. Similarity Relations

# Example 9.1

Specification of a partial control mapping ("good control actions")

|           | gradient |      |      |       |       |       |       |       |  |
|-----------|----------|------|------|-------|-------|-------|-------|-------|--|
|           |          | -40  | -6   | -3    | 0     | 3     | 6     | 40    |  |
| -         | -70      | 22,5 | 15,0 | 15,0  | 10,0  | 10,0  | 5,0   | 5,0   |  |
|           | -50      | 22,5 | 15,0 | 10,0  | 10,0  | 5,0   | 5,0   | 0,0   |  |
| deviation | -30      | 15,0 | 10,0 | 50,0  | 5,0   | 0,0   | 0,0   | 0,0   |  |
|           | 0        | 5,0  | 5,0  | 0,0   | 0,0   | 0,0   | -10,0 | -15,0 |  |
|           | 30       | 0,0  | 0,0  | 0,0   | -5,0  | -5,0  | -10,0 | -10,0 |  |
|           | 50       | 0,0  | -5,0 | -5,0  | -10,0 | -15,0 | -15,0 | -22,5 |  |
|           | 70       | -5,0 | -5,0 | -15,0 | -15,0 | -15,0 | -15,0 | -15,0 |  |
|           | current  |      |      |       |       |       |       |       |  |



#### **Interpolation of this table**

Additional knowledge was available: Some values are indistinguishable (from a measurement point of view) or should be treated in a similar way.

**Problem 1**: How to model such similarity information?

**Problem 2**: How to interpolate in the case of existing similarity information?



How to model similarity?

#### **Proposal 1: equivalence relation**

- (I)  $x \approx x$  (reflexivity)
- (II)  $x \approx y \leftrightarrow y \approx x$  (symmetry)
- (III)  $x \approx y \wedge y \approx z \rightarrow x \approx z$  (transitivity)
- x and y similar (x ≈ y), if and only if |x-y|<ε, (ε fixed)</li>
  ≈ is not transitive, Poincaré paradox
  - x≈y, y≈z, x≉z
- counterintuitive !



**Proposal 2:** similarity relation (multi-valued equivalence relation)

 $[x \approx y]$  degree, to which  $x \approx y$  holds

$$E_{\approx}: \mathbf{X} \times \mathbf{X} \to [0,1], (\mathbf{x},\mathbf{y}) \to [\mathbf{x} \approx \mathbf{y}]$$

(1) 
$$E_{\approx}(\mathbf{x},\mathbf{x}) = 1$$

(2) 
$$E_{\approx}(\mathbf{x},\mathbf{y}) = E_{\approx}(\mathbf{y},\mathbf{x})$$

(3)  $\Pi(E_{\approx}(\mathbf{x},\mathbf{y}), E_{\approx}(\mathbf{y},\mathbf{z})) \le E_{\approx}(\mathbf{x},\mathbf{z})$ , where  $\Pi$  is a *t*-norm

 $E_{\approx}$  is called fuzzy equality relation, similarity relation, indistinguishability operator or tolerance relation.



# • Example

- δ pseudo metric on X  $\Pi(\alpha,\beta)=\max{\alpha+\beta-1,0}$  Lukasiewicz *t*-norm, Then
- $E_{\delta}(\mathbf{x},\mathbf{y}) = 1 \min{\{\delta(\mathbf{x},\mathbf{y}), 1\}}$  fuzzy equality relation
- $\delta_{E}(x,y) = 1 E(x,y)$  induced pseudo metric
- i.e. fuzzy equality and distance are dual notions

# Formal Definition

- $E: X \times X \rightarrow [0,1]$  similarity relation, iff
- (1) E(x,x) = 1
- (2)  $E(\mathbf{x},\mathbf{y}) = E(\mathbf{y},\mathbf{x})$
- (3) max{(E(x,y)+E(y,z)-1),0}  $\leq E(x,z)$



**Fuzzy Sets as a Derived Concept** 

$$\delta(x,y) = |x-y|$$
  
E <sub>$\delta$</sub>  (x,y) = 1 - min {|x-y|,1}



 $\mu_{y}: X \to [0,1]$  $x \to E_{\delta}(x,y)$  fuzzy singleton

 $\mu_v$  describes the "local" similarities

metric similarity relation



# Example 9.2

$$E: \Re x \Re \to [0,1], (x,y) \mapsto 1 - \min\{|x-y|,1\}$$

is a similarity relation w.r.t the t-norm  $T_{Luka}$  **Def. 9.3** 

Let E be a similarity relation on X w.r.t. T.

 $\mu \in F(X)$  is extensional iff T  $(\mu(x), E(x, y)) \le \mu(y)$  for all x,y. **Def. 9.4** 

Let E be a similarity relation on X w.r.t. T And  $M \subseteq X$ .

$$\mu_M : X \to [0,1], x \mapsto \sup \{ E(x, x') | x' \in M \}$$
  
Is called extensional hull of M.  
Example 9.5

A singleton is the extensional hull of  $\{x_0\}$ .



#### **Def. 9.6**

Let E, F be similarity relations on X and Y.

 $\varsigma: X \rightarrow Y$  is extensional with respect to E, F iff  $E(x,x') \leq F(\varsigma(x), \varsigma(x'))$  holds.

# **Theorem 9.7**

Let E<sub>1</sub>,...,E<sub>n</sub> similarity relations w.r.t. ∏ on X<sub>1</sub>,...,X<sub>n</sub>.
Define E:(X<sub>1</sub>×...×X<sub>n</sub>)<sup>2</sup>→[0,1], ((x<sub>1</sub>,...,x<sub>n</sub>),(y<sub>1</sub>,...,y<sub>n</sub>)) → min{E<sub>1</sub>(x<sub>1</sub>, y<sub>1</sub>),...,E<sub>n</sub>(x<sub>n</sub>, y<sub>n</sub>)}
a) E is a similarity relation w.r.t. ∏ on X<sub>1</sub>×...×X<sub>n</sub>.
b) For all i∈ {1,...,n} the projection π<sub>i</sub>: X<sub>1</sub>×...×X<sub>n</sub>→X<sub>i</sub> is extensional w.r.t. E and E<sub>i</sub>.
c) If E' is a similarity relation w.r.t. ∏ on X<sub>1</sub>×...×X<sub>n</sub>, i.e. all projections are extensional, then E'≤E holds.

# Remark 9.8

E is the biggest similarity relation for which all projections are extensional.



# **Specification of similarity relations**

given a family of fuzzy sets that describes the "local" similarities



#### then

- there is a similarity relation on D with induced fuzzy sets  $\mu_i$ , iff

 $\sup_{\substack{x \in X \\ i \in X}} \{\mu_i(x) + \mu_j(x) - 1\} \le \inf_{\substack{y \in X \\ j \in X}} \{1 - |\mu_i(y) - \mu_j(y)|\} \text{ for all } i, j$ - if  $\mu_i(x) + \mu_j(x) \le 1$  for  $i \ne j$  then there is a similarity relation *E* on X, where

- if  $\mu_i(x) + \mu_j(x) \le 1$  for  $i \ne j$  then there is a similarity relation *E* on X, where  $E(x,y) = \inf_i \{1 - |\mu_i(x) - \mu_i(y)|\}$ 



# **Necessity of scaling**

Are there other similarity relations on the real numbers than  $E(x,y) = 1 - \min\{|x-y|,1\}$ ?

# **Integration of scaling**

A similarity relation is dependent on the measurement unit: Celsius:  $E(20^{\circ}C, 20.5^{\circ}C) = 0.5$  Fahrenheit: E(68F, 68.9F) = 0.1scaling factor for Celsius/Fahrenheit: 1.8, since F = 18/10 C + 32

 $E(\mathbf{x},\mathbf{y}) = 1 - \min\{|\mathbf{c}\cdot\mathbf{x} - \mathbf{c}\cdot\mathbf{y}|, 1\}$ 



$$X = [a,b]$$
  
Scaling

37

c: X  $\rightarrow$  [0, $\infty$ ),

# **Transformation** $f: \mathbf{X} \to [0,\infty), \quad \mathbf{x} \to \int_{a}^{x} c(t) dt$

**Similarity relation** 

 $E: X \times X \to [0,1], (x,x') \to 1 - \min \{|f(x)-f(x')|, 1\}$ 

