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Abstract

We study the problem of label ranking, a machine learning task that consists

of inducing a mapping from instances to rankings over a finite number of labels.

Our learning method, referred to as ranking by pairwise comparison (RPC), first

induces pairwise order relations (preferences) from suitable training data, using

a natural extension of so-called pairwise classification. A ranking is then derived

from a set of such relations by means of a ranking procedure. In this paper, we

first elaborate on a key advantage of such a decomposition, namely the fact that it

allows the learner to adapt to different loss functions without re-training, by using

different ranking procedures on the same predicted order relations. In this regard,

we distinguish between two types of errors, called, respectively, ranking error and

position error. Focusing on the position error, which has received less attention

so far, we then propose a ranking procedure called ranking through iterated choice

as well as an efficient pairwise implementation thereof. Apart from a theoretical

justification of this procedure, we offer empirical evidence in favor of its superior

performance as a risk minimizer for the position error.

∗This research has been funded by the German Research Foundation (DFG). It summarizes and

extends results presented in [13, 14, 15].
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1 Introduction

An important development in contemporary machine learning research concerns the

extension of learning problems from basic settings to more complex and expressive

ones. In particular, learning problems with structured output spaces have recently

received a great deal of attention [21]. In this paper, we study a problem belonging to

this category, namely label ranking. Roughly speaking, label ranking can be seen as an

extension of conventional classification learning, where the problem is to predict a total

order of a finite number of class labels, instead of only guessing a single, presumably

most likely candidate label.

One approach to the label ranking problem is offered by pairwise decomposition tech-

niques [10]. The key idea of this approach is to learn an ensemble of simple models,

where each model is trained to compare a pair of candidate labels. A ranking is then

derived from the pairwise comparisons thus obtained. Not only is ranking by pairwise

comparison (RPC) intuitively appealing and in line with common techniques from deci-

sion analysis, it also proved to be computationally efficient and quite effective in terms

of generalization performance.

The purpose of this paper is to elaborate more closely on issues related to risk mini-

mization in RPC, thereby contributing to the theoretical foundations of this approach.

More specifically, the paper makes two main contributions: First, it broaches the issue

of loss functions in label ranking and proposes a distinction between two types of error,

called, respectively, ranking error and position error. In this regard, we elaborate on a

key advantage of RPC, namely the fact that it can be adapted to different loss functions

without the need to change the underlying models, simply by using different ranking

procedures on the same underlying order relations. As a particular result, it will be

shown that, by using suitable ranking procedures, RPC can minimize the risk for two

important ranking errors, namely Spearman’s rank correlation and Kendall’s tau.

The paper then focuses on the position error, which has received less attention so far.

The problem of minimizing this error will be investigated not only from a theoretical but

also from a practical point of view. More specifically, we propose a ranking procedure

called ranking through iterated choice (RIC) and offer empirical evidence in favor of its

superior performance as a risk minimizer for the position error.

The remainder of the paper is organized as follows: Section 2 introduces the label

ranking problem and elaborates on the aforementioned two types of prediction errors.
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The idea of learning by pairwise comparison and its application to label raking are then

discussed in Section 4. The problems of minimizing the ranking error and position error

are studied in Sections 5 and 6, respectively. As mentioned above, the latter section

introduces the RIC procedure, which is evaluated empirically in Section 7. We close

the paper with some concluding remarks in Section 8.

2 Label Ranking

2.1 Problem Setting

We consider a formal setting that can be considered as an extension of the conventional

setting of classification learning. Roughly speaking, the former is obtained from the

latter through replacing single class labels by complete label rankings: Instead of asso-

ciating every instance x from an instance space X with one among a finite set of class

labels L = {λ1 . . . λm}, we now associate x with a total order of the class labels, i.e., a

complete, transitive, and asymmetric relation �x on L; the meaning of λi �x λj is that

λi precedes λj in the ranking associated with x; considering a ranking (metaphorically)

as a special type of preference relation, we shall also say that λi is preferred to λj (in

the context x). To illustrate, suppose that instances are students (characterized by at-

tributes such as sex, age, and major subjects in secondary school) and � is a preference

relation on a fixed set of study courses (such as math, CS, medicine, physics).

Formally, a ranking �x can be identified with a permutation τx of {1 . . .m}, e.g., the

permutation τx such that τx(i) = τx(λi) is the position of label λi. This permutation

encodes the ranking

λ
τ−1
x

(1) �x λ
τ−1
x

(2) �x . . . �x λ
τ−1
x

(m). (1)

We denote the class of permutations of {1 . . .m} by Sm. By abuse of terminology,

though justified in light of the above one-to-one correspondence, we shall refer to ele-

ments τ ∈ Sm as both permutations and rankings.

More specifically, and again in analogy with the classification setting, every instance is

associated with a probability distribution over Sm. That is, for every instance x, there

exists a probability distribution P(· |x) such that, for every τ ∈ Sm,

P(τ |x) (2)
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is the probability to observe the ranking τ as an output, given the instance x as an

input.

The goal in label ranking is to learn a “label ranker” in the form of an X −→ Sm

mapping. As training data, a label ranker has access to a set D of example instances

xk, k = 1 . . . n, together with associated (pairwise) preferences λi �xk
λj . As a special

case, this includes information about the complete ranking τxk
associated with an

instance xk. We explicitly mention, however, that this is not required. In practice,

information about the order of labels will most often be incomplete and may, in the

extreme, reduce to a single pairwise preference.

2.2 Label Ranking and Classification

As mentioned above, the setting of label ranking generalizes the one of conventional

classification, and the former actually includes the latter as a special case. In classifica-

tion, the training data consists of tuples (xk, λxk
), which are assumed to be produced

according a probability distribution on X × L. That is, a vector

px = ( P(λ1 |x) . . . P(λm |x) ) (3)

of conditional class probabilities can be associated with every instance x ∈ X , where

P(λi |x) denotes the probability of observing x together with the label λi. Now, by

sorting the labels λi in decreasing order according to their probability, x can again be

associated with a ranking τx. In this ranking, λi precedes λj , λi �x λj , if P(λi |x) >

P(λj |x). Note that, in contrast to the more general setting of label ranking, every x

is associated with a single, unique ranking. In other words, the probability measure in

(2) is given by P(τx |x) = 1 and P(τ |x) = 0 for all τ 6= τx.

Another connection between classification and label ranking is established by going

from the latter to the former, namely by projecting rankings to their top-label. This is

motivated by scenarios in which, even though there is a ranking τx for every instance

x, only the top-label can be observed. Thus, like in classification, observations are of

the form (x, λx), where λx = τ−1
x

(1). For example, one may assume that a student’s

preferences in principle give rise to a ranking of subjects, but only the maximally

preferred subject, the one which is eventually chosen, can be observed. Again, it is

possible to associate an instance x with a probability vector (3), namely the image of

the measure in (2) under the mapping τ 7→ τ−1(1). In this case, P(λi |x) corresponds

to the probability that λi occurs as a top-label in a ranking τx.
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Even though the following observation is quite obvious, it is important to realize and

also essential to our later discussion of two types of loss functions on rankings: A low

probability P(λi |x) = P(λi = τ−1
x

(1)) does not imply that λi is likely to have a low

position in the ranking τx, it only means that it is unlikely to have the first position.

Conversely, ordering the class labels according to their probability of being the top-label

does not usually yield a good prediction of the ranking τx.

To illustrate, suppose that P(λ1 � λ2 � λ3) = 0.5, P(λ3 � λ2 � λ1) = 0.3, P(λ2 �

λ1 � λ3) = 0.2, while the probability of all other rankings P(λ1 � λ3 � λ2) = P(λ2 �

λ3 � λ1) = P(λ3 � λ1 � λ2) = 0. From this, it follows that the probabilities for the

three labels λ1, λ2, and λ3 being the top label are, respectively, 0.5, 0.2, 0.3. Sorting

the labels according to these probabilities gives the ranking λ1 � λ3 � λ2, which by

itself has a probability of 0 and, as will be seen later on, is also a suboptimal prediction

in terms of risk minimization for common loss functions on rankings. This result is not

astonishing in light of the fact that, by only looking at the top-labels, one completely

ignores the information about the rest of the rankings.

3 Semantics of a Label Ranking

So far, we introduced the problem of predicting a label ranking in a formal way, though

without speaking about the semantics of a predicted ranking. In fact, one should

realize that a ranking can serve different purposes. Needless to say, this point is of

major importance for the evaluation of a label ranker and its predictions.

In this paper, we are especially interested in two types of practically motivated perfor-

mance tasks. In the first setting, which is probably the most obvious one, the complete

ranking is relevant, i.e., the positions assigned to all of the labels. As an example,

consider the problem of learning to predict the best order in which to supply a certain

set of stores (route of a truck), depending on external conditions like traffic, weather,

purchase order quantities, etc. In case the complete ranking is relevant, the quality of

a prediction should be quantified in terms of a distance measure between the predicted

and the true ranking. We shall refer to any deviation of the predicted ranking from the

true one as a ranking error (see Section 3.1).

To motivate the second setting, consider a fault detection problem which consists of

identifying the cause for the malfunctioning of a technical system. If it turned out that
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a predicted cause is not correct, an alternative candidate must be tried. A ranking

then suggests a simple (trial and error) search process, which successively tests the

candidates, one by one, until the correct cause is found [3]. In this scenario, where

labels correspond to causes, the existence of a single target label (instead of a target

ranking) is assumed. Hence, an obvious measure of the quality of a predicted ranking is

the number of futile trials made before that label is found. A deviation of the predicted

target label’s position from the top-rank will subsequently be called a position error

and discussed in more detail in Section 3.2. Note that, while a ranking error relates to

the comparison of two complete label rankings, τx and its prediction τ̂x, the position

error refers to the comparison of a label ranking τ̂x and a true class λx.

3.1 The Ranking Error

Distance metrics or, alternatively, similarity or correlation measures for rankings have

been studied intensively in diverse research areas, notably in statistics. An important

and frequently applied similarity measure for rankings is the Spearman rank correlation

[19]. It was originally proposed as a non-parametric rank statistic to measure the

strength of association between two variables [17]. Formally, it is defined as a linear

transformation of the sum of squared rank distances

D(τ ′, τ)
df
=

m∑

i=1

(
τ ′(i)− τ(i)

)2
, (4)

namely 1− 6D(τ, τ ′)/(m(m2 − 1)), which is a normalized quantity assuming values in

[−1, 1]. A related measure, Spearman’s footrule, is similarly defined, except that the

squares of rank distances are replaced by absolute values:

D(τ ′, τ)
df
=

m∑

i=1

∣∣τ ′(i)− τ(i)
∣∣ . (5)

Another well-known distance metric for rankings is the Kendall tau measure [16]. This

measure essentially calculates the number of pairwise rank inversions on labels to mea-

sure the ordinal correlation of two rankings; more formally, with

D(τ ′, τ)
df
= #{(i, j) | i < j, τ(i) > τ(j) ∧ τ ′(i) < τ ′(j)} (6)

denoting the number of discordant pairs of items (labels), the Kendall tau coefficient

is given by 1− 4D(τ ′, τ)/(m(m− 1)), which is again a linear scaling of D(τ ′, τ) to the

interval [−1, +1].
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Kendall’s tau counts the number of transpositions of adjacent pairs of labels needed to

transform a ranking τ into a ranking τ ′. Thus, it is a special type of edit distance. A

related measure, the Cayley distance, is given by the minimum number of transpositions

of any pair of labels (not necessarily adjacent). Yet another edit distance is the Ulam

measure [22], which allows as a basic edit operation the transposition of a single label,

that is, removing a label from a ranking and inserting it at another position.

Finally, the Hamming distance simply counts the number of labels that are put at

different positions in the two rankings:

D(τ ′, τ)
df
= #{i | τ ′(i) 6= τ(i) } (7)

3.2 The Position Error

We define the position error of a prediction τx as

PE(τx, λx)
df
= τx(λx),

i.e., by the position of the target label λx in the ranking τx. To compare the quality

of rankings of different problems, it is useful to normalize the position error for the

number of labels. This normalized position error is defined as

NPE(τx, λx)
df
=

τx(λx)− 1

m− 1
∈ {0, 1/(m− 1) . . . 1}. (8)

The position error of a label ranker is the expected position error of its predictions,

where the expectation is taken with respect to the underlying probability measure on

X × L.

Compared with the conventional misclassification rate, i.e., the 0/1-loss yielding 0 for a

correct and 1 for an incorrect prediction, the position error differentiates between “bad”

predictions in a more subtle way: In the case of a correct classification, both measures

coincide. In the case of a wrong prediction (top-label), however, the misclassification

rate is 1, while the position error assumes values between 1 and m, depending on how

“far away” the true target label actually is.

As most performance measures, the position error is a simple scalar index. To charac-

terize a label ranking algorithm in a more elaborate way, an interesting alternative is

to look at the mapping

C : {1 . . .m} −→ R, k 7→ P (τx(λx) ≤ k) . (9)
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Figure 1: Exemplary C-distributions for two label ranker.

According to its definition, C(k) is the probability that the target label is among

the top k labels in the predicted ranking. In particular, C(1) corresponds to the

conventional classification rate. Moreover, C(·) is monotone increasing, and C(m) = 1.

Formally, the mapping (9) is nothing else than the cumulative probability function of

a random variable, namely the position of the target label, and the position error is

the corresponding expected value. Of course, on the basis of the C-distribution (9),

only a partial order can be defined on a class of learning algorithms: Two learners are

incomparable in the case of intersecting C-distributions. Fig. 1 shows an example of

that kind. The first learner (solid curve) is a good classifier, as it has a high classification

rate. Compared with the second learner (dashed curve), however, it is not a good

ranker, as its C-distribution has a rather flat slope.

3.3 Extensions of the Position Error

Depending on the concrete application scenario, various extensions and generalizations

of the position error are conceivable. For example, imagine that, for whatever reason, it

is essential to have the target label among the top k candidates in a predicted ranking.

This goal might be captured most easily by means of a simple 0/1-loss function which

yields 0 if PE(τx, λx) ≤ k and 1 otherwise. More generally, one can use a (non-

decreasing) weight function w : {1 . . .m} −→ R and define the following weighted

(transformed) version of the position error:

PE(τx, λx)
df
= w (τx(λx)) .

Obviously, the standard position error is obtained for w(i) ≡ i, while the above 0/1-loss

is recovered for the special case where w(·) is given by w(i) = 0 for i ≤ k and w(i) = 1

8



for i > k. Moreover, the normalized position error (8) can be modeled by the weighting

scheme w(i) = (i− 1)/m.

Another interesting extension is related to the idea of cost-sensitive classification. In

this respect, one usually associates a cost-value with each pair of class labels (λi, λj),

reflecting the cost incurred when erroneously predicting λi instead of λj . In the context

of our scenario, it makes sense to associate a cost value c(i) with each individual label

λi, reflecting the cost for verifying whether or not λi is the correct label. Then, the

cost induced by a predicted label ranking τx is given by the cost for testing the target

label plus the labels preceding the target in the ranking:

τx(λx)∑

i=1

c(τ−1
x

(i)).

Finally, we note that the idea of the position error can of course be generalized to multi-

label (classification) problems which assume several instead of a single target label for

each instance. In this connection, it makes a great difference whether one is interested

in having at least one of the targets on a top rank (e.g., since finding one solution is

enough), or whether all of them should have high positions (resp. none of them should

be ranked low). In the latter case, it makes sense to count the number of non-target

labels ranked above the lowest target label (an application of that type has recently

been studied in [6]), while in the former case, one will look at the number of non-target

labels placed before the highest-ranked target label.

4 Learning by Pairwise Comparison

The key idea of pairwise learning is well-known in the context of classification [8],

where it allows one to transform a multi-class classification problem, i.e., a problem

involving m > 2 classes L = {λ1 . . . λm}, into a number of binary problems. To this

end, a separate model (base learner)Mij is trained for each pair of labels (λi, λj) ∈ L,

1 ≤ i < j ≤ m; thus, a total number of m(m− 1)/2 models is needed. Mij is intended

to separate the objects with label λi from those having label λj . At classification time,

a query instance is submitted to all models Mij , and their predictions are combined

into an overall prediction. In the simplest case, each prediction of a model Mij is

interpreted as a vote for either λi or λj , and the label with the highest number of

votes is proposed as a final prediction. It should be noted that although the number of
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binary classifiers grows quadratically with the number labels m, the training time for

this ensemble will only grow linearly with m [8], and, in practice, one is able to derive

a prediction by querying only a linear number of classifiers [18].

The above procedure can be extended to the case of label ranking or, more generally,

preference learning in a natural way [10]. A preference (order) information of the

form λa �x λb is turned into a training example (x, y) for the learner Mij , where

i = min(a, b) and j = max(a, b). Moreover, y = 1 if a < b and y = 0 otherwise. Thus,

Mij is intended to learn the mapping that outputs 1 if λi �x λj and 0 if λj �x λi:

x 7→

{
1 if λi �x λj

0 if λj �x λi

. (10)

The model is trained with all examples xk for which either λi �xk
λj or λj �xk

λi is

known. Examples for which nothing is known about the preference between λi and λj

are ignored.

The mapping (10) can be realized by any binary classifier. Alternatively, one can of

course employ a classifier that maps into the unit interval [0, 1] instead of {0, 1}. The

output of such a “soft” binary classifier can usually be interpreted as a probability or,

more generally, a kind of confidence in the classification: the closer the output of Mij

to 1, the stronger the preference λi �x λj is supported.

A preference learner composed of an ensemble of soft binary classifiers assigns a valued

preference relation Rx to every (query) instance x ∈ X :

Rx(λi, λj) =

{
Mij(x) if i < j

1−Mij(x) if i > j
(11)

for all λi 6= λj ∈ L. Given such a preference relation Rx for an instance x, the next

question is how to derive an associated ranking τx. This question is non-trivial, since a

relation Rx, derived from potentially erroneous predictions, can contain inconsistencies

and does not always suggest a unique ranking in an unequivocal way. In fact, the

problem of inducing a ranking from a (valued) preference relation has received a lot

of attention in several research fields, e.g., in fuzzy preference modeling and (multi-

attribute) decision making [7]. In the context of pairwise classification and preference

learning, several studies have empirically compared different ways of combining the

predictions of individual classifiers [23, 1, 12, 9].

The perhaps simplest approach is a straightforward extension of the aforementioned
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voting strategy: The alternatives λi are evaluated by the sum of (weighted) votes

S(λi) =
∑

λj 6=λi

Rx(λi, λj) (12)

and then ordered according to these evaluations, i.e.,

(λi � λj)⇔ (S(λi) ≥ S(λj)). (13)

This is a particular type of “ranking by scoring” strategy, where the scoring function is

given by (12).1 Even though this ranking procedure may appear rather ad-hoc at first

sight, we shall give a theoretical justification in Section 5.

In summary, our approach, referred to as ranking by pairwise comparison (RPC), con-

sists of the following two steps:

• the derivation of a valued preference relation (11) by training an ensemble of

(soft) binary classifiers, and

• the subsequent ranking of labels, using a ranking procedure such as (12–13).

We like to emphasize the modularity of RPC thus defined as a particular advantage

of the approach. This modularity allows, for example, to adapt the ranking procedure

in the second step to the problem at hand. In fact, as will be seen in the following

sections, this allows one to adjust RPC to minimize different loss functions on label

rankings without the need for re-training the pairwise classifiers.

5 Minimizing the Ranking Error

The quality of a modelM (induced by a learning algorithm) is commonly measured in

terms of its expected loss or risk

E ( D(y,M(x)) ) , (14)

where D(·) is a loss or distance function, M(x) denotes the prediction made by the

model for the instance x, and y is the true outcome. The expectation E is taken

1Strictly speaking, (12) does not necessarily define a ranking, as it does not exclude the case of

indifference between labels. In such cases, a ranking can be enforced by any tie braking strategy.
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with respect to a probability measure over X ×Y, where Y is the output space. In this

section, we are interested in the case where Y is given by a set of rankings, Sm, of a label

set L, and D(·) is a ranking error. More specifically, we show that, by using suitable

ranking procedures, RPC as outlined in Section 4 can minimize the risk with respect to

two important ranking errors, namely Spearman’s rank correlation and Kendall’s tau.

5.1 Spearman’s Rank Correlation and Kendall’s Tau

As a first result, we show that, if the binary models Mij provide correct probability

estimates, i.e.,

Rx(λi, λj) =Mij(x) = P(λi �x λj), (15)

then RPC using (12–13) as a ranking procedure yields a risk minimizing prediction

τ̂x = arg min
τ∈Sm

∑

τ ′∈Sm

D(τ, τ ′) · P(τ ′ |x) (16)

with respect to (4) as a loss function, i.e., it maximizes the expected Spearman rank

correlation between a true ranking τx and the prediction thereof.

Theorem 1 Suppose that (15) holds and let D(·) be given by (4). The expected distance

E(D(τ̂ , τ) | x) =
∑

τ∈Sm

P(τ | x) ·D(τ̂ , τ) =
∑

τ∈Sm

P(τ | x)
m∑

i=1

(τ̂(i)− τ(i))2

becomes minimal by choosing τ̂ such that τ̂(i) ≤ τ̂(j) whenever S(λi) ≥ S(λj), with

S(λi) given by (12).

A proof of this theorem is given in Appendix A.

Admittedly, (15) is a relatively strong assumption, as it requires the pairwise preference

probabilities to be perfectly learnable. Yet, the important point is that the above result

sheds light on the aggregation properties of our technique, albeit under ideal conditions.

In fact, recalling that RPC consists of two steps, namely pairwise learning and ranking,

it is clear that in order to study properties of the latter, some assumptions about the

result of the former step have to be made. And even though (15) might at best hold

approximately in practice, it seems to be at least as natural as any other assumption

about the output of the ensemble of pairwise learners.

Next, we consider another important ranking error, namely Kendall’s tau.
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Theorem 2 Given that (15) holds, the risk with respect and to the Kendall tau measure

(6) as a loss function can be minimized by RPC.

Proof: For every ranking τ̂ ,

E(D(τ̂ , τ) | x) =
∑

τ∈Sm

P(τ) ·D(τ̂ , τ) (17)

=
∑

τ∈Sm

P(τ | x) ·
∑

i<j | τ̂(i)<τ̂(j)

{
1 if τ(i) > τ(j)

0 if τ(i) < τ(j)

=
∑

i<j | τ̂(i)<τ̂(j)

∑

τ∈Sm

P(τ | x) ·

{
1 if τ(i) > τ(j)

0 if τ(i) < τ(j)

=
∑

i<j | τ̂(i)<τ̂(j)

P(λi �x λj)

Thus, knowing the pairwise probabilities P(λi �x λj), the expected loss can be derived

for every ranking τ̂ and, hence, a risk minimizing ranking can be found. �

Finding the ranking that minimizes (17) is formally equivalent to solving the graph-

theoretical feedback arc set problem (for weighted tournaments) which is known to be

NP complete [2]. Of course, in the context of label ranking, this result should be

put into perspective, because the set of class labels is typically of small to moderate

size. Nevertheless, from a computational point of view, the ranking procedure that

minimizes Kendall’s tau is definitely more complex than the procedure for minimizing

Spearman’s rank correlation.

5.2 Limitations of RPC

Despite the results of the previous section, it is important to realize that RPC is indeed

not able to minimize the risk with respect to every loss function. The simple 0/1–loss,

i.e., D(τ̂ , τ) = 0 if τ̂ = τ and = 1 otherwise, is a concrete counter-example. The

prediction minimizing the expected 0/1–loss is obviously given by the (Bayes) decision

τ̂ = arg maxτ∈Sm
P(τ |x). Now, consider the following distributions P(· |x) 6= P

′(· |x)

for an instance x:

P(τ |x) =





1/2 if τ = (1 2 3 4)

1/2 if τ = (4 3 2 1)

0 otherwise

, P
′(τ |x) =





1/2 if τ = (2 1 4 3)

1/2 if τ = (3 4 1 2)

0 otherwise

(18)
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Then, if (15) holds, one derives the same probabilities P(λi �x λj) and, therefore, the

same preference relations from both distributions P and P
′:

Rx =




− 1/2 1/2 1/2

1/2 − 1/2 1/2

1/2 1/2 − 1/2

1/2 1/2 1/2 −




Consequently, RPC cannot distinguish between the original distributions on Sm and,

hence, cannot minimize the 0/1–loss.

The same example can also be used to show that RPC can not minimize risk with

respect to Spearman’s footrule (5): For the distribution P in (18), this measure yields an

expected distance of 4 for the rankings (1 2 3 4) and (4 3 2 1), which is the minimal risk,

while (2 1 4 3) and (3 4 1 2) are both suboptimal with a risk of 6; for P
′, the situation is

just the reverse. Again, since RPC cannot distinguish these two cases, it cannot deliver

a risk minimizing prediction. In the same way, one verifies that RPC cannot minimize

risk with respect to the Hamming distance (minimal risk values 2 versus suboptimal

4), the Cayley distance (1 versus 2), and the Ulam distance (1.5 versus 2).

These negative results are a direct consequence of an information loss which is inherent

to learning by pairwise comparison: In this approach, the original probability distribu-

tion on the set of rankings, Sm, is replaced by pairwise probabilities P(λi �x λj). From

these pairwise probabilities alone, however, it is not possible to recover the original

distribution on Sm.

Nevertheless, we like to emphasize that this information loss should not be taken as

a serious deficiency of RPC. In fact, one should realize that learning the original dis-

tribution on Sm is practically infeasible, mainly due to the large number of rankings

and conditional probabilities that need to be estimated. Besides, complete rankings

will often not be available for training anyway. Therefore, the question rather becomes

how to utilize the given information in an optimal way, and how to learn “suitable”

condensed models. In this regard, we have seen above that the pairwise approach is

especially tailored to the sum of squared rank distances as a loss function, i.e., to the

Spearman rank correlation, and that RPC is also able to minimize risk for another

important and frequently used loss function, namely for Kendall’s tau.

Finally, we note that, in practice, pairwise preferences will often capture much more

information about a distribution on Sm than might be suggested by the above exam-
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ples. In fact, these are rather extreme in the sense that, in both cases, a ranking and

its complete reversal are considered as equally probable. Roughly speaking, both P

and P
′ are bimodal distributions with two maximally distant modes. In practice, one

may expect distributions on Sm that are more “centered” in the sense of allocating

probability mass to closely neighbored rankings. Regardless of the concrete distance

measure D(·), this means that highly probable rankings are unlikely to show a strong

disagreement on the level of pairwise preferences.

Indeed, as all distance (similarity) measures on rankings are more or less closely related,

minimizing risk with respect to one measure usually prevents from poor solutions for

another measure. In some cases, it is even possible to prove exact approximation

bounds. For example, an interesting connection between the two ranking error measures

discussed above has recently been established in [5], where it has been shown that

optimizing rank correlation yields a 5-approximation to the ranking which is optimal

for the Kendall measure.

6 Minimizing the Position Error

What kind of ranking procedure should be used in order to minimize the risk of a

predicted ranking with respect to the position error as a loss function? As mentioned

before, an intuitively plausible idea is to order the candidate labels λ according to their

probability P(λ = λx) of being the target label. In fact, this idea is not only plausible

but also provably correct. Even though the result is quite obvious, we state its formally

as a theorem.

Theorem 3 Given a query instance x ∈ X , ranking the labels λ ∈ L according to their

(conditional) probabilities of being the target class λx yields a risk minimizing prediction

with respect to the position error (8) as a loss function. That is, the expected loss

E(τx) =
1

m− 1

m∑

i=1

(i− 1) · P (τx(λx) = i)

becomes minimal for any ranking �x such that P(λi = λx) > P(λj = λx) implies

λi �x λj.
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Proof: This result follows almost by definition. In fact, note that we have

E(τx) ∝
m∑

i=1

P (τx(λx) > i)

and that, for each position i, the probability to excess this position when searching

for the target λx is obviously minimized when ordering the labels according to their

(conditional) probabilities. �

6.1 Conventional Conditioning

According to the above result, the top rank (first position) should be given to the label

λ> for which the estimated probability is maximal. Regarding the second rank, recall

the fault detection metaphor, where the second hypothesis for the cause of the fault is

only tested in case the first one turned out to be wrong. Thus, when having to make

the next choice, one principally has additional information at hand, namely that λ>

was not the correct label. Taking this information into account, the second rank should

not simply be given to the label with the second highest probability according to the

original probability measure, say, P1(·) = P(·), but instead to the label that maximizes

the conditional probability P2(·) = P(· |λx 6= λ>) of being the target label given that

the first proposal was incorrect.

At first sight, passing from P1(·) to P2(·) may appear meaningless from a ranking point

of view, since standard probabilistic conditioning yields

P2(λ) =
P1(λ)

1− P1(λ>)
∝ P1(λ) (19)

for λ 6= λ>, and therefore does not change the order of the remaining labels. And

indeed, in case the original P(·) is a proper probability measure and conditioning is

performed according to (19), the predicted ranking will not be changed at all.

6.2 Empirical Conditioning

One should realize, however, that standard conditioning is not an incontestable updat-

ing procedure in our context, simply because P1(·) is not a “true” probability measure

over the class labels. Rather, it is only an estimated measure coming from a learn-

ing algorithm, perhaps one which is not a good probability estimator. In fact, it is
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well-known that most machine learning algorithms for classification, especially in the

multi-class case, perform rather poorly in probability estimation, even though they may

produce good classifiers. Thus, it seems sensible to perform “conditioning” not on the

measure itself, but rather on the learner that produced the measure. What we mean

by this is retraining the learner on the original data without the λ>-examples, an idea

that could be paraphrased as “empirical conditioning”.

This type of conditioning depends on the data D and the model assumptions, that is,

the hypothesis space H from which the classifier is taken. To emphasize this depen-

dence and, moreover, to indicate that it concerns an estimated (“hat”) probability, the

conditional measure P2(·) could be written more explicitly as

P2(·) = P̂(· |λx 6= λ>,D,H).

To motivate the idea of empirical conditioning, suppose that the estimated probabilities

come from a classification tree. Of course, the original tree trained with the complete

data will be highly influenced by λ>-examples, and the probabilities assigned by that

tree to the alternatives λ 6= λ> might be inaccurate. Retraining a classification tree on

a reduced set of data might then lead to more accurate probabilities for the remaining

labels, especially since the multi-class problem to be solved has now become simpler

(as it involves fewer classes).

Fig. 2 shows a simpler example, where the hypothesis space H is given by the class of

decision stumps (univariate decision trees with only one inner node, i.e., axis-parallel

splits in the case of numerical attributes). Given the examples from three classes (rep-

resented, respectively, by the symbols �, ?, and •), the best model corresponds to the

split shown in the left picture. By estimating probabilities through relative frequencies

in the leaf nodes of the decision stump, one derives the following estimates for the

query instance, which is marked by a ⊕ symbol: P̂(� |⊕) = 12/15, P̂(? | ⊕) = 2/15,

P̂(• |⊕) = 1/15; thus, the induced ranking is given by � � ? � •. Now, suppose that

the top label � turned out to be an incorrect prediction. According to the above rank-

ing (and probabilistic conditioning), the next label to be tested would be ?. However,

when fitting a new model to the training data without the �-examples, the preference

between ? and • is reversed, because the query instance is now located “on the • -side”

of the decision boundary, and P̂(• |⊕, λ⊕ 6= �) = 1 (as shown on the right-hand side

of Fig. 2). Roughly speaking, conditioning by “taking a different view” on the data

(namely a view that suppresses the � examples) gives a quite different picture of the
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Figure 2: Example of empirical conditioning: The optimal model (decision stump) for

the complete training data (left) and the data omitting the examples of the top label

(�).

situation. In fact, one should realize that, in the first model, the preference between ?

and • is strongly biased by the �-examples: The first decision boundary is optimal only

because it classifies all �-examples correctly, a property that looses importance once it

turns out that � is not the true label of the query.

6.3 Ranking through Iterated Choice

According to the above idea, a classifier is used as a choice function: Given a set C ⊆ L

of potential labels with corresponding training data (and a new query instance x), it

selects the most likely candidate among these labels. We refer to the process of suc-

cessively selecting alternatives by estimating top labels from (conditional) probability

measures P1(·), P2(·) . . . Pm(·) as ranking through iterated choice (RIC).

As an important advantage, note that this approach can be used to turn any multi-class

classifier into a label ranker, as shown in Algorithm 1. In principle, it is not required

that a corresponding classifier outputs a score, or even a real probability, for every

label. In fact, since only a simple decision in favor of a single label has to be made

in each iteration, any classifier is good enough. In this regard, let us note that, for

the ease of exposition, the term “probability” will subsequently be used in a rather

informal manner.

Regarding its effect on label ranking accuracy, one may expect the idea of RIC to

produce two opposite effects:
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Algorithm 1: Ranking through Iterated Choice (RIC)

i← 0

C ← {λ1, λ2 . . . λm}

repeat
i← i + 1

train a classifierM(i) on all training examples with labels in C

let λ(i) =M(i)(x) be the prediction of the classifier for instance x

C ← C \ λ(i)

until i = m ;

return the ranking λ(1) � λ(2) � · · · � λ(m) for instance x

• Information loss: In each iteration, the size of the data set to learn from becomes

smaller.

• Simplification: Due to the reduced number of classes, the learning problems be-

come simpler in each iteration.

The first effect will clearly have a negative influence on generalization performance, as

a reduction of data comes along with a loss of information. In contrast to this, the

second effect will have a positive influence: The classifiers will become increasingly

simple, because it can be expected that the decision boundary for separating m classes

is more complex than the decision boundary for separating m′ < m classes of the same

problem. The hope is that, in practice, the second (positive) effect will dominate the

first one.

6.4 Efficient Implementation

An obvious disadvantage of RIC concerns its computational complexity. In fact, since

empirical conditioning essentially means classifying on a subset of L, the number of

models needed to classify a set of examples is (potentially) of the order 2|L|. To overcome

this problem, we resort to the idea of pairwise learning as outlined in Section 4. More

specifically, the idea is to train, in a first step, pairwise modelsMij , the outputsMij(x)

of which can be interpreted as (approximate) conditional probabilities

pij = P (λx = λi |λx ∈ {λi, λj},x)
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Then, in a second step, an estimation of the probability vector (3), i.e., of the individual

probabilities pi = P(λx = λi |x), is derived from these pairwise probabilities. To this

end, different techniques have been developed (e.g., [11]). Here, we resorted to the

approach proposed in [23], which derives the pi as a solution of a system of linear

equations, S, that includes one equation for every label.

Let Ei denote the event that λi = λx, i.e., that λi is the target label, and let Eij =

Ei ∨ Ej (either λi or λj is the target). Then,

(m− 1) P(Ei) =
∑

j 6=i

P(Ei) =
∑

j 6=i

P(Ei |Eij) · P(Eij), (20)

where m is the number of labels. Considering the (pairwise) estimates R(λi, λj) as

conditional probabilities P(Ei |Eij), we obtain a system of linear equations for the

(unconditional) probabilities P(Ei):

P(Ei) =
1

m− 1

∑

j 6=i

R(λi, λj) · P(Eij)

=
1

m− 1

∑

j 6=i

R(λi, λj) · (P(Ei) + P(Ej)) (21)

In conjunction with the constraint
∑m

i=1 P(Ei) = 1, this system has a unique solution

provided that R(λi, λj) > 0 for all 1 ≤ i, j ≤ m [23].

RIC can then be realized as follows: First, the aforementioned system of linear equations

is solved, and the label λi with maximal probability pi is chosen as the top-label λ>.

This label is then removed, i.e., the corresponding variable pi and its associated equation

are deleted from S. To find the second best label, the same procedure is then applied to

the reduced system S ′ thus obtained, i.e., by solving a system of m−1 linear equations

and m− 1 variables. This process is iterated until a full ranking has been constructed.

Lemma 4 In each iteration of the RIC procedure, the correct conditional probabilities

are derived.

Proof: Without loss of generality, assume that λm has obtained the highest rank in

the first iteration. The information that this label is incorrect, λm 6= λx, is equivalent

to P(Em) = 0, P(Em |Ejm) = 0, and P(Ej |Ejm) = 1 for all j 6= m. Incorporating
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these probabilities in (21) yields, for all i < m,

(m− 1)P(Ei) =
∑

j=1...m,j 6=i

P(Ei |Eij) · P(Eij)

=
∑

j=1..m−1,j 6=i

P(Ei |Eij) · P(Eij) + 1 · P(Eim)

and as P(Eim) = P(Ei) + P(Em) = P(Ei),

(m− 2)P(Ei) =
∑

j=1..m−1,j 6=i

P(Ei |Eij) · P(Eij).

Obviously, the last equation is equivalent to (21) for a system with m−1 labels, namely

the system obtained by removing the m-th row and column of R. �

This approach reduces the training effort from an exponential to a quadratic number

of models. Roughly speaking, a classifier on a subset C ⊆ L of classes is efficiently

assembled “on the fly” from the corresponding subset of pairwise models {Mij |λi, λj ∈

C}. Or, stated differently, the training of classifiers is replaced by the combination of

associated binary classifiers.

7 Empirical Evaluation

In this section, we intend to empirically validate two conjectures:

(i) Empirical conditioning (RIC) is an empirically better way to minimize the posi-

tion error than conventional probabilistic conditioning, and

(ii) the increased efficiency of the pairwise implementation, RIC-P, is achieved with-

out sacrificing this gain in accuracy.

The hope that empirical conditioning improves accuracy in comparison with conven-

tional probabilistic conditioning is essentially justified by the aforementioned simplifi-

cation effect of RIC. Note that this simplification effect is also inherently present in

pairwise learning. Here, the simplification due to a reduction of class labels is already

achieved at the very beginning and, by decomposing the original problem into binary

problems, carried to the extreme. Thus, if the simplification effect is indeed beneficial
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in the original version of RIC, it should also have a positive influence in the pairwise

implementation (RIC-P).

To validate these hypotheses, we compare the RIC strategy to the most obvious alterna-

tive, namely ordering the class labels right away according to the respective probabilities

produced by a multi-class classifier (probabilistic ranking, PR). So, given any multi-

class classifier, capable of producing such probabilities, as a base learner, we consider

the following three learning strategies:

• PR: A ranking is produced by applying the base learner to the complete data set

only once and ordering the class labels according to their probabilities.

• RIC: This version refers to the ranking through iterated choice procedure outlined

in Section 6.2, using the multi-class classifier as a base learner.

• RIC-P: This is the pairwise implementation of RIC as introduced in Section 6.4

(again using as base learners the same classifiers as RIC and PR).

In connection with selecting the top-label or ordering the labels according to their

probability, ties are always broken through coin flipping.

Table 1 shows the results that we obtained for a number of benchmark data sets from

the UCI repository and the StatLib archive2, using two widely known machine learning

algorithms as base learners: C4.5 and Ripper. For comparison purpose, we also derived

results for the naive Bayes (NB) classifier, as this is one of the most commonly used

“true” probabilistic classifiers. Note that, since conditional probabilities in NB are

estimated individually for each class, empirical conditioning is essentially the same as

conventional conditioning, i.e., RIC is equivalent to PR [20]; this is why the results for

RIC and RIC-P are omitted.

For each data set and each method we estimated the mean (absolute) position error

using leave-one-out cross validation, except for the data set letter, for which we used

the predefined separation into training and test data. The results are summarized in

Table 1.

From the win-loss statistics for NB in comparison with PR using, respectively, C4.5

(10/8) and Ripper (10/8), there is no visible difference between these multi-class clas-

sifiers in terms of label ranking accuracy. Important are the win-loss statistics sum-

2http://www.ics.uci.edu/~mlearn, http://stat.cmu.edu/
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Table 1: Position error for conventional probabilistic ranking (PR), ranking through

iterated choice (RIC), and its pairwise implementation (RIC-P), using C4.5, Ripper,

and naive Bayes as base learners.

C4.5 Ripper NB

data m PR RIC RIC-P PR RIC RIC-P PR

abalone 28 4,650 4,004 3,552 4,667 4,358 3,500 4,346

anneal 6 1,023 1,028 1,024 1,031 1,028 1,017 1,150

audiology 24 2,310 2,186 3,190 2,394 3,274 3,270 3,102

autos 7 1,273 1,293 1,502 1,449 1,376 1,449 1,771

balance-scale 3 1,397 1,326 1,294 1,406 1,325 1,256 1,170

glass 7 1,547 1,486 1,449 1,612 1,486 1,463 1,855

heart-c 5 1,231 1,231 1,224 1,218 1,218 1,218 1,165

heart-h 5 1,197 1,197 1,197 1,187 1,187 1,187 1,16

hypothyroid 4 1,005 1,007 1,008 1,012 1,011 1,007 1,054

iris 3 1,073 1,053 1,053 1,067 1,073 1,073 1,047

lymph 4 1,270 1,250 1,236 1,284 1,277 1,297 1,189

primary-tumor 22 4,254 3,764 3,531 4,478 4,316 3,472 3,248

segment 7 1,135 1,042 1,042 1,131 1,075 1,060 1,258

soybean 19 1,205 1,113 1,085 1,220 1,123 1,073 1,136

vehicle 4 1,411 1,309 1,313 1,489 1,449 1,343 1,831

vowel 11 2,314 1,274 1,309 2,501 1,516 1,423 1,555

zoo 7 1,238 1,099 1,149 1,307 1,327 1,188 1,069

letter 26 2,407 1,279 1,202 2,168 1,375 1,188 2,515
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Table 2: Win/loss statistics for each pair of methods, using C4.5 (left) and Ripper

(right) as base learners.

PR RIC RIC-P PR RIC RIC-P

PR — 3/13 4/13 — 3/13 3/12

RI 13/3 — 7/8 13/3 — 2/13

RIC-P 13/4 8/7 — 12/3 13/2 —

marized in Table 2. These results perfectly support the two conjectures raised above.

First, RIC significantly outperforms PR: According to a simple sign test for the win-loss

statistic, the results are significant at a level of 2%. Second, RIP-P is fully competitive

with RIC (and actually shows a better performance in the case of Ripper as a base

learner).

8 Concluding Remarks

In this paper, we have investigated aspects of predictive accuracy and risk minimization

in ranking by pairwise comparison (RPC), the application of pairwise learning in the

context of the label ranking problem. In this regard, we have proposed a distinction

between two types of prediction errors, the ranking error and the position error.

It has been shown that even though RPC is not able to minimize risk with respect

to every ranking error, it can still minimize the expected loss for two important and

frequently used distance measures, namely Spearman’s rank correlation and Kendall’s

tau. Empirical studies complementing these theoretical results have not been presented

here, as these can be found in the companion paper [4].

To minimize the position error, we proposed ranking through iterated choice (RIC),

a strategy that essentially reduces label ranking to repeated classification. In each

iteration, RIC performs “empirical conditioning”, which means that the predictions for

higher ranks utilize the information that the lower ranks have already been predicted.

In practice, this is achieved by re-training the classifier with progressively smaller sets

of candidate labels. To implement this procedure efficiently, we again employed the

pairwise learning approach. This way, empirical conditioning is performed implicitly,

by combining a proper subset of pairwise models, thereby reducing the number of
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required classifiers from exponential to quadratic.

In an experimental study, RIC was compared to standard probabilistic ranking, where

the class labels are ranked according to the originally estimated probabilities. Our

results suggest that retraining (empirical conditioning) does indeed reduce the expected

loss when using standard multi-class classifiers as base learners, and that this gain in

accuracy is preserved by the pairwise implementation.

Thus, in summary, we obtained a method that improves the ranking performance of

classification algorithms at an acceptable increase in complexity. In some sense, RIC

may be viewed as an implicit multi-class calibration technique, which has no effect in

case of perfectly estimated probabilities (cf. equation (19)), but which yields better

results in the practically more relevant case of inaccurate estimates. In fact, one should

note that RIC principally allows the use of arbitrary multi-class classifiers as base

learners, even pure classifiers that are not able to rank but only to make a single

prediction.

The results of this paper can be extended in various directions, both theoretically and

practically. For example, an open question regarding the ranking error is a complete

characterization of the loss functions that RPC is able to minimize. As to the position

error, one important aspect of future work is to generalize our framework to the variants

outlined in Section 2.5.
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fiers. In Proceedings ECML–07, 17th European Conference on Machine Learning,

pages 371–381, Warsaw, Poland, September 2007. Springer-Verlag.

[21] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector ma-

chine learning for interdependent and structured output spaces. In Proc. ICML–

2004, Banff, Alberta, Canada, 2004.

[22] S.M. Ulam. Future applications of mathematics in the natural sciences. American

Mathematicsl Heritages: Algebra and Applied Mathematics, Texas Tech. Univer-

sity, Mathematics Series, 13:101–114, 1981.

[23] T.F. Wu, C.J. Lin, and R.C. Weng. Probability estimates for multi-class classifi-

cation by pairwise coupling. Journal of Machine Learning Research, 5:975–1005,

2004.

A Proof of Theorem 1

Lemma 5 Let si, i = 1 . . .m, be real numbers such that 0 ≤ s1 ≤ s2 . . . ≤ sm. Then,

for all permutations τ ∈ Sm,

m∑

i=1

(i− si)
2 ≤

m∑

i=1

(i− sτ(i))
2 (22)
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Proof: We have

m∑

i=1

(i− sτ(i))
2 =

m∑

i=1

(i− si + si − sτ(i))
2

=

m∑

i=1

(i− si)
2 + 2

m∑

i=1

(i− si)(si − sτ(i)) +

m∑

i=1

(si − sτ(i))
2.

Expanding the last equation and exploiting that
∑m

i=1 s2
i =

∑m
i=1 s2

τ(i) yields

m∑

i=1

(i− sτ(i))
2 =

m∑

i=1

(i− si)
2 + 2

m∑

i=1

i si − 2
m∑

i=1

i sτ(i).

On the right-hand side of the last equation, only the last term
∑m

i=1 i sτ(i) depends

on τ . This term is maximal for τ(i) = i, because si ≤ sj for i < j, and therefore

maxi=1...m msi = msm, maxi=1...m−1(m−1)si = (m−1)sm−1, etc. Thus, the difference

of the two sums is always positive, and the right-hand side is larger than or equal to∑m
i=1(i− si)

2, which proves the lemma. �

Lemma 6 Let P(· |x) be a probability distribution over Sm. Moreover, let

si
df
= m−

∑

j 6=i

P(λi �x λj) (23)

with

P(λi �x λj) =
∑

τ : τ(i)<τ(j)

P(τ |x). (24)

Then, si =
∑

j 6=i P(τ |x) τ(i).
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Proof: We have

si = m−
∑

j 6=i

P(λi �x λj)

= 1 +
∑

j 6=i

(1− P(λi �x λj))

= 1 +
∑

j 6=i

P(λj �x λi)

= 1 +
∑

j 6=i

∑

τ : τ(j)<τ(i)

P(τ |x)

= 1 +
∑

τ

P(τ |x)
∑

j 6=i

{
1 if τ(i) > τ(j)

0 if τ(i) < τ(j)

= 1 +
∑

τ

P(τ |x)(τ(i)− 1)

=
∑

τ

P(τ |x) τ(i)

�

Note that si ≤ sj is equivalent to S(λi) ≥ S(λj) (as defined in (12)) under the assump-

tion (15). Thus, ranking the alternatives according to S(λi) (in decreasing order) is

equivalent to ranking them according to si (in increasing order).
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Using the above results, the claim of Theorem 1 can be verified as follows: We have

E(D(τ ′, τ) | x) =
∑

τ

P(τ | x)
m∑

i=1

(τ ′(i)− τ(i))2

=

m∑

i=1

∑

τ

P(τ | x)(τ ′(i)− τ(i))2

=
m∑

i=1

∑

τ

P(τ | x)(τ ′(i)− si + si − τ(i))2

=
m∑

i=1

∑

τ

P(τ | x)
[
(τ(i)− si)

2 − 2(τ(i)− si)(si − τ ′(i))

+(si − τ ′(i))2
]

=
m∑

i=1

[
∑

τ

P(τ | x)(τ(i)− si)
2 − 2(si − τ ′(i)) ·

·
∑

τ

P(τ | x)(τ(i)− si) +
∑

τ

P(τ | x)(si − τ ′(i))2

]

In the last equation, the mid-term on the right-hand side becomes 0 according to

Lemma 6. Moreover, the last term obviously simplifies to (si − τ ′(i)), and the first

term is a constant c =
∑

τ P(τ | x)(τ(i) − si)
2 that does not depend on τ ′. Thus, we

obtain E(D(τ ′, τ) | x) = c +
∑m

i=1(si − τ ′(i))2 and the theorem follows from Lemma 5.
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