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Abstract

Fuzzy pattern tree induction was recently introduced as a novel machine learning

method for classification. Roughly speaking, a pattern tree is a hierarchical, tree-like

structure, whose inner nodes are marked with generalized (fuzzy) logical operators and

whose leaf nodes are associated with fuzzy predicates on input attributes. A pattern tree

classifier is composed of an ensemble of such pattern trees, one for each class label. This

type of classifier is interesting for several reasons. For example, since a single pattern tree

can be considered as a kind of logical description of a class, it is quite appealing from an

interpretation point of view. Moreover, in terms of classification accuracy, the method has

shown promising performance in first experimental studies.

Yet, as will be argued in this paper, the algorithm that has originally been proposed

for learning fuzzy pattern trees from data offers scope for improvement. Here, we propose

a new method that modifies the original proposal in several ways. Notably, our learning

algorithm reverses the direction of pattern tree construction from bottom-up to top-down.

Additionally, a different termination criterion is proposed that is more adapted to the

learning problem at hand. Experimentally, it will be shown that our approach is indeed

able to outperform the original learning method in terms of predictive accuracy.

1 Introduction

Pattern tree induction was recently introduced as a novel machine learning method for classi-

fication by Huang, Gedeon and Nikravesh [11].1 Roughly speaking, a fuzzy pattern tree is a

hierarchical, tree-like structure, whose inner nodes are marked with generalized (fuzzy) logical

and arithmetic operators, and whose leaf nodes are associated with fuzzy predicates on input

attributes. A pattern tree propagates information from the bottom to the top: A node takes the

values of its descendants as input, combines them using the respective operator, and submits

the output to its predecessor. Thus, a pattern tree implements a recursive mapping producing

outputs in the unit interval. A pattern tree classifier consists of an ensemble of pattern trees,

one for each class. A query instance to be classified is submitted to each tree, and a prediction

is made in favor of the class whose tree produces the highest output.

Pattern trees are interesting for several reasons, especially from an interpretation point of view.

Generally, each tree can be considered as a kind of logical description of a class.2 Besides,

more concrete interpretations are possible in the context of specific types of learning problems.

1Independently, the same type of model was proposed in [23] under the name “fuzzy operator tree”.
2Actually, the description is not purely logical, since arithmetic (averaging) operators are also allowed.
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Figure 1: Pattern Tree - Marketing Example

In preference learning [12], for instance, where each class corresponds to a choice alternative,

a tree can be seen as a utility function, measuring the degree of utility of that alternative as

a function of the input. An illustration is shown in Figure 1. Assuming that this pattern

tree corresponds to a certain choice alternative, say, a product A, the model suggests that this

alternative is liked (receives a high degree of utility) by a person who is either young and has

a high income or is middle-aged and has a high level of education. A tree of this kind could

have been induced from a data set containing descriptions of persons in terms of attributes like

age, income, etc., as well as information about whether product A was chosen or not. Having

similar pattern trees for products B and C, the tree ensemble can be used for the purpose of

choice prediction: Given a person with specific attributes, the estimated utilities of products

A, B and C are derived from the respective trees, and the product with the highest degree of

utility is predicted.

Even though first experimental studies, presented in [11], are promising and suggest that pattern

tree classifiers perform reasonably well in terms of predictive accuracy, the original learning

algorithm offers scope for improvement. In this paper, we therefore propose a new method that

modifies the original proposal in several ways. Notably, our learning algorithm reverses the

direction of pattern tree construction from bottom-up to top-down. Additionally, a different
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termination criterion is proposed that is more adapted to the learning problem at hand, taking

the inherent complexity of the learning task into consideration. Experimentally, it will be

shown that our approach is indeed able to outperform the original learning method in terms of

predictive accuracy.

The remainder of the paper is structured as follows. Section 2 gives a brief introduction to

pattern tree classification and recalls the essential background, namely the structure of the

classification model and the original learning algorithm for tree induction as proposed in [11].

Besides, we shall highlight and discuss some properties of pattern trees and some basic insights

that motivated the development of our new learning algorithm. This algorithm is then described

in detail in Section 3. Section 4 is devoted to experimental studies evaluating and comparing

the two algorithms in terms of predictive accuracy. The paper ends with a summary and some

concluding remarks in Section 5.

2 Pattern Tree Induction

In this section, we briefly recall the pattern tree model for classification and the original algo-

rithm for learning such models from data; for further technical details, we refer to [11]. Subse-

quently, we discuss some deficiencies of this method and motivate an alternative approach to

model induction.

2.1 Tree Structure and Model Components

We proceed from the common setting of supervised learning and assume an attribute-value

representation of instances, which means that an instance is a vector

x ∈ X = X1 × X2 × . . .× Xm ,

where Xi is the domain of the i-th attribute Ai. Each domain Xi is discretized by means of a

fuzzy partition, that is, a set of fuzzy subsets

Fi,j : Xi → [0, 1] (j = 1, . . . , ni)

such that
∑nj

j=1 Fi,j(x) > 0 for all x ∈ Xi. The Fi,j are often associated with linguistic labels

such as “small” or “large”, in which case they are also referred to as fuzzy terms. Each instance

is associated with a class label

y ∈ Y = {y1, y2, . . . , yk} .

A training example is a tuple (x, y) ∈ X× Y.

Unlike decision trees [17], which assume an input at the root node and output a class prediction

at each leaf, pattern trees process information in the reverse direction. The input of a pattern

tree is entered at the leaf nodes. More specifically, a leaf node is labeled by an attribute Ai and

a fuzzy subset Fi,j of the corresponding domain Xi. Given an instance x = (x1, . . . , xm) ∈ X

as an input, the node produces Fi,j(xi) as an output, that is, the degree of membership of xi
in Fi,j . This degree of membership is then propagated to the parent node.

Internal nodes are labeled by generalized logical or arithmetic operators, including

• t-norms and t-conorms [13],
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name definition code

Minimum min{a, b} MIN

Algebraic ab ALG

Lukasiewicz max{a+ b− 1, 0} LUK

Einstein ab
2−(a+b−ab) EIN

Table 1: Fuzzy operators: T-norms

name definition code

Maximum max{a, b} MAX

Algebraic a+ b− ab COALG

Lukasiewicz min{a+ b, 1} COLUK

Einstein a+b
1+ab COEIN

Table 2: Fuzzy operators: T-conorms

• weighted and ordered weighted average [18, 22].

A t-norm is a generalized conjunction, namely a monotone, associative and commutative

[0, 1]2 → [0, 1] mapping with neutral element 1 and absorbing element 0. Likewise, a t-conorm

is a generalized disjunction, namely a monotone, associative and commutative [0, 1]2 → [0, 1]

mapping with neutral element 0 and absorbing element 1. The t-norms and t-conorms allowed

as operators in pattern tree induction are shown in Tables 1–2.

An ordered weighted average (OWA) combination of k numbers v1, v2, . . . , vk is defined by

OWAw(v1, v2, . . . , vk)
df
=

k∑
i=1

wi · vτ(i), (1)

where τ is a permutation of {1, 2, . . . , k} such that vτ(1) ≤τ(2)≤ . . . ≤ vτ(k) and w = (w1, w2, . . . , wk)

is a weight vector satisfying wi ≥ 0 for i = 1, 2, . . . , k and
∑k

i=1 wi = 1. Thus, just like the nor-

mal weighted average (WA), an OWA operator is parameterized by a set of weights. However,

a weight does not directly refer to an attribute, like in WA, but instead to a rank: wi is the

weight of the i-th smallest value among v1, v2, . . . , vk.

Note that for k = 2, (1) is simply a convex combination of the minimum and the maximum. In

fact, the minimum and the maximum operator are obtained, respectively, as the two extreme

cases of (1): w1 = 1 yields OWAw(v1, . . . , vk) = vτ(1) = min(v1, . . . , vk) and wk = 1 gives

OWAw(v1, . . . , vk) = vτ(k) = max(v1, . . . , vk). Therefore, the class of OWA operators nicely

“fills the gap” between the largest conjunctive combination, namely the minimum t-norm, and

the smallest disjunctive combination, namely the maximum t-conorm.

The results of the evaluations of internal nodes are propagated to the parents of these nodes in

a recursive way. The output eventually produced by a pattern tree is given by the output of

its root node. Fig. 2 shows some exemplary pattern trees.

A pattern tree classifier is a collection of pattern trees

{PTi | i = 1, 2, . . . , k } ,

where PTi is the pattern tree associated with class yi ∈ Y. Given a new instance x to be

classified, a prediction is made in favor of the class whose tree produces the highest score:

ŷ = argmax
yi∈Y

PTi(x) (2)
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Figure 2: Pattern Tree Examples

A single tree PTi can also be seen as a “fuzzy” selector of its class, hence the name pattern

tree. Like a regular expression, a pattern tree selects instances belonging to its class, albeit in

a fuzzy way. Eventually, the class is determined by the pattern tree that is most “confident”

of being representative for the instance.

2.2 Learning Pattern Trees from Data

The use of the pattern tree model for classification requires an algorithm for learning such

models from data, i.e., from a set of examples

T = {(x(i), y(i))}ni=1 ⊂ X× Y .

Following the original proposal of [11], pattern trees are built one by one, independently of each

other. For each class, the induction method performs as follows:

1. Initialize with primitive pattern trees

2. Filter candidates by evaluation of their similarity to the target class

3. Check stopping criterion

4. Recombine candidates using fuzzy operators

5. Loop at step 2

During initialization, so-called “primitive pattern trees” are created. These consist of only a

single leaf node, i.e., a single fuzzy term Fi,j . The first set of candidate trees is built by creating

one such primitive pattern tree for each fuzzy term of each attribute.

In the second step, each candidate tree is evaluated in terms of a performance measure, namely

its “similarity” to the target class yj . Note that, ideally, the output of the pattern tree PTj is

given by the indicator function

PTj(x) =

{
1 if x belongs to yj
0 otherwise

More generally, a tree will make predictions in the unit interval, which can be considered as

membership degrees of a fuzzy subset B of the training data: B(x(i)) = PTj(x
(i)) for all

training instances x(i). This fuzzy subset can then be compared to the true subset of examples

of class yj , namely the set Aj given by Aj(x
(i)) = 1 if y(i) = yj and Aj(x

(i)) = 0 otherwise. To
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this end, Huang et al. propose to use similarity measures of fuzzy sets, such as the generalized

Jaccard coefficient:

SimJAC(Aj , B) =
|Aj ∩B|
|Aj ∪B| (3)

=

∑n
i=1 min(Aj(x

(i)), B(x(i)))∑n
i=1 max(Aj(x(i)), B(x(i)))

Of course, other measures can in principle be used as well, for example distance-based measures

like the following one, which is inversely related to the root mean squared error (RMSE) between

the respective fuzzy sets:

SimRMSE(Aj , B) = 1−

√∑n
i=1 (Aj(x(i))−B(x(i)))2

|T | . (4)

Having evaluated all candidate trees in terms of their similarity to the target Aj , only those

trees with a sufficiently high degree of similarity are retained and considered within the next

steps of the algorithm.

In step 4, all possible combinations of two trees from the current pool, sticked together by

one of the allowed fuzzy operators, are created as new candidates. This is done by taking the

operator as a root node and the two trees as subtrees. All these candidates are used for the

next iteration, starting at step 2. The algorithm stops if one of two stopping criteria is met.

The first criterion is satisfied if none of the newly created candidates improves the maximum

similarity found so far. The second criterion sets a maximum tree depth for candidate trees,

thereby also limiting the number of iterations of the algorithm.

Along the way, we note that the choice of the weighted average or the ordered weighted average

operators also involves the selection of an optimal weight vector; since trees are binary, the

vector is of length 2, and hence determined by a single parameter. An optimal value for this

parameter can be found analytically [11].

2.3 Discussion

As mentioned previously, the original learning procedure as outlined above offers scope for

improvement. In the following, we pick up two specific aspects that might be of interest in this

regard, namely the basic structure of the induction algorithm and the criteria used for stopping

the iterative procedure. In both cases, we motivate modifications of the original approach, to

be realized later on in Section 3.

2.3.1 Bottom-Up Induction

As explained above, pattern tree induction seeks to create a (fuzzy) logical representation for

each class in an iterative way. This is done in a bottom-up manner by repeatedly combining two

(of the currently best) candidate trees with a new root. The bottom-up strategy can indeed be

motivated intuitively. For example, it can be seen as an iterative combination and construction

of complex features, corresponding to trees and subtrees, from basic features, given by the

original attributes.

Nevertheless, we believe that a top-down (PTTD) instead of a bottom-up (PT) construction

of pattern trees is an interesting alternative. Instead of merging two trees into a completely

new tree, being much bigger and having a quite different structure, the idea is to modify the
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Figure 3: Pairwise similarity between candidate models (first averaged over all pairs of can-

didates, then over the two classes) for three binary data sets: biomed, bupa, cancer (see also

Table 4).

current tree only slightly. This can be done by expanding one of its leaf nodes, namely by

replacing a basic feature Fi,j with a compound feature (two basic features, one of them being

Fi,j , combined by a single operator). Thus, new operators are introduced at the bottom of the

tree and not on the top, which normally means that later operators have a smaller influence

on the input-output behavior than those that were chosen earlier. We shall explore this idea in

more detail in Section 3 below.

To help understanding the main differences between bottom-up and top-down induction, and

to highlight potential advantages of the latter, it is appealing to compare them with operators

used in genetic algorithms (even though this analogy is admittedly not perfect): While the

merging of two pattern trees into a new tree in bottom-up induction can be seen as a kind

of recombination operator (combining two solutions into a new one), the expansion of a leaf

node in top-down induction is more in line with a mutation (modifying a single solution). Now,

it is well-known that recombination can be quite beneficial, at least if the two solutions are

complementary. However, to actually reach an optimum once being close to it, the mutation

operator is indispensable. In particular, by making only small steps in the search space, it allows

one to fully explore this space, whereas a recombination alone does not. Indeed, by combining

complete candidate trees, bottom-up induction tends to make “large jumps” in the search space

(“genotype space”). For example, the combination operator may double the number of nodes

of the candidate trees in each iteration. As opposed to this, top-down induction implements a

more fine-grained exploration of the search space, trying a large number of small steps in each

iteration.

Besides, we also found another problem of the bottom-up approach, namely a lack of diversity.

In fact, despite strong differences on the structural (“genotype”) level, it turns out that, after

only a few iterations, all candidate trees tend to be very similar to each other in the sense of

implementing very similar X → [0, 1] mappings (i.e., the trees are similar on the “phenotype”

level). Consequently, a combination of two such trees will remain almost ineffective. Fig. 3 illus-

trates this problem by plotting the average pairwise similarity between two candidate models,

in terms of the measure (4), as a function of the number of iterations.

Against the background of these considerations, one may expect that bottom-up induction is

more likely to get trapped in local optima or to find suboptimal solutions, whereas top-down

induction is more often able to reach a real optimum. Our experimental results are indeed
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Figure 4: Performance curve (top-down strategy in sold, bottom-up strategy in dashed line,

averaged over the classes) on three data sets: biomed, bupa, cancer (see also Table 4).

in agreement with this conjecture. As an illustration, Fig. 4 shows some typical performance

curves of the two approaches, plotting the performance of the best model (on the training

data) in each iteration against the number of the iteration (note that the curves may have

different lengths due to different termination criteria; see Section 2.3.2 below). As can be seen,

the two approaches produce quite similar results at the beginning, where the trees are very

small; of course, a difference between top-down and bottom-up induction cannot be expected

at this stage. However, while bottom-up induction reaches a saturation level quite quickly

and apparently converges to a suboptimal solution, top-down induction is still able to achieve

improvements of the solution.

2.3.2 Termination Criteria

Recall that two termination criteria are used in the original pattern tree induction algorithm.

The first criterion is satisfied if no improvement is achieved, i.e., if the tree with the highest

similarity simt
max in iteration t could not be improved by the highest similarity simt+1

max in the

following iteration t+1. Thus, if the condition simt
max ≥ simt+1

max holds, the induction process

is stopped and the best tree of iteration t is chosen to be the final tree for the respective class.
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This is a standard stopping condition commonly used in iterative optimization procedures.3

The second termination criterion is satisfied if a candidate tree reaches a certain depth. Note

that, since candidate trees grow by one level in each iteration, this criterion is equivalent to

limiting the number of iterations, and hence the runtime of the algorithm.

To get an idea of the relevance of the two termination criteria, we conducted an experimental

study in which we applied the pattern tree classifier to a number of data sets and checked which

of the two termination criteria was responsible for stopping the algorithm. More specifically, as

proposed in [11], we used pattern trees with a maximum tree depth of five (PT5). This classifier

was applied ten times to each of the forty data sets that will also be used for our experiments

later on; see Table 4 in Section 4. As a result, we found that the algorithm terminates due to the

maximum-depth criterion in almost 90% of the cases, whereas the no-improvement condition is

responsible in only 10%.

Despite being the more important stopping condition, or perhaps rather because of that, the

maximum-depth criterion can be criticized. Obviously, it does not take the complexity of the

learning task or, more specifically, the decision boundaries separating the classes in the input

space, into account. In fact, while some classes can be characterized quite easily with a small

pattern tree, more complex trees might be needed for other classes. Thus, it is clear that the

maximum-depth criterion comes with the danger of stopping either too early or too late.

More specifically, looking again at the performance curves in Fig. 4, it seems that the original

pattern tree learner may actually stop too late: Given that the improvements in later iterations

are negligible (in fact hardly visible graphically), the algorithm could stop earlier, thereby

producing smaller models of the same quality.4 For the top-down induction, on the other hand,

the condition is prone to premature stopping, thereby preventing this method from finding an

optimal solution. To avoid this deficiency, we shall propose an adaptive termination criterion,

that is, a criterion which seeks to adapt the model complexity to the difficulty of the learning

task in an optimal way.

3 Top-Down Induction of Pattern Trees

Based on the above discussion of possibilities to improve the original pattern tree learner,

concrete modifications will be proposed in this section. First, our basic algorithm will be

introduced in Section 3.1, detailing the ideas of learning pattern trees in a top-down manner

and using an adaptive, problem-specific termination criterion. In Sections 3.2 and 3.3, we

address two other problems for which no concrete solution was offered by Huang et al., namely

the specification of a fuzzy partition for a numeric attribute and the choice of the similarity

measure for evaluating candidate trees. Finally, we also propose a strategy for handling the

problem of missing values.

3.1 The Basic Algorithm

Our algorithm for learning pattern trees in a top-down manner, PTTD, follows a one-versus-

rest scheme [3], just like the method of Huang et al. Thus, the original k-class classification

problem involving classes Y = {y1, . . . , yk} is decomposed into k binary problems, one for each

3In general, this criterion can be criticized for being myopic. A standard way to improve it is to use a kind
of lookahead search.

4Following the principle of Occam’s razor [5], these smaller trees should be preferred.
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Top-down Algorithm

1: {Initialization}
2: P = {Aij}, i = 1, ..., n; j = 1, ...,m

3: C0 = argmaxBP∈P[Sim(P,X0)]

4: ε = 0.0025

5: t = 0

6: {Induction}
7: {Loop on iterations}
8: while true do

9: t = t+ 1

10: Ct = Ct−1

11: {Loop on each candidate}
12: for all Ct−1

i ∈ Ck−1 do

13: {Loop on each leaf of the chosen candidate}
14: for all l ∈ leafs(Ct−1

i ) do

15: {Loop on each available operator ψ}
16: for all ψ ∈ Ψ do

17: {Loop on nearly each primitive pattern tree}
18: for all P ∈ P\l do
19: Ct = Ct ∪ReplaceLeaf(Ct−1

i , l, ψ, P )

20: end for

21: end for

22: end for

23: end for

24: Ct = argmaxBCt
i∈Ct [Sim(Ct

i , X0)]

25: simt
max = maxCt

i∈Ct(Sim(Ct
i , X0))

26: simt−1
max = maxCt−1

i ∈Ct−1(Sim(Ct−1
i , X0))

27: if simt
max < (1 + ε)simt−1

max then

28: break

29: end if

30: end while

31: return argmaxCt
i∈Ct [Sim(Ct

i , X0)]

Figure 5: Top-down algorithm

class yj ∈ Y. In the j-th problem, yj is considered as the positive class (for which the sought

model prediction is 1) and Y \ {yj} as the negative class (for which the target is 0).

The basic algorithm for solving a single binary problem (class yj versus all other classes) is

presented in pseudo-code in Fig. 5. It implements a beam search and maintains the B best

models so far (B = 5 is used as a default value).

The algorithm starts by initializing the set of all primitive pattern trees P. A primitive tree is

a tree that consists of only one node, labeled by a fuzzy term. Additionally, the first candidate

set, C0, is initialized by the B best primitive pattern trees, i.e., the trees being maximally

similar to the target.

After initialization, the algorithm iterates over all candidates trees. Starting from line 11, it

10



Ct−1
i

�

�

�

�ALG

L B

=⇒ C’t−1
i

�

�

�

�ALG

�

�

�

�
ψ

L P

B
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seeks to improve the currently selected candidate Ct−1
i in terms of similarity to the target. To

this end, new candidates are created by tentatively replacing exactly one leaf node L (labeled

by a fuzzy term) of Ct−1
i by a new subtree. This new subtree is a three-node pattern tree that

again contains L as one of its leaf nodes (see Fig. 6 for an illustration). The new candidate tree

thus obtained is then evaluated by computing its similarity to the target class. Having tried

all possible replacements of all leaf nodes of the trees in Ci, the B best candidates are selected

and passed to the next iteration, unless the termination criterion is fulfilled.

In order to lower the overall runtime of the algorithm, all possible three-node trees can be pre-

computed in advance and the outputs they produce can be stored for later use. Additionally,

an implementation should also consider to recalculate the output of an adapted candidate tree

in the following way: Starting from the substitute three-node tree, only the nodes on the path

from that subtree to the root node of the candidate need to be recalculated.

To make the termination criterion adaptive and problem-specific (cf. Section 2.3.2), our idea is

to look for the relative improvement of the best model in the t-th iteration as compared to the

(t− 1)-st iteration. More specifically, our algorithm stops if

simt
max < (1 + ε)simt−1

max , (5)

i.e., if the relative improvement is smaller than ε, where ε ∈ (0, 1) is a user-defined parameter.

Based on empirical evidence, we propose ε = 0.25% as a suitable value for this parameter (see

Section 4). Noting that the performance measures simt
max (t = 1, 2, . . .) form a monotone

increasing sequence upper-bounded by 1, the above termination criterion appears to be reason-

able. In fact, as shown in Fig. 4, when plotting simt
max against t, one typically obtains a curve

with a concave shape, strictly increasing at the beginning but flattening and converging toward

a saturation level after a while.

3.2 Fuzzy Partitions

To make pattern tree learning amenable to numeric attributes, these attributes have to be

“fuzzified” and discretized beforehand. Fuzzification is needed because fuzzy logical operators

at the inner nodes of the tree expect values between 0 and 1 as input, while discretization

is needed to limit the number of candidate trees in each iteration of the learning algorithm.

Besides, fuzzification may also support the interpretability of the model.

Fuzzy partitions can of course be defined in various ways. In our implementation, we discretize

a domain Xi using three fuzzy sets Fi,1, Fi,2, Fi,3 associated, respectively, with the terms “low”,
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“medium” and “high”. The first and the third fuzzy set are defined as

Fi,1(x) =

⎧⎪⎨⎪⎩
1 x < min

0 x > max

1− x−min
max−min otherwise

,

Fi,3(x) =

⎧⎪⎨⎪⎩
1 x > max

0 x < min
x−min

max−min otherwise

,

with min and max being the minimum and the maximum value of the attribute in the training

data. Noting that all operators appearing at inner nodes of a pattern tree are monotone

increasing in their arguments, it is clear that these fuzzy sets can capture two types of influence

of an attribute on the class membership, namely a positive and a negative one: If the value of a

numeric attribute increases, the membership of the “high”-term of that attribute also increases

(positive influence), whereas the membership of the “low”-term decreases (negative influence).

Apart from monotone dependencies, it is of course possible that a non-extreme attribute value

is “preferred” by a class. The fuzzy set Fi,2 is meant to capture dependencies of this type. It

is defined as a triangular fuzzy set with center c:

Fi,2(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 x ≤ min
x−min
c−min min < x ≤ c

1− x−c
max−c c < x < max

0 x ≥ max

(6)

The parameter c is determined so as to maximize the absolute (Pearson) correlation between

the membership degrees of the attribute values in Fi,2 and the corresponding class information

(encoded by 1 for instances belonging to the class and 0 for instances of other classes) on the

training data. In case the correlation is negative, Fi,2 is replaced by its negation 1− Fi,2.

Finally, nominal attributes are modeled as degenerated fuzzy sets: For each value v of the

attribute, a fuzzy set with membership function

Termv(x) =

{
1 x = v

0 otherwise

is introduced.

3.3 Similarity Measures

As mentioned previously, there are several ways to measure the similarity between two fuzzy sets

or, more generally, two [0, 1]-valued functions. From a theoretical point of view, it is difficult

to anticipate which of these measures might be especially suitable. Since Huang et al. do not

give any clear recommendation either, we tried to answer this question experimentally.

More specifically, we conducted a number of experiments in which we compared similarity

measures of different type in terms of classification performance, using the same forty data sets

that we shall also use later on in Section 4. Apart from the measures (3) and (4), a number of
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other measures have been tested, including, for example,

SimME(A,B) = 1−
∑n

i=1 |Aj(x
(i))−B(x(i))|
|T |

SimMSigE(A,B) = 1−
∑n

i=1 e(A(x
(i))−B(x(i)))

|T | (7)

where the sigmoid-shaped error function e(·) is given by the mapping v 
→ (1 + e−8(v−0.5))−1.

Table 3: Win/Loss of different similarity measures

Win Loss

SimRMSE 25 15

SimMSigE 6 34

SimME 5 35

SimJAC 4 36

Table 3 summarizes the finding in terms of a win-loss-statistic. The results are clearly in favor

of SimRMSE that performed best on 25 of the 40 data sets (while the second-best, SimMSigE ,

was only 6 times the winner). Our explanation for the strong performance of SimRMSE is

the convex shape of the quadratic error function. In particular, convexity implies that larger

deviations from the target prediction (1 for positive and 0 for negative examples) are punished

disproportionately high, whereas small deviations are less critical. In connection with the

“argmax” classification rule (2), this appears to be quite reasonable. This classification rule is

indeed robust toward small deviations from the target prediction. In fact, it will predict the

correct class as long as the errors |Aj(x
(i))−B(x(i))| are all smaller than 1/2.

As a potential disadvantage of the SimRMSE measure, note that the quadratic error function,

like all convex losses, is quite sensitive toward outliers: If an instance cannot be classified

correctly, it may yield a disproportionately high error, thereby devaluing a model with otherwise

strong performance. It was mainly for this reason that we also tried the measure (7) with a

sigmoid-shaped error function. The idea here is to pay special emphasis on errors around

1/2, since this point is critical for the correctness of the classification rule (2), whereas less

distinction is needed for errors close to 0 or close to 1. A sigmoid-shaped function, which is a

smooth version of the step function jumping from 0 to 1 at 1/2, does obviously comply with

these requirements, so that SimMSigE appears advantageous from this point of view. On the

other hand, there are also arguments against the expectation that SimMSigE may outperform

SimRMSE :

• In contrast to problems like regression, the squared error is upper-bounded (namely by

1), which means that the sensitivity toward outliers is less severe.

• One should note that a devaluation caused by a true outlier will probably apply to all

candidate models in more or less the same way. In other words, it is unlikely to change

the relative performance, and hence the selection, of a pattern tree in comparison to other

candidates.

• A sigmoid-shaped loss function is arguably less suitable for handling pseudo-outliers, i.e.,

instances for which the current model has a high error even though they are not true

outliers: A small improvement on such instances, moving their score a bit to the correct

direction, will hardly be rewarded, thereby preventing the right model adaptation.
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As can be seen, there are arguments both in favor and against a loss function like (7). Anyway,

our experiments have clearly shown that, regarding performance, the arguments against seem

to dominate. Based on this empirical evidence, our recommendation is to use the SimRMSE

measure (4). Specifically, we shall do so in the experimental studies presented in the Section 4

below.

3.4 Handling Missing Values

Since most real-world data sets are incomplete, an important ability of machine learning meth-

ods is a proper handling of missing attribute values. In the context of pattern tree induction,

this means that a pattern tree learner should be able to make a prediction for an instance x

for which some of the attribute values xi are unknown.

To this end, we propose a method that is motivated by the observation that a pattern tree

implements a monotone function of the fuzzy input features, i.e., the fuzzified input values fi =

Fi,j(x): Since all operators used in a pattern tree are monotone increasing in their arguments,

the function implemented by the tree itself is monotone increasing, too. Thus, even though the

true output cannot be determined for an incomplete instance x, it is possible to derive a lower

bound yl and an upper bound yu. The former is obtained by setting all unknown fuzzy features

to 0, while the latter is produced by the tree when all these features are set to 1. Given the

bounds yl and yu computed in this way, we suggest to predict the output (yl + yu)/2, which

minimizes expected loss under the assumption of a uniform distribution on the interval [yl, yu].

4 Experiments

This section presents a number of experimental studies that we conducted to get an idea of

the performance of our pattern tree learner. First of all, we were of course interested in a

comparison with the original approach due to Huang et al. Besides, however, we also compared

our method to other state-of-the-art classifiers from the field of machine learning.

4.1 Data Sets

The data sets used in all experiments are shown in Table 4. The table provides the number

of instances (#instance), the number of classes (#classes), the number of numeric attributes

(#num) and the number of nominal attributes (#nom) per data set. The 40 data sets have

been collected from the UCI [4] and the STATLIB [14] repositories. Since the original method

of Huang et al. does not handle missing values, we only selected data sets without missing

values.5

4.2 Methods

We included two variants of the original pattern tree algorithm in the experiments, PT5 (max-

imum tree depth of 5) and PT10 (maximum tree depth of 10); these variants were also used

in [11]. Likewise, we included two variants of the top-down pattern trees, namely PTTDE.5

and PTTDE.25. These two variants only differ with respect to the parameter ε of our new

5Actually, some of the data sets do contain a few missing values; the corresponding records were simply
deleted.
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Table 4: Properties of the data sets used in the experiments.
Data set #instances #classes #num #nom

analcatdata-braziltourism 411 6 4 4

analcatdata-cyyoung8092 97 2 7 3

analcatdata-germangss 400 4 1 4

analcatdata-homerun 163 2 13 14

analcatdata-lawsuit 264 2 3 1

australian 690 2 6 9

authorship 841 4 69 1

autos 205 6 15 10

balance-scale 625 3 4 0

biomed 209 2 7 1

blood 748 2 4 1

bupa 345 2 6 0

cancer 683 2 9 1

cars 406 3 6 1

cloud 108 4 6 1

cmc 1473 3 2 8

confidence 72 6 3 0

credit 690 2 6 10

fl2000 65 3 14 2

flag 194 8 17 11

flare2 1065 7 0 10

german 1000 2 7 14

glass 214 6 9 0

haberman 306 2 3 1

heart 270 2 7 7

ionosphere 351 2 34 1

iris 150 3 4 1

irish 500 2 2 3

lupus 87 2 3 0

lymphography 148 4 3 15

metStatRST 336 12 3 0

pima 768 2 8 0

primary-tumor 339 22 0 17

prnn-crabs 200 2 6 1

prnn-synth 250 2 2 0

schizo 340 2 12 2

sonar 208 2 60 0

vehilce 846 4 18 1

wine 178 3 13 1

zoo 101 7 1 15

termination criterion (5). PTTDE.5 is parameterized with ε = 0.5%, whereas PTTDE.25 uses

ε = 0.25%. As an evaluation criterion, we used the similarity measure (4) for both top-down and

bottom-up learning. Moreover, for all variants, a beam size of 5 and the same fuzzy partitions

for input attributes were used, namely those described in Section 3.2.

Recall that our new pattern tree learner differs from the original one with regard to two proper-

ties, namely the direction of tree construction (top-down versus bottom-up) and the termination

criterion. In order to differentiate the effects produced by these two modifications, we included

yet another variant of the top-down pattern tree learner, namely PTTDL5. This variant does

not use the adaptive termination criterion (5) but the two standard termination criteria of

the original algorithm, namely the no-improvement and the maximum-depth (with limit 5)
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conditions.

Finally, we included a number of well-known classification methods from the field of machine

learning as baselines: The C4.5 decision tree learner (C4.5) [17], nearest neighbor classifica-

tion (NN) [1], support vector machines with linear kernel6 (SVM) and the RIPPER (Repeated

Incremental Pruning to Produce Error Reduction) rule learner [6]. All these algorithms are im-

plemented in the WEKAMachine Learning Framework [21], and we used these implementations

with their default parameterization.7 Additionally, we included the fuzzy rule learner SLAVE

[9, 8]. An implementation of this algorithm is offered by the KEEL suite [2], another machine

learning framework. We ported this implementation to WEKA.8 Our own implementations of

the pattern tree learners have also been integrated in WEKA.9

4.3 Accuracy

In the first experimental study, we measured the classification rate (percentage of correct pre-

dictions) of the different methods, using five repetitions of a 10-fold cross validation. The results

(mean accuracy with standard deviation in brackets) are summarized in Table 5 and Table 6.

In order to verify that the top-down induction strategy, even without the adaptive termination

criterion, is able to improve upon the original bottom-up strategy, we first compared PTTDL5

and PT5. To this end, we applied a Wilcoxon Signed-Rank Test [20]. This is a non-parametric

test that ranks the differences in performances of two classifiers for each data set, ignoring the

signs, and compares the ranks for the positive and the negative differences. For the results

in Table 5 and Table 6, the test rejects the null hypothesis of equal performance at the 5%

significance level (the p-value is 0.00017).

Thus, one can conclude that a top-down induction strategy is significantly better than a bottom-

up strategy, a finding that is furthermore confirmed by a simple sign test (PTTDL5 wins 30

times and PT5 only 10 times).

Next, we evaluated the effect of our adaptive termination criterion. To this end, we compared

PTTDL5 with PTTDE.25. Again, the Wilcoxon test finds a significant difference in perfor-

mance (at the significance level of 5%), this time in favor of PTTDE.25 or, in other words, in

favor of our adaptive stopping condition (the p-value is 0.033). In terms of wins and losses,

PTTDE.25 wins 23 times, loses 15 times and ties 2 times.

Finally, we compared our pattern tree learner PTTDE.25 with the benchmark classifiers SVM,

NN, RIPPER, C4.5 and SLAVE. To compare multiple classifiers with a control classifier, Garćıa

et. al. [7] suggests the use of a two step procedure. First, the non-parametric Quade test [16] is

conducted in order to test the null-hypothesis of equal performance of all classifiers. In case this

hypothesis is rejected, i.e., if there are statistically significant differences between the methods,

the Holm post hoc test [10] is used to analyze the differences between PTTDE.25 and the

benchmark classifiers in a pairwise manner. Both tests are based on the ranks of the methods:

For each data set, the methods are sorted according to their performance, i.e., each method is

assigned a rank (in case of ties, average ranks are assigned). After that, the ranks are weighted

6Implemented by John Platt’s sequential minimal optimization (SMO) procedure [15].
7The following parameters are used in WEKA: C4.5: -C 0.25 -M 2; RIPPER: -F 3 -N 2.0 -O 2 -S 1; NN: -K

3 -W 0 -A LinearNNSearch -A ”EuclideanDistance -R first-last”; SMO: -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -1
-W 1 -K ”PolyKernel -C 250007 -E 1.0”

8We used the following parameter setting: 5 fuzzy sets, 500 iterations without change, mutation probability
0.01, use weights, population size 100.

9The implementation is available at
http://www.uni-marburg.de/fb12/kebi/research/
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Table 5: Average classification rates and standard deviation on test sets. Part I
Dataset SVM NN RIPPER C4.5 SLAVE

analcatdata-braziltourism 78.25(1.82) 75.23(4.14) 76.4(2.25) 76.2(3.28) 77.04(6.63)

analcatdata-cyyoung8092 77.47(9.39) 74.96(9.46) 79.4(11.79) 80.8(9.16) 75.78(13.63)

analcatdata-germangss 19.4(5.62) 7.4(3.64) 38.65(6.6) 37.1(5.8) 25(5.71)

analcatdata-homerun 88.15(7.61) 51.82(11.19) 95.53(6.09) 95.57(6.01) 74.98(10.77)

analcatdata-lawsuit 93.87(1.99) 97.49(2.7) 97.73(2.75) 98.26(2.55) 93.48(5.48)

australian 84.84(3.65) 85.48(4.01) 85.74(4.01) 85.86(4.05) 85.51(3.9)

authorship 99.67(0.63) 99.52(0.79) 94.08(2.41) 94.24(2.49) 76.74(5.58)

autos 72.25(10.6) 68.48(10.61) 72.98(9.8) 80.3(9.93) 28.22(11.88)

balance-scale 87.78(2.16) 86.91(2.71) 80.6(3.54) 77.89(3.52) 68.4(6.54)

biomed 86.61(6.83) 90.06(6.25) 89.86(5.71) 88.01(8.69) 78.17(9.87)

blood 76.15(0.47) 74.92(3.57) 77.86(3.33) 77.64(3.44) 76.01(4.62)

bupa 58.04(1.15) 62.67(8) 67.09(7.47) 66.38(7.7) 56.98(6.13)

cancer 97.07(2) 96.87(2.13) 96.16(2.45) 95.64(2.53) 89.55(4.42)

cars 73.3(5.84) 72.76(4.93) 78.81(4.98) 84.68(5.36) 63.36(6.68)

cloud 29.67(9.79) 21.56(9.82) 50.65(16.68) 71.69(17.73) 17.85(11.72)

cmc 48.56(3.93) 46.8(3.05) 52.54(3.48) 51.57(3.53) 42.7(3.63)

confidence 64.57(11.66) 83.54(10.3) 75.39(14.55) 77.86(12.95) 63.86(21.44)

credit 85.01(3.7) 85.94(3.82) 85.3(3.34) 85.68(3.69) 85.3(4.37)

fl2000 73.71(8.96) 81.33(12.58) 80.05(13.41) 81.29(15.16) 71.71(16.41)

flag 61.37(10.36) 54.87(10.67) 61.65(8.32) 64.73(9.47) 25.01(10.93)

flare2 83.01(0.36) 81.9(1.14) 82.74(0.76) 82.93(0.35) 83.01(3.33)

german 75.08(3.53) 72.06(3.28) 72.2(4.23) 71.38(2.7) 70.18(4.54)

glass 57.81(7.92) 70.12(6.84) 66.59(9.58) 69.05(8.01) 62.61(11.42)

haberman 73.46(1.01) 69.74(4.48) 72.04(5.61) 71.12(5.3) 73.93(7.55)

heart 83.85(5.96) 78.59(6.08) 79.85(6.25) 78.44(6.4) 71.78(8.09)

ionosphere 88.16(4.99) 86.33(4.85) 88.9(4.85) 89.63(4.8) 80.92(6.04)

iris 96.27(4.84) 95.2(5.5) 93.47(8.69) 94.93(5.43) 92.13(8.16)

irish 98.8(1.6) 98.72(1.59) 98.8(1.6) 98.8(1.6) 98.12(1.78)

lupus 75.61(14.1) 74.81(16.66) 75.44(12.42) 77.53(12.07) 75.75(16.57)

lymphography 85.91(7.45) 81.14(8.28) 75.36(12.18) 75.7(11.62) 69.27(12.47)

metStatRST 27.62(4.65) 39.42(6.69) 36.48(6.86) 39.95(7.84) 8.99(6.02)

pima 76.85(4.25) 74.24(4.65) 75.62(4.71) 74.85(5.35) 66.3(5.01)

primary-tumor 46.37(5.68) 39.65(5.4) 39.41(5.42) 40.59(5.64) 24.83(6.85)

prnn-crabs 96(4) 95.5(4.5) 90.6(6.61) 93.7(4.88) 61.7(12.4)

prnn-synth 85.6(6.74) 86.32(7.25) 83.68(7.37) 84.48(7.14) 79.52(8.07)

schizo 59.24(5.85) 64.29(9.3) 81.24(8.3) 80.76(6.66) 50.47(7.82)

sonar 76.27(8.95) 83.36(8.46) 73.12(10.12) 73.86(8.46) 63.48(13.44)

vehilce 74.37(3.89) 71.03(3.84) 68.53(4.35) 71.92(4.79) 29.47(4.59)

wine 99(2.41) 95.97(4.03) 93.58(7.13) 93.59(5.42) 81.23(8.94)

zoo 93.65(6.53) 92.49(7.56) 88.93(8.73) 92.49(7.01) 86.98(11.01)

respectively by the difference between the minimum and the maximum performance values for

each dataset. The average weighted ranks are shown in Table 7.

In our case, the Quade test rejects the null-hypothesis at a significance level of 5%. The p-value

computed is quite persuasive at 2.7E-16. The results of the pairwise comparisons between

PTTDE.25 and the baseline classifiers using the Holm test are summarized in Table 8. As

can be seen, our PTTDE.25 learner shows the best performance on average, though not all

differences are statistically significant. Significant differences are only found for SLAVE.

Summarizing this experimental study, we can conclude that our pattern tree learner PTTDE.25

is at least competitive to state-of-the-art classifiers from the field of machine learning, while

being significantly stronger than the original algorithm for pattern tree induction. In particu-
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Table 6: Average classification rates and standard deviation on test sets. Part II
Dataset PTTDE.5 PTTDE.25 PTTDL5 PT5 PT10

analcatdata-braziltourism 76.01(2.1) 75.82(2.48) 76.25(2.3) 76.6(1.91) 76.5(2.22)

analcatdata-cyyoung8092 77.6(9.6) 75.96(11.16) 79.56(10.26) 79.33(10.94) 77.96(10.47)

analcatdata-germangss 39.4(6.11) 39.5(6.42) 40.3(6.34) 37.25(6.13) 36.5(6.67)

analcatdata-homerun 85.51(8.46) 90.95(7.83) 88.83(9.02) 83.9(8.11) 83.4(8.17)

analcatdata-lawsuit 94.92(2.72) 94.77(2.4) 94.92(2.37) 95.52(2.82) 95.83(2.88)

australian 85.51(3.59) 85.57(3.6) 85.51(3.59) 85.62(3.58) 85.39(3.68)

authorship 98.36(1.11) 99.07(0.9) 96.62(1.83) 94.63(3.03) 95.65(2.61)

autos 72.82(9.66) 74.65(9.51) 69.36(9.26) 65.88(9.43) 71.32(8.4)

balance-scale 87.14(3.92) 87.29(3.32) 86.05(3.46) 85.43(3.09) 85.43(3.09)

biomed 87.05(7.89) 88.5(6.82) 86.37(7.54) 85.62(7.3) 85.62(7.36)

blood 76.93(1.8) 77.03(1.84) 77.33(1.85) 76.98(1.42) 77.01(1.47)

bupa 70.74(7.49) 70.69(7.04) 71.37(7.74) 68.71(8.25) 69.36(7.4)

cancer 96.22(2.45) 96.55(2.19) 96.78(2.25) 95.9(2.33) 96.22(2.49)

cars 72.21(4.43) 72.6(4.35) 72.41(4.5) 71.08(4.09) 70.98(4.37)

cloud 42.31(14.55) 41.25(14.41) 42.33(15.42) 42(15.38) 40.84(14.47)

cmc 54.92(3.37) 55.49(3.29) 55.17(3.07) 53.86(4) 53.93(3.39)

confidence 86.5(9.43) 87.11(9.26) 87.64(9.37) 83.96(9.84) 83.14(10.96)

credit 85.51(3.75) 85.42(3.68) 85.51(3.75) 85.62(3.78) 85.39(3.78)

fl2000 87.67(12.19) 83.24(11.73) 87.62(11.06) 74.52(12.83) 79.95(12.4)

flag 67.41(8.63) 68.29(7.47) 66.36(7.58) 67.36(8.2) 65.3(9.2)

flare2 82.72(0.78) 82.74(0.75) 82.67(0.74) 82.82(0.63) 82.84(0.63)

german 73.38(2.81) 74.28(3.35) 73.64(3.25) 73.52(3.28) 73.38(3.01)

glass 64.4(8.8) 67.51(8.34) 64.78(8.64) 60.83(7.3) 62.98(8.37)

haberman 74.37(6.29) 74.64(5.85) 74.9(5.89) 74.44(5.68) 74.44(5.88)

heart 82.07(6.08) 82.59(5.51) 82.07(5.85) 82.59(5.75) 81.78(6.01)

ionosphere 91.28(5.4) 91.97(4.87) 91.68(5.04) 88.49(5.39) 88.84(5.42)

iris 95.6(5.6) 95.6(5.6) 95.6(5.6) 95.33(5.7) 95.07(6.23)

irish 97.68(2.09) 98.68(1.86) 97.28(2.15) 97.64(2.14) 97.64(2.14)

lupus 75.08(12.5) 77(12.85) 75.67(13.08) 77.44(12.28) 77.44(12.28)

lymphography 82.41(7.25) 83.8(7.61) 82.29(7.73) 79.46(9) 79.87(8.73)

metStatRST 37.33(5.94) 38.11(6.89) 38.82(6.41) 38.77(5.56) 40.56(5.05)

pima 76.3(5.22) 76.49(4.92) 76.54(4.93) 75.75(5.11) 75.68(4.99)

primary-tumor 42.01(5.33) 43.18(6.13) 43.48(6.48) 41.83(5.7) 42.3(6.23)

prnn-crabs 75.2(11.22) 77.5(11.01) 76.7(11.21) 73.5(10.11) 73.5(10.11)

prnn-synth 83.84(6.88) 83.76(6.9) 83.76(7.08) 83.6(6.85) 83.6(6.85)

schizo 66.94(7.82) 67.59(7.34) 66.65(7.12) 64.29(7.3) 66.29(7.28)

sonar 80.69(8.73) 80.38(8.92) 74.86(8.48) 70.81(9.85) 69.56(10.41)

vehilce 69.34(3.84) 71.47(3.39) 66.76(4.17) 63.05(4.73) 64.37(4.4)

wine 98.2(3.06) 98.31(2.81) 97.19(3.75) 93.35(5.93) 94.25(5.72)

zoo 90.25(7.02) 91.07(6.65) 90.45(7.15) 92.67(7.89) 93.47(6.73)

Table 7: Average Rankings of the algorithms (Quade)

Algorithm Rank

PTTDE.25 2.4902

C4.5 2.6932

SVM 3.0792

RIPPER 3.3939

NN 3.6567

SLAVE 5.6865
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Table 8: Holm test results for a significance level of 5% based on Quade ranks comparing to

PTTDE.25.
Algorithm p-Value Reject

5 SLAVE 2.54E-5 yes

4 NN 0.1243 no

3 RIPPER 0.2338 no

2 SVM 0.4377 no

1 C4.5 0.7890 no

lar, both modifications, the top-down induction strategy and the use of an adaptive stopping

criterion, seem to pay off and improve predictive performance.

4.4 Model Size and Runtime

In addition to measuring the accuracy of each method, we also looked at the runtime of the

algorithms and the size of the resulting models. Table 9 shows the average results over all

datasets for the different pattern tree induction methods. The runtime has been measured in

seconds needed to train a model. The measurements have been conducted on the same machine

type (Dual Opteron 270 2.0GHz) without any additional work load. The model size is given by

the average number of nodes contained in one fuzzy pattern tree.

Table 9: Average and standard deviation of runtime (seconds) and model size (#nodes) for all

fuzzy pattern tree induction variants.
Runtime Model Size

PT5 138.1(478.4) 17.9(5.8)

PT10 1495.6(6466.9) 105.0(106.1)

PTTDL5 63(174.6) 11.2(2.5)

PTTDE.5 511.9(2058.2) 11.4(8.7)

PTTDE.25 2564.8(8562) 21.8(17.9)

Summarizing the results, it can be seen that the top-down strategy tends to be more costly than

the bottom-up approach, at least for trees of larger depth. In fact, if the tree size is limited by

5, it is even the other way around: PTTDL5 is the most efficient among all variants, and even

faster than PT5. However, for larger candidate trees, the top-down approach needs to check a

large number of alternative modifications, and this slows down the search process.

In terms of the model size, the top-down approach is clearly superior. Recalling the different

nature of the underlying search strategies, this was to be expected. In fact, by combining

complete candidate trees, the bottom-up approach tends to create unnecessarily large models.

Thus, the top-down approach produces models that are not only more accurate but also more

compact.

4.5 Overfitting

As one of the advantages of their approach, Huang et al. emphasize the fact that the learning

method does apparently not tend to overfit the training data. In order to demonstrate this

property, they compare the performance of the learner on the training data and the test data,

and found that the former is not much higher than the latter.
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Since we modified the original algorithm in several ways, notably by using a different termination

criterion, an obvious question is whether or not this robustness toward overfitting is preserved

by our learner. For this reason, we repeated the same kind of experiment. Before presenting

the results, however, we like to point out that the experiment itself should be considered with

caution. Even though it is true that a small training error coming along with a high test

error normally indicates an overfitting effect, the difference between these two errors alone does

actually not, as it loses information about the absolute error rates. Consequently, an overfitting

effect cannot be distinguished from an underfitting effect. For example, although a learner with

10% training and 20% test error seems to overfit a bit, it is still preferrable to a learner with

30% training and test error, simply because the latter seems to strongly underfit the training

data. (In particular, note that the majority classifier, which always predicts the most frequent

class, is likely to have a very similar training and test error.) Seen from this point of view, one

may indeed argue that the truly relevant measure is the performance on the test data, which

has already been presented above.

Despite these reservations, a comparison of training and test error is of course not useless and

may provide some interesting information. Table 10 shows the differences between the average

accuracy of a method on the training data and on the test data (determined by means of a

10-fold cross validation, repeated five times, which means that the latter corresponds to the

results shown in Table 5 and Table 6).

As can be seen, SLAVE and PTTDE.5 both perform quite similar and achieve the best results

on average, followed by PTTDE.25. In fact, the results are even better than those for the linear

SVM, which is almost a bit surprising, given that linear models, due to their simplicity, are more

likely to underfit than to overfit the data. Overall, the results are quite plausible in the sense

of being in agreement with the flexibility of the methods. In particular, the nearest neighbor

classifier, which is able to produce quite complex decision boundaries and is knowingly prone to

overfitting, performs quite poorly. The comparison of the pattern tree learners is plausible, too:

The larger the trees (due to a relaxed stopping condition), the worse the performance becomes.

Worth mentioning in this regard is the poor performance of PT10. Actually, this result is in

contrast to what was reported in [11], albeit on the basis of a much smaller number of data sets.

Yet, it is perhaps not very surprising, given that pattern trees of depth 10 are indeed rather

complex models.

5 Concluding Remarks

In this paper, we have proposed a new learning algorithm for fuzzy pattern tree induction,

a machine learning method that was recently introduced in [11]. Apart from some minor

modifications and extensions, including the fuzzification of numeric attributes, the evaluation

of candidate models, and the handling of missing values, two major changes of the original

learning algorithm have been proposed: First, pattern trees are induced in a top-down instead

of a bottom-up manner, and second a dynamic termination criterion is used instead of a less

flexible condition that simply limits the depth of a tree.

Experimentally, we have shown that our new algorithm, PTTD, significantly outperforms the

hitherto existing method in terms of predictive accuracy and, moreover, is at least competitive

to state-of-the-art classifiers from the field of machine learning. Apart from the mere results,

we have also offered several explanations of these improvements, for example in terms of the

search strategy realized by the two approaches: Even though both methods search the space of

candidate models in a greedy manner (using beam search), the top-down strategy is more fine-
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Table 10: Difference in accuracy between training and test data
Dataset SVM NN RIPPER C4.5 SLAVE PTTDE.25 PTTDE.5 PTTDL5 PT5 PT10

analcatdata-braziltourism 1.31 7.25 1.70 1.17 0.60 2.77 3.06 2.33 2.48 6.96

analcatdata-cyyoung8092 16.35 8.55 14.41 11.98 1.13 21.98 11.06 18.38 12.42 6.58

analcatdata-germangss 13.85 36.10 3.90 5.90 0.00 1.00 3.85 0.30 6.25 20.75

analcatdata-homerun 7.52 28.43 3.24 1.96 0.74 3.91 0.91 11.17 2.52 15.36

analcatdata-lawsuit 1.21 0.61 1.89 0.99 0.90 0.69 2.05 0.92 2.20 3.03

australian 1.10 5.54 3.83 3.13 0.00 0.06 0.14 0.00 0.17 5.62

authorship 0.33 0.36 5.68 3.50 2.34 0.45 3.23 3.02 2.52 3.52

autos 14.58 16.40 14.83 9.94 4.46 12.66 3.77 23.32 19.49 23.32

balance-scale 0.10 4.29 8.52 8.83 0.69 0.07 0.06 1.31 1.77 4.65

biomed 3.34 2.76 9.19 4.33 1.98 2.89 0.51 5.02 3.37 7.20

blood 0.05 7.84 1.69 2.70 0.50 0.11 0.48 0.19 0.43 3.88

bupa 0.22 20.23 17.55 6.67 2.09 2.35 2.89 3.12 4.91 15.28

cancer 0.14 1.08 2.37 2.75 0.64 0.23 0.26 1.02 0.73 1.73

cars 0.59 14.44 14.78 1.28 1.05 0.30 0.05 0.99 1.34 24.59

cloud 7.36 41.40 43.79 19.98 8.57 15.23 16.02 21.56 14.48 57.31

cmc 1.61 22.65 3.20 5.93 0.00 0.16 0.68 0.98 1.53 17.22

confidence 22.93 5.35 17.66 9.64 10.81 3.17 2.39 4.02 6.31 12.69

credit 0.93 5.51 3.25 0.17 0.48 0.09 0.14 0.00 0.03 5.62

fl2000 26.29 6.36 15.34 9.48 4.32 16.76 0.03 12.38 20.86 15.43

flag 32.96 18.84 20.82 16.20 2.03 13.67 9.39 23.33 10.99 17.69

flare2 0.00 1.58 1.61 0.08 0.00 0.73 0.28 0.81 0.19 0.17

german 3.32 13.94 4.30 7.72 1.10 0.58 0.32 2.96 1.08 12.12

glass 2.93 10.72 26.40 15.06 3.01 1.65 5.69 5.78 10.20 33.28

haberman 0.07 10.98 5.41 6.00 2.01 1.83 2.43 1.24 2.68 2.69

heart 2.44 8.44 10.52 7.11 1.78 3.33 3.11 6.81 2.96 11.19

ionosphere 3.30 4.84 9.11 1.54 0.24 3.76 1.25 6.33 1.82 10.88

iris 0.40 1.47 4.53 3.07 1.11 0.40 0.40 1.07 0.67 2.93

irish 0.00 0.48 0.00 0.00 0.19 0.12 0.28 1.52 0.24 1.16

lupus 0.25 6.80 3.87 1.78 2.51 2.29 3.08 1.34 0.72 1.87

lymphography 8.68 11.42 20.58 12.14 9.14 10.79 2.05 15.01 5.00 13.38

metStatRST 0.54 24.57 9.36 14.22 1.02 4.16 4.93 0.77 3.19 30.87

pima 0.63 11.57 4.97 3.93 1.24 0.08 0.91 0.03 1.20 8.44

primary-tumor 18.23 15.22 12.51 3.95 0.96 6.37 6.08 9.91 11.56 22.30

prnn-crabs 1.00 3.50 7.90 1.30 2.97 2.50 0.70 4.80 1.00 24.50

prnn-synth 0.00 7.68 3.92 3.12 1.20 1.04 0.96 1.04 1.20 4.80

schizo 0.47 18.94 15.53 12.76 6.04 2.71 0.71 7.18 4.24 30.18

sonar 11.23 8.46 25.92 18.45 2.15 15.30 0.56 23.70 12.84 28.52

vehilce 1.87 14.19 15.75 6.45 0.68 0.52 3.97 8.54 3.62 32.55

wine 0.44 1.22 5.86 4.72 3.65 1.69 2.70 2.81 3.84 4.62

zoo 6.35 2.56 6.12 1.57 5.64 4.97 7.77 5.59 7.33 5.54

Average 5.37 10.81 10.05 6.29 2.25 4.08 2.73 6.01 4.76 13.76

grained and explores a larger number of search states. Regarding the termination condition,

it goes without saying that an adaptive criterion is reasonable, as it can reduce the danger of

overfitting (due to late stopping) or underfitting (due to premature stopping) the training data.

Regarding predictive performance, we also like to mention the results of a previous study in

which we tried to learn pattern trees using evolutionary algorithms, or, more specifically, a

co-evolution strategy [19]. In this approach, one population of pattern trees is maintained for

each class, and the evolution of these populations is coordinated by means of a global fitness

function. Despite a significantly higher search effort, the improvements in comparison to the

original pattern tree learner were only small, and in fact even smaller than the improvements
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achieved by the top-down induction method presented in this paper. We interpret this result as

evidence in favor of the search strategy underlying PTTD: Despite its greedy nature, it performs

as well or even better than an evolutionary search method, while being computationally much

more efficient.

As mentioned previously, the model class of fuzzy pattern trees is interesting for several reasons,

not only with regard to predictive performance in classification. For example, it is user-friendly

in the sense of being almost parameter-free.10 Moreover, it is quite appealing from an inter-

pretation point of view, for example in the field of preference learning, where a pattern tree

represents a (latent) utility function of a choice alternative. Besides, the model class of pattern

trees has specific features that make it attractive for other types of learning problems. As

an example, we mention the learning of monotone classifiers, that is, classifier that guarantee

monotonicity in certain attributes. Exploring the use of pattern trees for these and related pur-

poses is a topic of ongoing and future work. Besides, another important issue to be addressed

in future work concerns the reduction of the runtime complexity of pattern tree induction. Fi-

nally, it will also be interesting to consider other search strategies, for example a combination

of top-down and bottom-up induction.

A Java implementation of our PTTD algorithm, running under the open-source machine learn-

ing framework WEKA, can be downloaded in the Internet.11
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