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Abstract We discuss Learning in parallel universes as a learning concept that
encompasses the simultaneous analysis from multiple descriptor spaces. In contrast
to existing approaches, this approach constructs a global model that is based on only
partially applicable, local models in each descriptor space. We present some applica-
tion scenarios and compare this learning strategy to other approaches on learning in
multiple descriptor spaces. As a representative for learning in parallel universes we
introduce different extensions to a family of unsupervised fuzzy clustering algorithms
and evaluate their performance on an artificial data set and a benchmark of 3D objects.

Keywords Parallel universes · Descriptor space · Clustering

1 Introduction

Computer-driven learning techniques are based on a suitable data-representation of the
objects being analyzed. The classical concepts and techniques that are typically applied
are all based on the assumption of an appropriate single representation. This represen-
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Learning in parallel universes 131

tation, typically a vector of numeric or nominal attributes, is assumed to sufficiently
describe the underlying objects. In many application domains, however, it is possible
to derive multiple descriptions for an object. The resulting different descriptor spaces
typically reflect different characteristics of the underlying objects and as such often
even have their own unique semantics.

As most classical learning techniques are restricted to learning in exactly one
descriptor space, learning in the presence of several object representations is in practice
often solved by using one of the following three schemes.

1. Reduce the analysis to the analysis of any one of the descriptors. This is a rather
strong limitation as it potentially ignores the information that is encoded in the
remaining object representations.

2. Construct a joint descriptor space by, e.g. concatenating the features of the indi-
vidual descriptor spaces. Such a combination is often impossible due to different
feature domains. It may also introduce artifacts as it blurs the information that is
present in different object representations.

3. Perform an analysis of each space, one by one, and fuse the individual mod-
els afterwards. This ad hoc solution delays the task of merging results to a post
processing step. It has the major drawback of not paying attention to possible
structural overlaps among descriptor spaces since the individual model construc-
tion is carried out independently. These overlaps, however, are often of special
interest and, if detected during model construction, can be matched in order to
reach consensus, for example.

All these strategies have limitations because they either ignore or obscure the
multiple facets of the objects (given by the descriptor spaces) or do not respect overlaps.
This often makes them inappropriate for practical problems.

We propose learning in parallel universes as a novel learning scheme that
encompasses the simultaneous analysis of all given descriptor spaces, hereafter
referred to as universes. The new learning scheme deals with the concurrent gen-
eration of local models in each universe, whereby these models cover local structures
that are unique for individual universes and at the same time can also cover other
structures that span multiple universes. This is in contrast to the goal of existing
multi-view learning methods, which aim to build one global model from synergies
between different universes (we will discuss the difference to state-of-the-art tech-
niques in more detail in the next section). The main objective of learning in parallel
universes is therefore the construction of a global model based on these local mod-
els that outperforms the above-mentioned schemes and provides new insights with
regard to overlapping as well as universe-specific patterns. The learning task itself can
be both supervised (e.g. building a classifier) and unsupervised (e.g. clustering). For
supervised learning tasks, the model quality can be assessed using classical quality
measures, for instance the classification accuracy on a test data set. One reasonable
lower bound for this quality measure is the accuracy of a model that is trained using
any of the schemes outlined above, i.e. based on the joint descriptor space or based on
individual universes. Providing such a lower bound for unsupervised learning tasks is
considerably more difficult since there is no target attribute. In these cases it requires
an expert to evaluate the results or the availability of some reference clustering against
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which it can be compared, for instance, by using some entropy-based quality measures.
However, the prime interest of cluster analysis is usually the identification of inter-
esting groupings rather than the optimization of some numeric quality function. For
these purposes the representation of clusters using soft membership values has proven
to be useful since it enables a better interpretability over crisp clustering algorithms
such as k-means (Klawonn 2004).

In this article we focus on unsupervised clustering in parallel universes and further
develop previous work of Wiswedel and Berthold (2007). We present different exten-
sions of the classical fuzzy c-means and possibilistic clustering algorithms (Bezdek
1981; Krishnapuram and Keller 1993) to allow for a simultaneous clustering in dif-
ferent universes. The key idea is to augment the characteristic object functions by
additional terms that represent membership values of clusters to universes. Similar to
the classical single-universe algorithms, these newly introduced membership values
can be interpreted probabilistically (as in fuzzy c-means) or possibilistically, whereby
the latter is less sensitive to an inadequate choice of the cluster count parameter and
often allows for a more natural clustering as it does not have the partitioning property
of the classical fuzzy c-means. The presented extensions specifically address some
drawbacks of our previous work, which include a poor interpretability of the results
and an unintuitive cluster count specification. The resulting clustering across different
universes can be seen as a combination of local models (e.g. clusters) in one or several
universes which, combined, form the global model.

The remainder of this article is organized as follows. In the next section we intro-
duce learning in parallel universes and discuss some typical application scenarios. In
the following section we present and distinguish the proposed method against related
work. In Sect. 4 we review the classical fuzzy c-means algorithm and the possibilistic
clustering approach as well as our previous work, which also focused on clustering
in parallel universes. We derive new clustering schemes for learning in parallel uni-
verses in Sect. 5 and conclude with the presentation of results on artificial data and a
3D benchmark data set in Sect. 6.

2 Learning in parallel universes

Learning in parallel universes refers to the problem-setting of learning from objects
given in multiple descriptor spaces, whereby single descriptors are potentially not
sufficient for learning. More formally, we consider it as learning from a set of objects,
each object being described in U, 1 ≤ u ≤ U , parallel universes. The object repre-
sentation for object i in universe u is a vector xi,u , often a (high-dimensional) vector
of scalars. Note that the notion of a similarity or distance function between objects—
which is a fundamental requirement for, e.g. clustering or distance-based classifica-
tion tasks—can only be defined with regard to a specific universe and not the general
object domain. The distance function between two objects i and j in universe u is
du

(
xi,u, x j,u

)
. Throughout the paper we will use the term object to denote the objects

being analyzed, whereby object representation or instance shall denote the (typically
numerical) description of an object in a certain universe. The task of learning in par-
allel universes describes the creation of a global model that combines local models in
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individual universes, which may only explain part of the ground truth underlying the
data. The identification of overlaps (or lack thereof) between different local models
by a simultaneous analysis of all available universes is an important property of the
learning process. The learning objective is twofold:

1. Identify structures that occur only in one or few universes (for instance groups of
objects that cluster well in one universe but not in others).

2. Detect and facilitate overlapping structures between multiple, not necessarily
all, universes (for instance clusters that group in multiple but not necessarily
all universes).

Item (1) addresses the fact that any one universe may not be a complete represen-
tation of the underlying objects, that is, it does not suffice for learning. The task of
descriptor generation is in many application domains a science by itself, whereby sin-
gle descriptors (i.e. universes) carry a semantic and mirror only certain properties of
the objects.

Item (2) describes cases, in which structures overlap across different universes. For
unsupervised clustering tasks, for instance, this would translate to the identification of
groups of objects that are self-similar in a subset of the universes. Note that in order
to detect these overlaps and to support their formation it is necessary for information
to be exchanged between the individual models during their construction. This is a
major characteristic of learning in parallel universes.

Learning in parallel universes concerns the construction of local models for
individual universes, whereby information is shared between the universes during
model construction. This helps to create superior local models, which are eventually
combined into a global model that covers all structures available in the universe. The
very important point here is that individual local models do not necessarily cover all
information in each individual universe.

2.1 Application scenarios

The challenge of learning in parallel universes can be found in almost all applications
that deal with the analysis of complex objects. We outline a few of these below.

2.1.1 Molecular data

This includes activity prediction of drug candidates, typically small molecules.
Molecules can be described in various ways, potentially focusing on different aspects
such as surface charge distribution, shape, or flexibility (Bender and Glen 2004). It
can be as simple as a vector of numerical properties such as molecular weight or
number of rotatable bonds. Other descriptors concentrate on more specific properties
such as charge distribution, 3D conformation or structural information. Apart from
such semantic differences, descriptors can also be of a different type including vectors
of scalars, chemical fingerprints (bit vectors) or graph representations. These diverse
representations make it impossible to simply join the descriptors and construct a joint
feature space.
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It is known that molecular activity, e.g. the inhibition of a particular disease, is often
caused by different factors. For instance, a molecule can bind to a certain protein and
hence show activity because of its 3D layout (basically hooking into the binding
pocket), whereas other molecules just have the right surface charge distribution. It is
obvious that in such cases two different universes, one describing charge properties
and another for the 3D layout, are necessary to model those two scenarios. At the same
time it may also be of interest to identify groups that overlap in these universes as they
may have a high potential of being a good drug candidate.

2.1.2 3D object data

Another interesting application is the mining of 3D objects (Bustos et al. 2006). The
literature lists three main categories of descriptors: (1) image-based (features describ-
ing projections of the object, e.g. silhouettes and contours), (2) shape-based (like
curvature measures) and (3) volume-based (partitioning the space into small volume
elements and then considering elements that are completely occupied by the object or
contain parts of its surface area, for instance). Which of these descriptions is appropri-
ate for learning, mostly depends on the class of object being considered. For instance
image- or volume-based descriptors fail on modeling a class of humans taking differ-
ent poses, as their projections or volumes differ, whereas shape-based descriptors have
proven to cover this class nicely. On the other hand classes such as cars and couches,
which have no easily distinctive characteristic and distinguishable shape, are covered
well in image- or volume-based descriptors.

2.1.3 Image data

Similarly, there are also manifold techniques available to describe images. Descriptors
can be based on properties of the color or gray value distribution; they can encode
texture information or edge properties. Other universes can reflect user annotations
such as titles that are associated with the image. Also, in this domain it sometimes
depends on the descriptor whether two images are similar or not. As an example con-
sider a (green) billiard table with colorful billiard balls. This is likely to be similar to
a meadow of flowers in a color-based universe, and yet they will be quite different in
a universe that reflects edge information due to the different homogeneous areas.

3 Related work

A variety of work in related research fields also focuses on the analysis or construction
of several feature spaces. The most prominent ones are described below.

3.1 Clustering high-dimensional data

Methods for clustering in high-dimensional data (Kriegel et al. 2009) operate on a
single, typically very high-dimensional input space. There are a number of different
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subcategories, including methods for finding clusters in (mostly axis-parallel) sub-
spaces and correlation clustering. The goal of so-called subspace clustering methods
is to identify regions of the input space (a set of features) that exhibit a high simi-
larity on a subset of the objects, or, more precisely, the objects’ data representations.
Subspace clustering methods are commonly categorized into bottom-up and top-down
approaches. Bottom-up starts by considering density on individual features and then
subsequently merging features/subspaces to subspaces of higher dimensionality, which
still retain a high density. The most prominent example is Clique (Agrawal et al.
1998), which partitions the input space using a static grid and then merges grid ele-
ments if they meet a given density constraint. Top-down techniques initially consider
the entire feature space and then remove irrelevant features from clusters to compact
the resulting subspace clusters. Friedman and Meulmany (2004) propose Cosa, a
general framework for this type of subspace clustering; they use weights to encode
the importance of features to subspace clusters. These weights influence the distance
calculation and are optimized as part of the clustering procedure. Another example
for the top-down approach is Proclus (Aggarwal et al. 1999), which picks cluster
prototypes from a set of candidates. The subspace assignment is accomplished using
the features along which the objects in a cluster in the full feature space have the least
spread. Another categorization of these algorithms is what Kriegel et al. (2009) call
a problem-oriented view and the way the methods respect overlaps between clusters.
They distinguish between subspace clustering (possible overlaps between subspace
clusters, e.g. used in Clique), projective clustering (unique assignment of objects
to clusters + possibly noise, e.g. Proclus), and hybrid methods. The latter are some-
where in between, for instance Cosa does not solve the clustering problem directly but
defines a distance function for the application of classical distance-based clustering
methods for the problem at hand.

Correlation clustering methods extend the concept of subspace clustering by
finding clusters that form on arbitrarily oriented subspaces, often hyperplanes con-
structed from the local application of principal component analysis (PCA). Orclus
(Aggarwal and Yu 2000) extends the idea of Proclus by performing a PCA on pro-
totype clusters on the full feature space and then choosing the weakest eigenvectors
to span the assigned subspace as these eigenvectors reveal a high density.

What these types of methods for clustering in high-dimensional spaces share with
learning in parallel universes is that they also try to respect locality in terms of the
features space—although these methods follow a very different goal. They refer to
individual features or feature spaces derived from a purely numeric (usually correla-
tion) analysis whereas we consider universes, i.e. semantically meaningful descriptor
spaces.

3.2 Multi-view-learning

In multi-view-learning (Rüping and Scheffer 2005), a similar setup to learning in
parallel universes is assumed, i.e. the availability of multiple descriptor spaces (uni-
verses or views). Most multi-view learning methods have a very focused learning scope
and expect all universes/views to share the same structure as they promote a consen-
sus between views. Therefore each individual universe would suffice for learning if
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enough or distortion free training data were available. Some of the first work in the
multi-view area was done by Blum and Mitchell (1998), who concentrate on the clas-
sification of web pages. They introduce co-training in a semi-supervised setting, i.e.
they have a relatively small set of labeled and a rather large set of unlabeled instances.
The web pages are described using two different views, one based on the actual content
of the web site (bag of words), the other one based on anchor texts of hyperlinks point-
ing to that site—both views are assumed to be conditionally independent. Co-training
creates a model on each view, whereby the training set is augmented with data that has
been labeled with high confidence by the model of the respective other view. This way
the two classifiers bootstrap each other. Dasgupta et al. (2001) provide the theoretical
foundation for the co-training setup. They show that the disagreement rate between
two independent views is an upper bound for the error rate of either hypothesis. This
principle already highlights the identical structure property of all views as the base
assumption of many multi-view learners, which is contrary to the setup of learning
in parallel universes, where some information may only be available in a subset of
universes.

Unsupervised clustering methods for multi-view problems have been discussed by
Kailing et al. (2004) and Bickel and Scheffer (2004). Kailing et al. extend the Dbscan
algorithm to work on multiple views. The classical Dbscan algorithm uses the notion
of dense regions by means of core objects, i.e. objects that have a minimum number k
of objects in their (ε-) neighborhood. A cluster is then defined as a set of (connected)
dense regions. The multi-view version of Dbscan extends the dense region definition
by requiring that an object is a neighbor to a core object if it is in its ε-neighborhood
in (1) at least one or (2) all views, whereby only case (2) can be considered a clas-
sical multi-view learning setup as it assumes consensus between the views. Bickel
and Scheffer (2004) present extensions to the EM algorithm, the k-means and the
agglomerative clustering algorithms for multi-view problems. They concentrate on
the clustering of text data using two views. The main idea of their extensions is to
alternately exchange intermediate results between the views, e.g. the multi-view ver-
sion to k-means iteratively uses the partition information from one view to determine
the next set of mean vectors in the other view. Alqadah and Bhatnagar (2008) introduce
the term 3-clusters to denote subspace clusters, which overlap in different views. They
mine binary data and seek to identify clusters, which are maximal in both the num-
ber of covered objects and the number of attributes describing the cluster in different
views.

Classical multi-view methods assume all views to have the same structural infor-
mation, i.e. they promote a consensus between different universes. In spite of this
interesting learning challenge, it turns out that in many application domains the dif-
ferent universes often reflect—by design—different aspects of the underlying objects.
In these cases the information that is (hiddenly) encoded in individual universes often
only partially overlaps, thus violating the prime assumption of multi-view-learning
and making these methods inapplicable.

Learning in parallel universes might be viewed as a variant of multi-view learning,
because both approaches start with multiple views on the data. The main difference
is that the multi-view models currently developed in the literature, all induce a single
global model that is global in all views/universes, whereas our approach combines
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local models from individual views/universes into a model that is global across all
universes. The resulting model is therefore not applicable in each individual universe,
but only across all universes. In order to emphasize this difference, we prefer to call
it Learning in parallel universes, a term which was first introduced by Patterson and
Berthold (2001).

There exist a number of other similar learning setups. These include ensemble
learning, multi-instance-learning and sensor fusion. We do not discuss these methods
in detail but point out that they all have either a different learning input (no a-priori
defined universes) or a distinct learning focus (no partially overlapping structures
across universes while retaining universe semantics).

4 Clustering in parallel universes

In the following we present new clustering schemes based on the classical fuzzy
c-means (FCM) and possibilistic clustering (PCM) algorithms (Bezdek 1981;
Krishnapuram and Keller 1993). We quickly review both algorithms as we use concepts
from them later on, and we start by introducing the necessary notation and review-
ing the techniques underlying the classical one-universe algorithms. We summarize
earlier work (Wiswedel and Berthold 2007) and, in the next section, present the main
contribution of this article, i.e. a new clustering algorithm for parallel universes that
addresses some drawbacks of our previous work.

As stated previously, we examine a set of objects, each object being described in U
parallel universes. We denote the overall number of objects as P . The object represen-
tation for object i, 1 ≤ i ≤ P , in universe u, 1 ≤ u ≤ U , is xi,u . We are interested in
identifying K cluster. We further assume appropriate definitions of distance functions
for each universe du

(
wk,u, xi,u

)
, whereby wk,u denotes the k-th prototype in the u-th

universe.

4.1 Classical FCM & PCM in one universe

We briefly review the standard fuzzy c-means and possibilistic clustering in a single
universe, i.e. one feature space only, since we will use ideas from both techniques in
the following sections. For the sake of clarity the subscript u is omitted in the fol-
lowing. We also do not give the update equations that minimize the respective target
functions but instead refer to the literature. Both FCM and PCM iteratively minimize
an objective function that represents the weighted sum of intra-cluster distances. The
lower the sum, the better the clustering. The FCM objective function is (Bezdek 1981):

min
vi,k ,wk

P∑

i=1

K∑

k=1

vm
i,k d (wk, xi ) s.t. ∀ i :

K∑

k=1

vi,k = 1 . (1)

The objective function represents the accumulated sum of distances between object
representations (instances) xi and cluster centers wk , weighted by the degree of mem-
bership to which an object belongs to a cluster. The coefficient m ∈ (1,∞) is a
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fuzzification parameter and vi,k the respective value from the partition matrix, i. e. the
degree to which an object representation xi belongs to cluster k. The objective func-
tion is alternately optimized with respect to vi,k and wk , whereby the side constraint
requires the objects to be shared among the clusters. This partitioning property is often
a serious drawback of FCM as outliers and noise can heavily influence the clustering
result.

In response to this problem, Krishnapuram and Keller (1993) presented possibilis-
tic clustering (PCM), which does not have such a side constraint. The PCM objective
function is (Krishnapuram and Keller 1993):

min
vi,k ,wk

K∑

k=1

P∑

i=1

vm
i,k d (wk, xi ) +

K∑

k=1

ηk

P∑

i=1

(
1 − vi,k

)m (2)

PCM also accumulates weighted distances between instances xi and prototypes wk ,
however instead of distributing an object among the clusters it uses a penalty term ηk
to avoid the trivial solution in which all clusters are empty. For each membership vi,k

of an object i to a cluster k it uses a non-membership value 1 − vi,k , which will take
an accordingly large value if an object has a large distance to the cluster prototype.
This non-membership value is used to weight the penalty term ηk . Equation (2) is opti-
mized w.r.t. wk and vi,k ; the penalty term ηk is a parameter of the algorithm, which
is determined using certain heuristics. Krishnapuram and Keller (1993) suggest using
the average intra-cluster distance of cluster k, e.g. by calculating the average distance
of instances with a high membership to the cluster prototype.

Despite the advantage of being less sensitive to noise, PCM has, in its single
universe usage, a limitation, which becomes obvious when reformulating the objective
function:

min
vi,k ,wk

K∑

k=1

P∑

i=1

vm
i,k d (wk, xi ) + ηk

P∑

i=1

(
1 − vi,k

)m

︸ ︷︷ ︸
Optimization of cluster k

(3)

Obviously it can also be phrased as an independent optimization of each cluster. In
fact, the objective function takes its theoretical minimum when all clusters represent
the same minimal cluster and are therefore identical. This problem also often occurs
in practice which is why Krishnapuram and Keller (1996) suggest different tricks, e.g.
running a standard FCM to initialize the clusters and to choose a smaller fuzzifier m
than is normally used in FCM.

Interestingly, as we will see later, this problem disappears when applied in parallel
universes.

4.2 Fuzzy clustering in parallel universes

Both FCM and PCM operate on a single feature space and are therefore not
directly applicable for problems described in parallel universes. In our previous work
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(Wiswedel and Berthold 2007) we suggested modifying the objective function and
including additional terms to represent the universes. This is accomplished by using
new membership values 0 ≤ zi,u ≤ 1, which denote object memberships to universes
and which are also optimized during the training process. If this type of object mem-
bership is learned as being small, i.e. close to 0, the object i is said to not contribute
to any of the clusters in universe u, whereas a larger value indicates a substantial
contribution to one of the clusters in u. The objective function is in the form of:

min
v

(u)
i,k , zi,u , wk,u

P∑

i=1

U∑

u=1

zm′
i,u

Ku∑

k=1

(
v

(u)
i,k

)m
du

(
xi,u, wk,u

)

s.t. ∀ i, u :
Ku∑

k=1

v
(u)
i,k = 1 ∀ i :

U∑

u=1

zi,u = 1. (4)

The input parameters for the objective function are appropriate definitions of the uni-
verses and their distance functions, the fuzzification parameters m and m′ and the
cluster counts Ku . The objective function can also been seen as a connected optimiza-
tion of a fuzzy c-means in the individual universes (the inner term in Eq. 4), whereby
the impact of object i to the clustering process in universe u is scaled by its membership
value zi,u . The objective function is optimized with respect to the cluster prototypes
wk,u and the membership values of objects to clusters v

(u)
i,k and objects to universes

zi,u . The update functions that lead to a local minima of the objective functions are
listed below (assuming Euclidean distance functions du for the update function (5c)):

v
(u)
i,k =

⎛

⎝
Ku∑

k̄=1

(
du

(
xi,u, wk,u

)

du
(
xi,u, wk̄,u

)

) 1
m−1

⎞

⎠

−1

(5a)

zi,u =

⎛

⎜⎜
⎝

U∑

ū=1

⎛

⎜
⎝

∑Ku
k=1

(
v

(u)
i,k

)m
du

(
xi,u, wk,u

)

∑Kū
k=1

(
v

(ū)
i,k

)m
dū

(
xi,ū, wk,ū

)

⎞

⎟
⎠

1
m′−1

⎞

⎟⎟
⎠

−1

(5b)

wk,u =
∑P

i=1 zm′
i,u

(
v

(u)
i,k

)m
xi,u

∑P
i=1 zm′

i,u

(
v

(u)
i,k

)m . (5c)

The algorithm that uses these update functions is shown in Algorithm 1. It starts with
a random initialization of the prototypes and then iteratively optimizes the variables
according to the update functions to learn a (local) minima.

Although this extension already enables a simultaneous analysis of different uni-
verses, it has a few drawbacks:

– The universes compete for the objects since the membership degrees of objects to
universes need to sum to one (second side condition in Eq. 4). This is specifically
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Algorithm 1 Fuzzy c-means algorithm for parallel universes (Wiswedel and Berthold
2007)

/*input parameters:*/
/*Ku : cluster count per universe*/
/*m, m′: fuzzifiers m, m′ > 1*/

1: ∀u, k ∈ [1, Ku ]: initialize prototypes wk,u by assigning them to random data points xi,u

2: ∀i, u: initialize the membership values zi,u = 1
U

3: repeat
4: ∀i, u, k ∈ [1, Ku ]: compute v

(u)
i,k according to (5a)

5: ∀i, u: compute zi,u according to (5b)
6: ∀u, k ∈ [1, Ku ]: compute prototypes wk,u according to (5c)

7: until termination, e.g. when no significant change to partitioning matrices v
(u)
i,k or zi,u

8: return partitioning values v
(u)
i,k , zi,u and cluster prototypes wk,u ,∀i, u, k ∈ [1, Ku ]

problematic and counterintuitive for clusters that heavily overlap in different uni-
verses. Instead the objective function favors cluster that only arise in one universe.

– The user has to specify the number of clusters for each universe separately.
– Clusters in different universes are independent of each other. They are not intercon-

nected and therefore it would also not be possible to identify universe overlapping
information, i.e. objects that group well in multiple universes.

– The results are difficult to interpret because each cluster consist of its prototype
(wk,u) and a set of objects, whereby these are accompanied by the cluster (v(u)

i,k )
and the universe membership (zi,u).

– The clustering is affected by noise and outliers due to its partitioning property.
Although the influence of noisy objects in a universe can be reduced when these
objects cluster well in the remaining universes, they can still prove problematical
if they do not contribute to any of the clusters.

These disadvantages limit the general usage of this approach since often there is no
prior knowledge on how many clusters to expect in a given universe and also the
missing connection between the universes is often inappropriate. These concerns can
be addressed using a different interpretation of the membership values and a different
formulation of the target function.

5 Clustering across parallel universes

In the previous section we used membership values zi,u that represent objects’
memberships to universes, which will be high if the corresponding object representa-
tion is well covered by one of the clusters in a universe. However, these membership
values only create a weak connection between different universes. In the following
we use a different interpretation of these values, whereby we assign clusters, instead
of objects, to universes. The objective functions discussed below identify clusters that
are shared among different universe, i.e. each cluster has a representation in each uni-
verse. If a cluster is not well represented in a universe (the objects contained in the
clusters exhibit a small self-similarity in that universe), the algorithm learns its corre-
sponding membership zi,u is small. If the cluster is well represented in a universe, i.e.
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the contained objects are very similar to each other, the membership of the cluster to
the universe is accordingly large. This is a fundamental difference to the formulation
discussed in the previous section since the clusters are the same across all universes
but simply assigned to a different degree depending on how well the cluster forms in
a universe. This approach is more natural since it allows a better interpretability of the
results and an easier specification of the input parameters as there is only one global
cluster count instead of counting the number of clusters in each universe. The learn-
ing algorithm can then adjust the cluster-to-universe membership to move clusters
to universes where they are needed. We will discuss both a fuzzy and a possibilistic
interpretation of these membership values.

5.1 Fuzzy clustering across parallel universes

In order to establish a direct connection between clusters in different universes we use
the already introduced membership values to indicate a cluster membership to uni-
verses. That is, there is one fixed number of global clusters, whereby their significance
to the universes is learned throughout the training. The new fuzzy clustering objective
function has the following form:

min
vi,k , zk,u , wk,u

U∑

u=1

K∑

k=1

zm′
k,u

P∑

i=1

vm
i,kdu

(
xi,u, wk,u

)

s.t. ∀ i, u :
K∑

k=1

vi,k = 1 ∀ k :
U∑

u=1

zk,u = 1. (6)

The objective function represents a classical fuzzy c-means within each universe (inner
sum of Eq. 6), whereby this sum of weighted distances is multiplied by the member-
ship value zk,u , i.e. the degree to which a cluster is represented in a universe. This
scaling is analogous to the weighting of the distances in a classical c-means approach:
zk,u (or vi,k) will be large if the weighted sum of distances

∑P
i=1 vm

i,kdu
(
xi,u, wk,u

)

(or distance du
(
xi,u, wk,u

)
) is small. The algorithm is no longer based on universe

specific cluster counts, which also enables a better interpretability of the variables zk,u .
These are learned to be large, i.e. zk,u → 1 if a cluster k forms primarily in universe u.
If these values are similar between different universes (i.e. similarly large), it indicates
that this cluster forms in different universes equally well. It is important to note that
the partitioning of objects to clusters, represented by vi,k , is also carried out across all
universes, whereas the objective function (4) does this for all universes individually.
The output of this approach is a set of cluster prototypes along with their respective
membership values and the objects with their membership values to the clusters. The
update functions for the membership values and the cluster prototypes are:

vi,k =
⎛

⎜
⎝

K∑

k̄=1

⎛

⎝
∑U

u=1 zm′
k,udu

(
xi,u, wk,u

)

∑U
u=1 zm′

k̄,u
du

(
xi,u, wk̄,u

)

⎞

⎠

1
m−1

⎞

⎟
⎠

−1

(7a)
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zk,u =
⎛

⎝
U∑

ū=1

(∑P
i=1 vm

i,kdu
(
xi,u, wk,u

)

∑P
i=1 vm

i,kdū
(
xi,ū, wk,ū

)

) 1
m′−1

⎞

⎠

−1

(7b)

wk,u =
∑P

i=1 vm
i,k xi,u

∑P
i=1 vm

i,k

. (7c)

The objective function (6) already has certain advantages over the approach dis-
cussed in the previous section as it establishes a direct connection between different
universes. However, due to its partitioning property it can still be heavily affected
by noisy objects and outliers. Additionally, the second side constraint requires the
cluster-to-universe memberships to sum to 1, which is particularly unsuited if clusters
heavily overlap across universes. In such cases it would be more appropriate to allow
high membership values (zk,u → 1) in multiple universes simultaneously.

5.2 Possibilistic clustering across parallel universes

These requirements can be met using a possibilistic interpretation of the membership
values zk,u , i. e. by dropping the second side constraint in Eq. 6. The new objective
function is given in Eq. 8; it uses the objective function of standard fuzzy c-means
within the individual universes, whereby they are linked using a possibilistic mem-
bership value to represent a cluster’s typicality for a universe.

min
vi,k , zk,u , wk,u

U∑

u=1

K∑

k=1

zm′
k,u

P∑

i=1

vm
i,kdu

(
xi,u, wk,u

) +
U∑

u=1

ηu

K∑

k=1

(
1 − zk,u

)m′ P∑

i=1

vm
i,k

s.t. ∀ i :
K∑

k=1

vi,k = 1. (8)

The second term of the objective function corresponds to the possibilistic interpreta-
tion as in standard PCM (Eq. 2). It represents the non-membership,

(
1 − zk,u

)
, of a

cluster k to a universe u and serves to control the assignment of zk,u , i.e. to avoid the
trivial solution, in which all zk,u would be set to 0. The role of the multiplier

∑P
i=1 vm

i,k
is important here as it penalizes clusters that do not belong to any universe. Ignoring
this multiplier would otherwise attract all objects into these no-universe clusters. Sim-
ilar to the classical PCM the second term is scaled by a universe specific parameter
ηu . The value of this parameter can be heuristically determined using, for instance the
average intra-cluster distance in a universe. That is

ηu = κ

∑P
i=1

∑K
k=1 zm′

k,uvm
i,k du

(
xi,u, wk,u

)

∑P
i=1

∑K
k=1 zm′

k,uvm
i,k

, (9)
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whereby κ is a user parameter to scale this term, which is usually set to κ = 2. The
update functions that lead to a minima of objective function (8) are given below (the
update function for wk,u is equal to (7c)):

zk,u =
⎛

⎜
⎝1 +

(∑P
i=1 vm

i,kdu
(
xi,u, wk,u

)

ηu
∑P

i=1 vm
i,k

)
(

1
m′−1

)⎞

⎟
⎠

−1

(10a)

vi,k =
⎛

⎜
⎝

K∑

k̄=1

⎛

⎝
∑U

u=1 zm′
k,udu

(
xi,u, wk,u

) + (
1 − zk,u

)m′
ηu

∑U
u=1 zm′

k̄,u
du

(
xi,u, wk̄,u

) + (
1 − zk̄,u

)m′
ηu

⎞

⎠

1
m−1

⎞

⎟
⎠

−1

, (10b)

In Sect. 4.1 we discussed the problem of identical clusters in the classical PCM.
However, this problem is not present in the case of objective function (8), which also
uses the possibilistic interpretation for zk,u . Although Eq. 8 can be rewritten to an
apparently independent optimization in each universe (similar to rephrasing the clas-
sical PCM target function (2) to Eq. 3) this does not mean that the optimization can
be carried out independently. The key point here is the side constraint (the classical
PCM in one universe does not have side constraints), which establishes a depen-
dency between universes. The complete (unbounded) formulation of the optimization
problem using a Lagrange function incorporates this side condition and can not be
reformulated as independent optimization of the universes. This dependency becomes
more obvious when looking at the final update Eq. 10a and b. The update function zk,u

depends directly on the values of vi,k , which themselves are based on all universes.
More intuitively, in comparison to the single universes PCM, we cannot simply move
cluster prototypes around to achieve a theoretical minimum of the objective function.

All methods discussed here are based on a suitable definition of the target function,
which is minimized with respect to variables such as partitioning values and cluster
prototypes. Even if the natures of all of these objective functions are similar, there is
an important difference in the interpretation of the membership values z between the
methodology discussed in our previous work (Wiswedel and Berthold 2007) and the
objective functions discussed here. The new formulation assigns clusters to universes,
which is more natural as it creates a direct link between different universes and allows
clusters to be shared. Additionally, it simplifies the parameterization of the algorithm
(there is one global cluster count) and makes the results more interpretable.

In the next section we will discuss the applicability of the presented methods on
both an artificial data set and a real-world data set of 3D objects.

6 Results

We use two different data sets to demonstrate the usefulness of the presented approach.
The first one is an artificial data set that was also used in our previous work. The second
data set contains descriptions of 3D objects given in different universes, which cover
volume-, image- and shape-based properties of the objects.
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6.1 Artificial data

We first present some results on synthetic data with a variable number of universes
in order to demonstrate the advantages and disadvantages of the presented approach
and to compare it with our previous work. We use the same data generation process
as described in (Wiswedel and Berthold 2007). The universes are two-dimensional
feature spaces in order to allow a display of both data and generated clusters. In
each universe we generate two Gaussian distributed clusters by using a total of 1,400
objects. We first randomly assign each of the objects to one of the universes, in which
we draw the object representation (i.e. the object’s features in the universe) according
to the distribution of one of two clusters (randomly choosing one of the two). As
each object is represented in each universe, we also generate features in the remaining
universes using a uniform distribution, i.e. the object representations represent noise
in these universes unless they are drawn by chance into an existing cluster.

Figure 1 shows an example data set with three universes. The top figures show the
three universes, filtering only the object representations that were chosen to group in
the respective universes. The overall six clusters are disjoint, two clusters belong to a
universe, respectively. The clusters in the top figures are the reference clustering, i.e.
the one that we try to recover in the following. The bottom figures show all objects,
including the objects that cluster in the respective other universes. If we concentrate
on a single universe only, it is hard to identify the two original clusters as 2/3 of the
data are noise in each universe.

This data generation process does not create any overlapping clusters across
universes; each cluster forms solely in one universe. Due to its aforementioned charac-
teristics the fuzzy clustering in parallel universe discussed in (Wiswedel and Berthold
2007) is very well suited to identify these hidden structures. Obviously the question
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Fig. 1 Three universes of a synthetic data set. The top figures only show the object representations that
were generated to cluster in the respective universe. The bottom figure shows all instances; about 2/3 are
noise in a universe. The objects originating from different clusters are shown in different shapes in order to
make them distinguishable
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Fig. 2 Quality of clustering result on three data sets. The number of universes varies from two to four.
The two bars on the left represent the fuzzy clustering using object and cluster memberships to universes,
respectively. The bar on the right shows the clustering quality using a FCM on the joint features space.
A decreasing quality with a increasing universe count is to be expected since the number of clusters also
increases

arises whether the clustering methods that use membership values to assign clusters
to universes are able to detect these clusters too.

Figure 2 compares the clustering results of a fuzzy clustering using object to
universe memberships, a fuzzy clustering across universes assigning clusters to uni-
verses, and a standard FCM on the joint feature space. In each case the number of
desired clusters was set appropriately, i.e. for the 3-universe problem it was set to iden-
tify two clusters per universe in the object to universe setup and overall six clusters
for the fuzzy clustering using cluster memberships and the standard FCM.

The quality measure shown in the graph is calculated using an entropy based com-
parison of the computed clustering with the referencing clustering (Wiswedel and
Berthold 2007):

QK (C) =
∑

Ci ∈C

|Ci |
P

· (
1 − entropyK (Ci )

)
,

whereby K and C are the reference and computed clustering result and entropyK (Ci )

denotes the entropy of cluster Ci with respect to K . The function evaluates to 1 if K
and C are equal and 0 if C is random. The higher QK (C) the better the clustering.

Both algorithms that exploit the universe information perform significantly better
than the FCM on the joint feature space. Our new method using cluster memberships
to universes achieves similar results to the clustering algorithm that assigns objects
to universes. However, it is easier to set up due to its global cluster count parameter
and it allows for interpretable results. When looking at the final membership values
zk,u it becomes very obvious that each universe has two clusters, i.e. all clusters have
a very high membership to only one of the universes and very low memberships to
the remaining universes. This information is much harder to read from the output
of the clustering algorithm that assigns objects to universes as here we would have
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to analyze all object memberships to see whether there is some intrinsic structure
underlying them.

6.2 3D object data

In a second experiment we analyze a 3D object data base (3D Benchmark 2008;
Bustos et al. 2004). There are a total of 292 objects, which were manually classi-
fied into 17 different groups such as airplanes, humans, swords, etc. The objects are
described by means of four different universes, which can be categorized into image-,
shape- and volume based descriptions. These are (Bustos et al. 2005):

DBF is an image-based descriptor, which analyzes the six different projects of an
object after normalizing and rotating it into a unit cube. This 366 dimensional
universe respects distances between the object and the projection surface.

SIL is also an image-based descriptor and is similar to DBF, although it uses only
three projection planes instead of six and is based on an object’s silhouettes. It
has 510 attributes.

SSD is a shape-based descriptor in 432 dimensions, taking into a account the cur-
vature properties of the object surface.

VOX is volume-based and reflects the properties of the object volume using voxels
(small volume elements). It uses 343 dimensions to describe the distribution
of voxels containing different fractions of the object surface.

We use the Euclidean norm to calculate distances between object representations
and prototypes since the fuzzy clustering techniques require a differentiable distance
function. As one part of the preprocessing we normalize the domain of the distance
functions in order to have comparable distance ranges in all universes; we do so by
normalizing the computed distances with the maximum distance in a universe. This is
similar to the normalization applied in (Bustos et al. 2004). The final input parameters
for the algorithm are therefore the overall cluster count as well as the fuzzifiers m,
which controls the overlap of clusters, and m′, controlling the formation of membership
values zk,u .

We investigated different settings for the cluster count, varying the value from 20
to 80. The quality values QK (C) indicate that larger cluster counts yield numerically
better clustering results, which is due to the nature of QK (C) as it favors more clus-
ters. The value of QK (C) was sometimes above 0.95, whereby the large majority of
clusters covered either singletons or groups of two or three objects of the same class,
i.e. their entropy was 0. Only a few clusters (≈10) covered entire classes, which appar-
ently separate clearly from the remaining classes. These clusters were reproducibly
detected, relatively independent on how the cluster count was chosen.

For the remaining experiments we set the overall cluster count parameter K to 30,
as a result from the discussion above. This gives the learning algorithm 50% more
clusters than there are classes in the dataset allowing for some tolerance against out-
liers in cluster/class assignments. In the following experiments we concentrate on
the two remaining parameters, the fuzzifiers m and m′, both of which need to be
strictly larger than 1. We report the average quality retrieved from 10 runs in order to
compensate for the random initialization and the resulting indeterministic clustering
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outcome. The fuzzifier m controls the overlap of clusters and corresponds directly to
the fuzzifier used in the classical c-means setup, which offers a direct comparison to
the clustering results in a single universe approach, i.e. the independent application
of a classical c-means on the individual universes. Note also that the parallel universe
approach assigning objects to universes (Wiswedel and Berthold 2007) is quickly
rendered inappropriate since it requires a parameterization per universe and therefore
some prior knowledge on the data set. Furthermore it lacks the interpretability of the
results (cf. Sect. 4.2). Figure 3 compares the clustering qualities for different values
of the fuzzifier m, whereby we show results for the Fuzzy Clustering across parallel
universes and the Fuzzy c-means algorithm in the universes DBF, SIL, and SSD. For
the parallel universe approach we chose the standard value m′ = 2.0, which con-
trols the cluster-to-universe membership assignment. There are different interesting
observations in the graph in Fig. 3:

1. Even the single universe cluster qualities differ depending on which universe is
used. This also corresponds to the results reported by Bustos et al. (2004), e.g. the
DBF universe is the best performing universe for a majority of classes, whereas
SSD performs generally badly except for selected classes (see also below).

2. The overall performance declines when the fuzzifier m is increased. The literature
often suggests m = 2 as a good default value (Krishnapuram and Keller 1993;
Bezdek 1981), though in the present case a much smaller value yields better
results. This is certainly a characteristic of this data set and might be caused by
the rather high dimensionality of each of the universes; a lower value m forces a
crisp clustering and therefore reduces the impact of objects far away from a cluster
center and hence the negative influence of the curse of dimensionality (Kriegel
et al. 2009).

3. The parallel universe approach outperforms the single universe cluster method for
all universes when choosing a small fuzzifier m but then drops even below the DBF
and SIL line for larger values. As we will see later, this data set contains classes
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that group well in one or two universes only. In the case of large values m, however,
we enforce more balanced membership values. These yield more uniform clusters,
even though there might be no consensus between the universes for the cluster at
hand. Small values of m result in more clearly separated and non-overlapping clus-
ters (within a universe). Consequently, it is easier to detect whether clusters also
occur in other universes and to assign adequate cluster-to-universe memberships
zk,u in these cases only. This is a rather interesting observation, which we also
noticed in our experiments: The formation of zk,u is not only (directly) influenced
by the fuzzifier m′, but also (indirectly) by how m is chosen.

In another set of experiments we analyzed the effect of different values for m′ on
the clustering result. This parameter controls the assignment of clusters to universes
and is only defined for the parallel universe approach, hence we cannot draw any con-
nections or make meaningful comparisons with the single universe algorithm. Larger
values for m′ produce more overlap between universes, whereas small values allow
for more crisp assignments. Figure 4 summarizes the results for different values of m
(represented by different curves). As already seen in the previous experiments, smaller
values for m tend to give better clustering results, relatively independent on how m′
is chosen. As can be seen in the figures, m′ has, in comparison to m, far less impact.
When choosing m′ ≥ 2 the curves for m = 1.1 and m = 1.3 (the ones that are of
primary interest as they dominate the others) stay at a high level. However, specifically
for m = 1.7 the loss in quality is more apparent, possibly caused by the too fuzzy
assignment of both objects to clusters and clusters to universes.

These experiments show that the presented algorithm is an appropriate approach for
clustering in parallel universes, resulting in a clustering that does detect the underlying
structure better than individual universe based approaches. We can conclude that for
this data set, a small fuzzifier for the object assignment to universes m (1.1 ≤ m ≤ 1.3)
and a value of, e.g. m′ = 2 return a good clustering result given the original class
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assignment as ground truth. It is less crucial to adjust the parameter controlling the
cluster to universe memberships (m′). We showed that when reasonable choices are
made for both parameters, clustering in parallel universes is better than single universe
clustering.

In order to demonstrate the interpretability of the clusters derived by the presented
approach we now concentrate on a clustering with a cluster count K = 30 (as above),
m = 1.1 and m′ = 2. The clusters covering more than 8 objects are shown in Table 1
along with the cluster size and the normalized entropy of the respective cluster. If a
cluster only contains objects of one class (such as cluster 4 or 6) the entropy is 0; larger
entropy values indicate mixed clusters. Additionally we also show a small histogram

Table 1 The 18 (out of 30) largest clusters

Cluster Entropy Size Distribution zk,u Covered classes

1 0.061 24 23 × car, 1 ×couch

2 0.065 22 Human, 1 × fish

3 0.216 20 Mostly human, Fig. 5

4 0 19 Plane

5 0.311 16 Plane (two different subclasses)

6 0 15 Human

7 0.241 14 Plane (two different subclasses, Fig. 6)

8 0 13 Sword

9 0 12 Sword

10 0.101 12 Missile, 1× fish

11 0.115 10 Bottles, 1× fish

12 0.115 10 Race cars, 1× weed

13 0 9 Couches

14 0.406 9 4 different classes, mostly missile

15 0 8 Chairs

16 0.133 8 Weed, 1 × planted flower

17 0.344 8 Human, plane, fish

18 0.428 8 Trees, planted flowers, weed

Shown are: the normalized entropy, size, the distribution of the membership values zk,u (form left to right:
DBF, SIL, SSD, VOX) and a summary of the contained classes
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indicating the distribution of the membership values zk,u . The four bars represent the
memberships to the different universes, namely (form left to right): DBF, SIL, SSD
and VOX. The distribution of cluster 3, for example, shows a very high value of the
third bar, which translates into a high membership of the cluster to the SSD universe.
The objects in clusters 3 and 7 are shown below as examples.

Objects that are covered by cluster 3 are shown in Fig. 5. This cluster has a high
membership to the shape-based SSD universe and mostly contains objects from the
human class. There is one more very pure cluster of this class in the same universe
(cluster 2). We notice that in the SSD universe this particular class is very nicely sep-
arated from the remainder. We did not observe such a clear separation for any other
class in this universe. This also corresponds to the findings of Bustos et al. (2004).

The other example in Fig. 6 shows a cluster of airplanes, which has an overlap in
the image-based universes DBF and SIL and the shape-based descriptor SSD. This
cluster has a comparably high entropy, which indicates that it covers different types of
objects. It turns out that all objects are airplanes, however, this type of object was fur-
ther subdivided into three different plane classes, resulting in this artificially increased
entropy value.

There are more interesting clusters in this data set, for instance larger groups of
swords, which cluster well in the DBF universe (probably due to their very stretched
design), or a group of weeds, which only clusters in the volume-based descriptor space.
Due to space constraints we have not shown these clusters in separate figures. How-
ever, this demonstrates nicely that depending on the type of object certain descriptors,
i.e. universes, are better suited to group them. Subspace based or classical multi-view
learning methods, which assume identical information in the different input spaces,

Fig. 5 One of two clusters (#3) primarily in the SSD universe mainly covering the class representing
humans. This class in particular separates nicely in this shape-based universe even when the human figures
take different poses. We also show the three conflict objects in the cluster on the bottom right

Fig. 6 Cluster #7 spanning both image-based and shape-based descriptor, covering airplanes. Note that
they have been categorized into different types of plane classes, which has led to a rather high entropy of
this (obviously quite uniform) cluster
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would not be able to find these local models in independent universes—combined in
a global model—to explain the entire object space. These results demonstrate clearly
that learning in parallel universes is a powerful and well suited concept when dealing
with these types of information.

7 Summary

We have presented and motivated methods for learning in parallel universes, i.e. for the
simultaneous analysis of multiple descriptor spaces. We specifically focused on exten-
sions of a family of fuzzy clustering algorithms. In the classical setup these algorithms
minimize an objective function representing a weighted sum between object repre-
sentations and their (partially) associated cluster prototypes. Using additional terms
in the objective function that represent memberships of clusters to universes, these
algorithms can also be applied to problems given in parallel universes. The new mem-
bership values are then optimized as part of the usual minimization scheme and can
later on be interpreted as, for instance, the typicality of a cluster belonging to a certain
universe. We compared the presented approach with our previous work, which uses
object instead of cluster memberships and also to clustering methods using individual
or joint universes. We showed that when using cluster memberships as discussed in
this article, the algorithm is better suited for real-world problems as it establishes a
connection between different universes and allows for interpretable results.

We applied this extension to the unsupervised analysis of 3D objects. This produced
a very intuitive clustering, which could not be detected with other methods. Future
research will mainly focus on the normalization of different distance domains. Since
all distance functions contribute to the same objective function, the algorithm will
prefer universes that produce smaller distance values, although these universes have
no inherent advantages other than their small distance range. In the case of the 3D
object data the maximum distance in a universe has proven to be a good normalization
parameter, however this may not hold for other types of data.
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