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Abstract— We propose a modified fuzzy c-Means algorithm
that operates on different feature spaces, so-called parallel
universes, simultaneously. The method assigns membership val-
ues of patterns to different universes, which are then adopted
throughout the training. This leads to better clustering results
since patterns not contributing to clustering in a universe are
(completely or partially) ignored. The outcome of the algorithm
are clusters distributed over different parallel universes, each
modeling a particular, potentially overlapping, subset of the
data. One potential target application of the proposed method is
biological data analysis where different descriptors for molecules
are available but none of them by itself shows global satisfactory
prediction results. In this paper we show how the fuzzy c-Means
algorithm can be extended to operate in parallel universes and
illustrate the usefulness of this method using results on artificial
data sets.

I. INTRODUCTION

In recent years, researchers have worked extensively in the
field of cluster analysis, which has resulted in a wide range of
(fuzzy) clustering algorithms [1], [2]. Most of the methods as-
sume the data to be given in a single (mostly high-dimensional
numeric) feature space. In some applications, however, it is
common to have multiple representations of the data available.
Such applications include biological data analysis, in which,
e. g. molecular similarity can be defined in various ways.
Fingerprints are the most commonly used similarity measure.
A fingerprint in a molecular sense is a binary vector, whereby
each bit indicates the presence or absence of a molecular
feature. The similarity of two compounds can be expressed
based on their bit vectors using the Tanimoto coefficient for
example. Other descriptors encode numerical features derived
from 3D maps, incorporating the molecular size and shape,
hydrophilic and hydrophobic regions quantification, surface
charge distribution, etc. [3]. Further similarities involve the
comparison of chemical graphs, inter-atomic distances, and
molecular field descriptors. However, it has been shown that
often a single descriptor fails to show satisfactory prediction
results [4].

Other application domains include web mining where a
document can be described based on its content and on anchor
texts of hyperlinks pointing to it [5]. Parts in CAD-catalogues
can be represented by 3D models, polygon meshes or textual
descriptions. Image descriptors can rely on textual keywords,
color information, or other properties [6].

In the following we denote these multiple representations,
i. e. different descriptor spaces, as Parallel Universes [7], each
of which having representations of all objects of the data set.

The challenge that we are facing here is to take advantage
of the information encoded in the different universes to find
clusters that reside in one or more universes each modeling
one particular subset of the data. In this paper, we develop an
extended fuzzy c-Means (FCM) algorithm [8] that is applicable
to parallel universes, by assigning membership values from
objects to universes. The optimization of the objective function
is similar to the original FCM but also includes the learning
of the membership values to compute the impact of objects to
universes.

In the next section, we will discuss in more detail the
concept of parallel universes; section III presents related
work. We formulate our new clustering scheme in section IV
and illustrate its usefulness with some numeric examples in
section V.

II. PARALLEL UNIVERSES

We consider parallel universes to be a set of feature
spaces for a given set of objects. Each object is assigned
a representation in each single universe. Typically, parallel
universes encode different properties of the data and thus lead
to different measures of similarity. (For instance, similarity
of molecular compounds can be based on surface charge
distribution or fingerprint representation.) Note, due to these
individual measurements they can also show different struc-
tural information and therefore exhibit distinctive clustering.
This property differs from the problem setting in the so-called
Multi-View Clustering [9] where a single universe, i. e. view,
suffices for learning but the aim is on binding different views
to improve the classification accuracy and/or accelerating the
learning process. The objective for our problem definition is on
identifying clusters located in different universes whereby each
cluster models a subset of the data based on some underlying
property.

Since standard clustering techniques are not able to cope
with parallel universes, one could either restrict the analysis to
a single universe at a time or define a descriptor space compris-
ing all universes. However, using only one particular universe
omits information encoded in the other representations and
the construction of a joint feature space and the derivation of
an appropriate distance measure are cumbersome and require
great care as it can introduce artifacts.

III. RELATED WORK

Clustering in parallel universes is a relatively new field
of research. In [6], the DBSCAN algorithm is extended and
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applied to parallel universes. DBSCAN uses the notion of
dense regions by means of core objects, i. e. objects that have
a minimum number k of objects in their (ε-) neighborhood. A
cluster is then defined as a set of (connected) dense regions.
The authors extend this concept in two different ways: They
define an object as a neighbor of a core object if it is in the
ε-neighborhood of this core object either (1) in any of the
representations or (2) in all of them. The cluster size is finally
determined through appropriate values of ε and k. Case (1)
seems rather weak, having objects in one cluster even though
they might not be similar in any of the representational feature
spaces. Case (2), in comparison, is very conservative since it
does not reveal local clusters, i. e. subsets of the data that
only group in a single universe. However, the results in [6]
are promising.

Another clustering scheme called “Collaborative fuzzy clus-
tering” is based on the FCM algorithm and was introduced
in [10]. The author proposes an architecture in which objects
described in parallel universes can be processed together
with the objective of finding structures that are common to
all universes. Clustering is carried out by applying the c-
Means algorithm to all universes individually and then by
exchanging information from the local clustering results based
on the partitioning matrices. Note, the objective function, as
introduced in [10], assumes the same number of clusters in
each universe and, moreover, a global order on the clusters
which—in our opinion—is very restrictive due to the random
initialization of FCM.

A supervised clustering technique for parallel universes was
given in [7]. It focuses on a model for a particular (minor) class
of interest by constructing local neighborhood histograms,
so-called Neighborgrams for each object of interest in each
universe. The algorithm assigns a quality value to each Neigh-
borgram and greedily includes the best Neighborgram, no
matter from which universe it stems, in the global prediction
model. Objects that are covered by this Neighborgram are
finally removed from consideration in a sequential covering
manner. This process is repeated until the global model has
sufficient predictive power.

Blum and Mitchell [5] introduced co-training as a semi-
supervised procedure whereby two different hypotheses are
trained on two distinct representations and then bootstrap each
other. In particular they consider the problem of classifying
web pages based on the document itself and on anchor texts of
inbound hyperlinks. They require a conditional independence
of both universes and state that each representation should
suffice for learning if enough labeled data were available. The
benefit of their strategy is that (inexpensive) unlabeled data
augment the (expensive) labeled data by using the prediction
in one universe to support the decision making in the other.

Other related work includes reinforcement clustering [11]
and extensions of partitioning methods—such as k-Means, k-
Medoids, and EM—and hierarchical, agglomerative methods,
all in [9].

IV. CLUSTERING ALGORITHM

In this section, we introduce all necessary notation, review
the FCM algorithm and formulate a new objective function
that is suitable to be used for parallel universes. The technical
details, i. e. the derivation of the objective function, can be
found in the appendix section.

In the following, we consider |U |, 1 ≤ u ≤ |U |,
parallel universe, each having representational feature vec-
tors for all objects ~xi,u = (xi,u,1, . . . , xi,u,a, . . . xi,u,Au

)
with Au the dimensionality of the u-th universe. We de-
pict the overall number of objects as |T |, 1 ≤ i ≤ |T |.
We are interested in identifying cu clusters in universe
u. We further assume appropriate definitions of distance
functions for each universe du (~wk,u, ~xi,u)2 where ~wk,u =
(~wk,u,1, . . . , ~wk,u,a, . . . ~wk,u,Au

) denotes the k-th prototype in
the u-th universe.

We confine ourselves to the Euclidean distance in the
following. In general, there are no restrictions to the distance
metrics other than the differentiability. In particular, they do
not need to be of the same type in all universes. This is
important to note, since we can use the proposed algorithm
in the same feature space, i. e. ~xi,u1 = ~xi,u2 for any u1 and
u2, but different distance measure across the universes.

A. Formulation of new objective function

The original FCM algorithm relies on one feature space only
and minimizes the objective function as follows. Note that we
omit the subscript u here as we consider only one universe:

Jm =
|T |∑
i=1

c∑
k=1

vm
i,k d (~wk, ~xi)

2
.

m ∈ (1,∞) is a fuzzyfication parameter, and vi,k the respec-
tive value from the partition matrix, i. e. the degree to which
pattern ~xi belongs to cluster k. This function is subject to
minimization under the constraint

∀ i :
c∑

k=1

vi,k = 1 ,

requiring that the coverage of any pattern i needs to accumu-
late to 1.

The above objective function assumes all cluster candidates
to be located in the same feature space and is therefore not
directly applicable to parallel universes. To overcome this,
we introduce a matrix zi,u, 1 ≤ i ≤ |T |, 1 ≤ u ≤ |U |,
encoding the membership of patterns to universes. A value
zi,u close to 1 denotes a strong contribution of pattern ~xi to
the clustering in universe u, and a smaller value, a respectively
lesser degree. zi,u has to satisfy standard requirements for
membership degrees: it must accumulate to 1 considering all
universes and must be in the unit interval.

The new objective function is given with

Jm,n =
|T |∑
i=1

|U |∑
u=1

zn
i,u

cu∑
k=1

vm
i,k,udu (~wk,u, ~xi,u)2 . (1)



Parameter n ∈ (1,∞) allows (analogous to m) to have impact
on the fuzzyfication of zi,u: The larger n the more equal the
distribution of zi,u, giving each pattern an equal impact to all
universes. A value close to 1 will strengthen the composition
of zi,u and assign high values to universes where a pattern
shows good clustering behavior and small values to those
where it does not. Note, we now have |U | different partition
matrices (v) to assign membership degrees of objects to cluster
prototypes.

As in the standard FCM algorithm, the objective function
has to fulfill side constraints. The coverage of a pattern among
the partitions in each universe must accumulate to 1:

∀ i, u :
cu∑

k=1

vi,k,u = 1 . (2)

Additionally, as mentioned above, the membership of a pattern
to different universes has to be in total 1, i. e.

∀ i :
|U |∑
u=1

zi,u = 1 . (3)

The minimization is done with respect to the parameters
vi,k,u, zi,u, and ~wk,u. Since the derivation of the objective
function is more of technical interest, please refer to the
appendix for details.

The optimization splits into three parts. The optimization of
the partition values vi,k,u for each universe; determining the
membership degrees of patterns to universes zi,u and finally
the adaption of the center vectors of the cluster representatives
~wk,u.

The update equations of these parameters are given in (4),
(5), and (6). For the partition values vi,k,u, it follows

vi,k,u =
1

cu∑̄
k=1

(
du(~wk,u,~xi,u)2

du(~wk̄,u,~xi,u)2

) 1
m−1

. (4)

Note, this equation is independent of the values zi,u and
is therefore identical to the update expression in the single
universe FCM. The optimization with respect to zi,u yields

zi,u =
1

|U |∑̄
u=1

(∑cu

k=1
vm

i,k,u
du(~wk,u,~xi,u)2∑cū

k=1
vm

i,k,ū
dū(~wk,ū,~xi,ū)2

) 1
n−1

, (5)

and update equation for the adaption of the prototype vectors
~wk,u is of the form

wk,u,a =

∑|T |
i=1 zn

i,u vm
i,k,u xi,u,a∑|T |

i=1 zn
i,u vm

i,k,u

. (6)

Thus, the update of the prototypes depends not only on the
partitioning value vi,k,u, i. e. the degree to which pattern i
belongs to cluster k in universe u, but also to zi,u representing
the membership degrees of patterns to the current universe of
interest. Patterns with larger values zi,u will contribute more
to the adaption of the prototype vectors, while patterns with a
smaller degree accordingly to a lesser extent.

Equipped with these update equations, we can introduce the
overall clustering scheme in the next section.

B. Clustering algorithm

Similar to the standard FCM algorithm, clustering is carried
out in an iterative manner, involving three steps:

1) Update of the partition matrices (v)
2) Update of the membership degrees (z)
3) Update of the prototypes (~w)

More precisely, the clustering procedure is given as:

(1) Given: Input pattern set described in |U | parallel
universes: ~xi,u, 1 ≤ i ≤ |T |, 1 ≤ u ≤ |U |

(2) Select: A set of distance metrics du (·, ·)2, and the
number of clusters for each universe cu, 1 ≤ u ≤ |U |,
define parameter m and n

(3) Initiate: Partition matrices vi,k,u with random values
and the cluster prototypes by drawing samples from
the data. Assign equal weight to all membership
degrees zi,u = 1

|U | .
(4) Train:
(5) Repeat
(6) Update partitioning values vi,k,u according to (4)
(7) Update membership degrees zi,u according to (5)
(8) Compute prototypes ~wi,u using (6)
(9) until a termination criterion has been satisfied

The algorithm starts with a given set of universe definitions
and the specification of the distance metrics to use. Also, the
number of clusters in each universe needs to be defined in
advance. The membership degrees zi,u are initialized with
equal weight (line (3)), thus having the same impact on all
universes. The optimization phase in line (5) to (9) is—in
comparison to the standard FCM algorithm—extended by the
optimization of the membership degrees, line (7). The possi-
bilities for the termination criterion in line (9) are manifold.
One can stop after a certain number of iterations or use the
change of the value of the objective function (1) between
two successive iterations as stopping criteria. There are also
more sophisticated approaches, for instance the change to the
partition matrices during the optimization.

Just like the FCM algorithm, this method suffers from the
fact that the user has to specify the number of prototypes to be
found. Furthermore, our approach even requires the definition
of cluster counts per universe. There are numerous approaches
to suggest the number of clusters in the case of the standard
FCM, [12], [13] to name but a few. Although we have not
yet studied their applicability to our problem definition we do
believe that some of them can be adapted to be used in our
context as well.

V. EXPERIMENTAL RESULTS

In order to demonstrate this approach, we generated syn-
thetic data sets with different numbers of parallel universes.
For simplicity we restricted the size of a universe to 2
dimensions and generated 2 Gaussian distributed clusters
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Fig. 1. Three universes of a synthetic data set. The top figures show only objects that were generated within the respective universe (using two clusters per
universe). The bottom figures show all patterns; note that most of them (i. e. the ones from the other two universes), are noise in this particular universe. For
clarification we use different shapes for objects that origin from different universes.

(per universe). We then assigned each object to one of the
universes and drew its features in that universe according to
the distribution of the cluster (randomly picking one of the
two). The features of this object in the other universes were
drawn from a uniform distribution, i. e. they represent noise
in these universes. Figure 1 shows an example data set with
three universes. The top figures show only the objects that
were generated to cluster in the respective universe, i. e. they
define the reference clustering. The bottom figures include all
objects and show the universes as they are presented to the
clustering algorithm. Approximately 2/3 of the data do not
contribute to clustering in a universe and therefore are noise.

To compare the results we applied the standard FCM
algorithm to the joint feature space of all universes and
set the number of desired clusters to the overall number
of generated clusters. Thus, the numbers of dimensions and
clusters were two times the number of universes.We forced
a crisp cluster membership decision based on the highest
value of the partition values, i. e. the cluster to a pattern i is
determined by k̄ = arg max1≤k≤c{vi,k}. When the universe
information was taken into account, a cluster decision is
based on the highest value of zi,u · vi,k,u. Thus, universe and
cluster index (u, k) for pattern i are computed as (ū, k̄) =
arg max 1≤u≤|U|

1≤k≤cu

{zi,u · vi,k,u}.

We used the following quality measure to compare different
clustering results [6]:

QK(C) =
∑

Ci∈C

|Ci|
|T |

· (1− entropyK(Ci)) ,

where K is the reference clustering, i. e. the clusters as
generated, C the clustering to evaluate, and entropyK(Ci)

Fig. 2. Clustering quality for 5 different data sets. The number of universes
ranges from 2 to 6 universes. Note how the cluster quality of the joint
feature space drops sharply whereas the parallel universe approach seems
less affected. An overall decline of cluster quality is to be expected since the
number of clusters to be detected increases.

the entropy of cluster Ci with respect to K. This function is
1 if C equals K and 0 if all clusters are completely puzzled
such that they all contain an equal fraction of the clusters in
K. Thus, the higher the value, the better the clustering.

Figure 2 summarizes the quality values for 5 experiments
compared to the standard FCM. The number of clusters ranges
from 2 to 6. Clearly, for this data set, our algorithm takes
advantage of the information encoded in different universes
and identifies the major parts of the original clusters. Obvi-
ously this is by no means proof that the method will always
detect clusters spread out over parallel universes but these early
results are quite promising.



VI. CONCLUSION

We considered the problem of unsupervised clustering in
parallel universes, i. e. problems where multiple representa-
tions are available for each object. We developed an extension
of the fuzzy c-Means algorithm that uses membership degrees
to model the impact of objects to the clustering in a particular
universe. By incorporating these membership values into the
objective function, we were able to derive update equations
which minimize the objective with respect to these values,
the partition matrices, and the prototype center vectors. The
clustering algorithm works in an iterative manner using these
equations to compute a (local) minimum. The result are
clusters located in different parallel universes, each modeling
only a subset of the overall data and ignoring data that do not
contribute to clustering in a universe.

We demonstrated that the algorithm performs well on a
synthetic data set and exploits the information of having
different universes nicely. Further studies will concentrate on
the applicability of the proposed method to real world data,
heuristics that adjust the number of clusters per universe, and
the influence of noisy data.
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APPENDIX

In order to compute a minimum of the objective function (1)
with respect to (2) and (3), we exploit a Lagrange technique to
merge the constrained part of the optimization problem with
the unconstrained one. This leads to a new objective function
Fi that we minimize for each pattern ~xi individually,

Fi =
|U |∑
u=1

zn
i,u

cu∑
k=1

vm
i,k,udu (~wk,u, ~xi,u)2

+
|U |∑
u=1

µu

(
1−

cu∑
k=1

vi,k,u

)
+ λ

1−
|U |∑
u=1

zi,u

.(7)

The parameters λ and µu, 1 ≤ u ≤ |U |, denote the Lagrange
multiplier to take (2) and (3) into account. The necessary
conditions leading to local minima of Fi read as

∂Fi

∂zi,u
= 0,

∂Fi

∂vi,k,u
= 0,

∂Fi

∂λ
= 0,

∂Fi

∂µu
= 0 , (8)

1 ≤ u ≤ |U |, 1 ≤ k ≤ cu.

In the following we will derive update equations for the z and
v parameters. Evaluating the first derivative of the equations
in (8) yields the expression

∂Fi

∂zi,u
= n zn−1

i,u

cu∑
k=1

vm
i,k,udu (~wk,u, ~xi,u)2 − λ = 0,

and hence

zi,u =
(

λ

n

) 1
n−1

(
1∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

. (9)

We can rewrite the above equation(
λ

n

) 1
n−1

= zi,u

(
cu∑

k=1

vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

. (10)

From the derivative of Fi w. r. t. λ in (8), it follows

∂Fi

∂λ
= 1−

|U |∑
u=1

zi,u = 0

|U |∑
u=1

zi,u = 1 , (11)

which returns the normalization condition as in (3). Using the
formula for zi,u in (9) and integrating it into expression (11)
we compute

|U |∑
u=1

(
λ

n

) 1
n−1

(
1∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

= 1

(
λ

n

) 1
n−1

|U |∑
u=1

(
1∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

= 1.(12)

We make use of (10) and substitute
(

λ
n

) 1
n−1 in (12). Note, we

use ū as parameter index of the sum to address the fact that
it covers all universes, whereas u denotes the current universe
of interest. It follows

1 = zi,u

(
cu∑

k=1

vm
i,k,udu (~wk,u, ~xi,u)2

) 1
n−1

×
|U |∑
ū=1

(
1∑cū

k=1 vm
i,k,ūdū (~wk,ū, ~xi,ū)2

) 1
n−1

,

which can be simplified to

1 = zi,u

|U |∑
ū=1

(∑cu

k=1 vm
i,k,udu (~wk,u, ~xi,u)2∑cū

k=1 vm
i,k,ūdū (~wk,ū, ~xi,ū)2

) 1
n−1

,

and returns an immediate update expression for the member-
ship zi,u of pattern i to universe u (see also (5)):

zi,u =
1

|U |∑̄
u=1

(∑cu

k=1
vm

i,k,u
du(~wk,u,~xi,u)2∑cū

k=1
vm

i,k,ū
dū(~wk,ū,~xi,ū)2

) 1
n−1

.

Analogous to the calculations above we can derive the up-
date equation for value vi,k,uwhich represents the partitioning
value of pattern i to cluster k in universe u. From (8) it follows

∂Fi

∂vi,k,u
= zn

i,u m vm−1
i,k,u du (~wk,u, ~xi,u)2 − µu = 0,



and thus

vi,k,u =

(
µu

m zn
i,u du (~wk,u, ~xi,u)2

) 1
m−1

, (13)

(
µu

m zn
i,u

) 1
m−1

= vi,k,u

(
du (~wk,u, ~xi,u)2

) 1
m−1

. (14)

Zeroing the derivative of Fi w. r. t. µu will result in condi-
tion (2), ensuring that the partition values sum to 1, i. e.

∂Fi

∂µu
= 1−

cu∑
k=1

vi,k,u = 0 . (15)

We use (13) and (15) to come up with

1 =
cu∑

k=1

(
µu

m zn
i,u du (~wk,u, ~xi,u)2

) 1
m−1

,

1 =

(
µu

m zn
i,u

) 1
m−1 cu∑

k=1

(
1

du (~wk,u, ~xi,u)2

) 1
m−1

.(16)

Equation (14) allows us to replace the first multiplier in (16).
We will use the k̄ notation to point out that the sum in (16)
considers all partitions in a universe and k to denote one
particular cluster coming from (13),

1 = vi,k,u

(
du (~wk,u, ~xi,u)2

) 1
m−1

×
cu∑

k̄=1

(
1

du

(
~wk̄,u, ~xi,u

)2
) 1

m−1

1 = vi,k,u

cu∑
k̄=1

(
du (~wk,u, ~xi,u)2

du

(
~wk̄,u, ~xi,u

)2
) 1

m−1

Finally, the update rule for vi,k,u arises as (see also 4):

vi,k,u =
1

cu∑̄
k=1

(
du(~wk,u,~xi,u)2

du(~wk̄,u,~xi,u)2

) 1
m−1

.

For the sake of completeness we also derive the update rules
for the cluster prototypes ~wk,u. We confine ourselves to the
Euclidean distance here, assuming the data is normalized1:

du (~wk,u, ~xi,u)2 =
Au∑
a=1

(wk,u,a − xi,u,a)2 , (17)

1The derivation of the updates using other than the Euclidean distance
works in a similar manner.

with Au the number of dimensions in universe u and wk,u,a

the value of the prototype in dimension a. xi,u,a is the value
of the a-th attribute of pattern i in universe u, respectively.
The necessary condition for a minimum of the objective
function (1) is of the form ∇~wk,u

J = 0. Using the Euclidean
distance as given in (17) we obtain

∂Jm,n

∂wk,u,a
= 0 = 2

|T |∑
i=1

zn
i,u vm

i,k,u (wk,u,a − xi,u,a)

wk,u,a

|T |∑
i=1

zn
i,u vm

i,k,u =
|T |∑
i=1

zn
i,u vm

i,k,u xi,u,a

wk,u,a =

∑|T |
i=1 zn

i,u vm
i,k,u xi,u,a∑|T |

i=1 zn
i,u vm

i,k,u

,

which is also given with (6).
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