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Abstract— This paper presents an approach for visualizing high-
dimensional fuzzy rules arranged in a hierarchy together with the
training patterns they cover. A standard multi-dimensional scaling
method is used to map the rule centers of the top hierarchy level to
one coherent picture. Rules of the underlying levels are projected rel-
atively to their parent level(s). In addition to the rules, all patterns
are mapped onto the two-dimensional projection in relation to the
positions of the corresponding rule centers. Visualization is further
extended by showing hierarchical relationships between overlapping
rules of different levels, which are generated by a hierarchical rule
learner. This delivers interesting insights into the rule hierarchy and
offers better explorative properties. Additionally, rules can be high-
lighted interactively emphasizing the subsequent rules at all under-
lying levels together with the patterns they cover. We demonstrate
that this technique allows investigation of interesting rules at differ-
ent levels of granularity, which makes this approach applicable even
for a large number of rules. The proposed technique is illustrated
and discussed based on a number of hierarchical rule model visual-
izations generated from well-known benchmark data sets.

Keywords— Multi-Dimensional Scaling, Fuzzy Rule Induction,
Rule Hierarchy, Rule Visualization.

1 Introduction
Rule learning algorithms are widely used in data mining to
automatically extract rules from data. In [7, 15] and [20], al-
gorithms are described that construct hyperrectangles in fea-
ture space. The resulting set of rules encapsulates regions in
feature space that contain patterns of the same class. Other
approaches, which construct fuzzy rules instead of crisp rules,
are presented, for example, in [1, 12, 18] and [19]. All of these
approaches have in common that they tend to build very com-
plex rule systems for large data sets originating from a compli-
cated underlying system. In addition, high-dimensional fea-
ture spaces result in complex rules relying on many attributes
further increasing the number of required rules to cover the
solution space. An approach that aims to reduce the num-
ber of constraints on each rule individually is presented in [3].
The generated fuzzy rules only constrain a few of the available
attributes and hence remain readable even in the case of high-
dimensional spaces. The fuzzy rules generated by this method
have been visualized by parallel coordinates [4, 10].

In [8], we described a method that attempts to tackle this
inherent problem of interpretability of large rule models. We
achieve this by constructing rule models with varying degrees
of complexity. The method builds a rule hierarchy for a given
data set. The rules are arranged in a hierarchy of different lev-
els of precision. Lower levels of the model describe regions in
input space with low evidence in the given data, whereas rules

at higher levels describe more strongly supported concepts of
the underlying data. The method is based on the fuzzy rule
learning algorithm described in [3, 9], which builds a single
layer of rules autonomously. We use the resulting rule sys-
tem recursively to determine rules of low relevance, which
are then used as a filter for the next training phase. The re-
sult is a hierarchy of rule systems with the desired proper-
ties of simplicity and interpretability on each level. Experi-
mental results demonstrated that fuzzy models at higher hier-
archical levels show a dramatic decrease in number of rules
while still achieving a better or similar generalization perfor-
mance than the fuzzy rule system generated by the original,
non-hierarchical algorithm.

In this paper we present an approach that enables the vi-
sualization of hierarchically structured rules and data in one
coherent plot. A standard multi-dimensional scaling (MDS)
method is applied to project rules of a certain level from the
original, high-dimensional space, into a lower, usually two-
dimensional space. Rules of the underlying levels are pro-
jected relatively to their parent level(s), likewise all data points
are projected in relation to the positions of the corresponding
rule centers. Furthermore, the visualization shows hierarchi-
cal relationships between overlapping rules of different levels
as generated by a hierarchical rule learner. Due to the hier-
archical nature of the induced rule system, interactive explo-
ration becomes possible across the entire rule model and pro-
vides interesting insights into the underlying concept.

The paper is organized as follows: In the next section we
briefly describe the used hierarchical rule learning method,
followed by a short introduction to multi-dimensional scal-
ing methods, and how data and hierarchical rules can be vi-
sualized by applying an extended multi-dimensional scaling
method. In the following section, we describe how rule hierar-
chies, together with their original data, can be explored within
this visualization. To illustrate the proposed method, hierar-
chical rule systems are generated based on the well-known iris
data and on the vehicle silhouettes data.

2 Learning Hierarchical Rule Systems
The rule induction algorithm used here is based on a method
described in [3], which is based on an iterative algorithm. Dur-
ing each learning epoch, i. e. presentation of all training pat-
terns, new fuzzy rules are induced when necessary and exist-
ing ones are adjusted whenever a conflict occurs. For each
pattern three main steps are executed. First, if a new train-
ing pattern lies inside the support-region of an existing fuzzy
rule of the correct class, its core-region is extended in order
to cover the new pattern. Second, if the new pattern is not yet
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covered, a new fuzzy rule of the correct class is introduced.
The new example is assigned to its core, whereas the support-
region is initialized by infinity, that is, the new fuzzy rule cov-
ers the entire domain. Finally, if a new pattern is incorrectly
covered by an existing fuzzy rule, the fuzzy rules’ support-
region is reduced to avoid the conflict. This heuristic for con-
flict avoidance aims to minimize the loss in volume. In [9],
three different heuristics are compared to determine the loss
in volume. As discussed in [3], the algorithm terminates after
only a few iterations over the set of example patterns.

The final set of fuzzy rules can be described as an n-
dimensional IF clause as antecedence and one assigned class
in the rule’s conclusion:

R1
1 : IF x1 IS µ1

1,1 ∧ · · · ∧ xn IS µ1
n,1 THEN class 1

...
...

...

R1
r1 : IF x1 IS µ1

1,r1 ∧ · · · ∧ xn IS µ1
n,r1 THEN class 1

...
...

...

Rk
j : IF x1 IS µk

1,j ∧ · · · ∧ xn IS µk
n,j THEN class k

...
...

...

Rc
rc

: IF x1 IS µc
1,rc

∧ · · · ∧ xn IS µc
n,rc

THEN class c

where Rk
j represents rule j for class k. The rule base con-

tains rules for c classes and rk indicates the number of rules
for class k (1 ≤ j ≤ rk and 1 ≤ k ≤ c). The fuzzy sets
µk

i,j : IR �→ [0, 1] are defined for every feature i (1 ≤ i ≤ n),
but in cases of unconstrained features the membership degree
constantly remains 1. The overall degree of fulfillment of a
specific rule for an input pattern �x = (x1, . . . , xn) can be
computed using the fuzzy set operator for conjunction, called
T-norm (�):

µk
j (�x) = �i=1,···,n

{
µk

i,j(xi)
}

.

The combined degree of membership for all rules of class k
can be calculated using the fuzzy set operator for disjunction,
called S-norm (⊥):

µk(�x) = ⊥j=1,···,rk

{
µk

j (�x)
}

.

From these membership values the predicted class kbest for an
input pattern �x is derived as:

kbest(�x) = arg maxk=1,...,c

{
µk(�x)

}
.

The algorithm uses trapezoidal membership functions, which
can be described by four parameters 〈ai, bi, ci, di〉, where ai

and di define the fuzzy rule’s support-, and bi and ci its core-
region for each attribute i of the input dimension. The core-
region is defined as a rectangular area with an activation of
1, whereby the support-region decreases linearly to its bound-
aries with a degree of fulfillment of 0.

The resulting set of fuzzy rules can then be used to classify
new patterns by computing the overall degree of membership
for each class. The accumulated membership degrees over all
input dimensions and across multiple rules are calculated by
a fuzzy norm. For the purpose of this paper, we concentrate
on the rules’ core-regions only, that is, the part of each rule
where the degree of membership is equal to 1 – resulting in
crisp rules – is considered.

An extension of this rule learning algorithm is proposed
in [8], which allows the generation of a hierarchy of rules.
Therefore, the classical fuzzy rule algorithm is used to deter-
mine rules of low relevance recursively, which are then used
as a filter for the next training phase. Training examples that
cause the creation of small, less important rules are therefore
excluded from the training phase of the next layer, resulting
in a more general rule system, ignoring the withheld, small
details in the training data. An example of a two-stage rule
induction process is illustrated in Fig 1.

train
train

filte
r

Data

outlier-model

Figure 1: Two-stage outlier filtering as described in [2].

This process can be repeated to generate the desired hier-
archy of rule systems with an increasing generality towards
higher levels. The rule layers are arranged in a hierarchy of
different levels of precision. Lower levels of the model de-
scribe regions in input space with low evidence in the train-
ing data, whereas rules at higher levels describe more strongly
supported aspects of the underlying data.

3 Multi-Dimensional Scaling

To visualize objects of high-dimensional feature spaces,
multi-dimensional scaling methods [6] can be applied to map
them onto lower-dimensional spaces with usually two or three
dimensions. In order to avoid a loss of proximity informa-
tion, MDS methods try to preserve the pairwise distances be-
tween objects during the mapping process by minimizing an
appropriate error function. The reduction of dimensions al-
lows the visualization of high-dimensional objects in a lower-
dimensional space, using traditional methods such as scatter
plots or scatter matrices.

One technique to apply this kind of mapping by minimizing
a particular error function is the well known Sammon algo-
rithm [17]. For each object �Xi in high-dimensional space R

H ,
a spatial representation �xi ∈ R

L in low-dimensional space
(usually L = 2) has to be computed (1 ≤ i ≤ N with N as
the number of objects ).

To approximate the distance information, the position of
each object in the low-dimensional space has to be adjusted
such that the pairwise distances between each two objects
(�xi, �xj) in the low-dimensional space, dij = d (�xi, �xj), ap-
proximate the distances of the two corresponding objects
( �Xi, �Xj) in the high-dimensional space, Dij = D

(
�Xi, �Xj

)
:

∀i �=j : Dij ≈ dij , 1 ≤ i, j ≤ N.

Usually the Euclidean metric is used to measure these dis-
tances in the low-dimensional space, and often in the high-
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Figure 2: Shows a two-level rule hierarchy. (a) Two top-level rules assigned to two different classes, + (red) and − (blue),
(b) three additional rules on the next level, (c) all rules together with their underlying data points.

dimensional space as well:

d2
ij =

L∑
l=1

(xi,l − xj,l)
2
.

Approximation of the pairwise distances in high- and low-
dimensional space is formulated by Sammon as a mini-
mization problem of a cost function, which aggregates the
weighted squared differences of the distances in high- and
low-dimensional space:

E =
N∑

i=1

N∑
j>i

ωij(dij − Dij)
2
.

where the factors ωij are introduced to weight the distances
individually and normalize the stress function E in order to be
independent from the absolute values Dij . The steepest gradi-
ent method is applied to minimize iteratively a cost function E
for each object �xi at each step. Usually several iterations are
needed by the algorithm to converge to a local cost minimum.

3.1 Projective Multi-Dimensional Scaling

As mentioned above, the original Sammon algorithm tries to
preserve the pairwise distances of all objects. This means that
the position of each object in the low-dimensional space is ad-
justed iteratively according to the position of the other objects
in the high- and low-dimensional space. Subsequently this
leads to a change of the positions of all objects in the low-
dimensional space. With our projective multi-dimensional
scaling approach, the positions of the objects in the low-
dimensional space are adjusted according to a set of fixed pro-
jection objects.

First a set of objects in the high-dimensional space is se-
lected. For each of these objects �Xp ∈ R

H a spatial repre-
sentation �xp ∈ R

L (1 ≤ p ≤ M with M � N as the number
of fixed projection objects �xp ) has to be found by means of
the standard MDS algorithm described above. Once these ob-
jects have been mapped onto the low-dimensional space, they
are used as fixed objects and are not changed anymore. Fur-
thermore, each of the other objects �Xi ∈ R

H are mapped
onto the low-dimensional space according to the fixed projec-
tion objects. Therefore, the distance between a regular ob-
ject �xi ∈ R

L and a fixed projection object �xp in the low-
dimensional space dip = d (�xi, �xp) has to be approximated to

the distance between the two corresponding objects ( �Xi, �Xp)

in the high-dimensional space Dip = D
(

�Xi, �Xp

)
, which

translates to:

∀i �=p : Dip ≈ dip, 1 ≤ i ≤ N, 1 ≤ p ≤ M.

Again, a cost function EP is defined that aggregates the
weighted squared differences of the distances in the high- and
low-dimensional space:

EP =
N∑

i=1

M∑
p=1

ωip(dip − Dip)
2
.

The projective MDS method is useful if a set of objects has
to be mapped according to an already existing set of mapped
objects without modifying the mapping of the latter.

In the case of high-dimensional hierarchical data, projective
MDS can be used to determine a spatial representation in sev-
eral iterations. First the standard MDS method is applied to
the top-level data. Once this data is mapped, projective MDS
can be applied stepwise to the data of the lower levels using
the data of higher levels as fixed projection objects. The low-
dimensional representation of the already mapped data does
not change anymore when applying projective MDS to the re-
maining levels.

3.2 Hierarchical Rules in Multi-Dimensional Scaling

It is more complex to visualize rule models on lower dimen-
sions than simple data points. The main challenge is the map-
ping of the rules’ antecedences, which are usually hyperrect-
angles in the original high-dimensional feature space. In order
to visualize high-dimensional fuzzy rules by means of MDS,
the center points of a rules’ core-regions are mapped onto a
low-dimensional space, as described in [11, 16]. For hierar-
chical fuzzy rule systems, the center points of the top-level
rules are mapped onto the low-dimensional space using stan-
dard MDS. Subsequently, the rules of the underlying levels
are mapped level by level via the projective MDS with the
parent rule centers as fixed projection points. Finally, the data
points are mapped according to all projected rules, whereas
the neighborhood of rules and data points is approximated by
the proposed MDS. The overlapping relation between rules of
different levels may get lost in the visualization, but is again
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taken into account when rule systems are visually explored by
interactive highlighting, see Sec. 4.2 for an example.

In addition to the rules’ center points, the spread of a fuzzy
rule has to be mapped onto the low-dimensional space in order
to visualize the rules’ sizes, possible overlaps, and the cover-
age according to the data points the rules are based on. In [11],
we visualize the overlap of rules of flat rule systems. Dealing
with hierarchical fuzzy rules, we only focus on the visualiza-
tion of the spread and the number of covered data points of a
rule as well as the rules’ level and not on overlap with other
rules.

The spread is visualized by a sphere around the mapped rule
center with a radius ri = ρ(λωi + (1 − λ)σ2

i ) according to
the variance σ2

i and the number of the points ωi covered by a
rule Ri, with λ as weighting coefficient λ ∈ [0, 1] and ρ(·) as
scaling function. The number of vertices v = 2H of a hyper-
plane grows exponentially with the number of dimensions H
whereas all vertices have the same distance to the center point.
All vertices of a high-dimensional hyperplane are mapped by
MDS, representing vertices of a low-dimensional polygon; all
with the same distance to the polygons center point. With in-
creasing dimensionality, the polygon spanned by the projected
vertices converges to a sphere.

In Fig. 2 (a), two top-level rules are shown, covering data
points of two different classes. The red rule covers data points
of class +, while the blue covers data points of class −.
Fig. 2 (b) illustrates rules of the primary and the secondary
level, which consists of three smaller rules, two rules covering
data points of class + and two of class −. Fig. 2 (c) shows
rules of all levels as well as the data points. It can be seen that
the spheres representing the rules do not necessarily cover all
the data points in the low-dimensional space as they do in the
high-dimensional space. This is because the radius is based on
the number of covered data instances of a rule as well as the
variance of the covered data points in the high-dimensional
space, but is not based on the position of the data points in the
low-dimensional space.

4 Visualization Hierarchical Rules and Data
The following section illustrates the proposed approach on
the well-known iris dataset before looking at a larger dataset,
the vehicle silhouettes data. We compare the classical, non-
hierarchical rule model to the hierarchical structured rules by
visualizing all the rules together with their originating data in-
stances in one coherent picture.

4.1 Iris Dataset

The first example shows a small two-level hierarchy trained
on the iris data, which consists of 150 four-dimensional pat-
terns assigned to three classes. Fig. 3 (a) shows the top-rule
level containing three rules – one for each class, (b) the top
and bottom-rule levels with additional 11 rules (some cover
only a single or a few instances and therefore appear as small
points), and (c) all data points and all rules together. The top-
level rules are projected into the low-dimensional space based
on each center point. The second level is then projected based
on the first rule level. In the last step, data points are pro-
jected according to both hierarchical levels as shown in Fig. 3.
The bottom picture shows rules and data instances of all three
classes, which are almost perfectly separated from each oth-

(a) (b)

(c)

Figure 3: Two-level rule hierarchy trained on iris data:
(a) three top-most rules, (b) additional 11 rules from the
bottom-level, and all data points in (c).

ers by three large rules. Smaller rules in-between are needed
to cover artifacts and details in the data.

4.2 Vehicle Silhouettes Dataset

The vehicle silhouettes dataset consists of 846 samples be-
longing to four car classes – Opel, Saab, bus, and van – repre-
sented in an 18-dimensional feature space. To demonstrate the
usefulness of our proposed method, we trained a three-level
fuzzy rule hierarchy on this data from the European StatLog–
Project [14]. In a first experiment, a classical rule model with
222 rules without hierarchy information is trained on the ve-
hicle data. As can be seen in Fig. 4, exploration is hardly pos-

Figure 4: Classical, flat rule model without hierarchy informa-
tion trained on the vehicle silhouettes dataset showing 222 rule
for four classes.
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(a) (b)

(c) (d)

Figure 5: Stepwise rule hierarchy projection on vehicle data starting from top- to bottom-level (a)-(c), and (d) rules of all levels
and data points.

Figure 6: Exploration by zooming and highlighting (orange square) interesting rules and data points in the vehicle hierarchy.
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sible since overlapping information is only available between
rules of the same single level 1.

The hierarchical rule induction algorithm is applied to gen-
erate a hierarchy of rule models in a second test. The three lev-
els of the fuzzy rule hierarchy contain 55 rules in the top, 40
in the middle, and 174 at the bottom-most level. Fig. 5 shows
each level together with its parent levels starting from (a)
to (c), and (d) rules of all levels and data points. All levels are
subsequently projected into the two-dimensional space always
with respect to their parent level(s), as well as all data points
that are projected relatively to all rule levels. Fig. 6 shows
the surrounded area from Fig. 5 (d) enlarged. Selecting one
rule highlights all overlapping rules in the levels above along
with the data points they cover. All highlighted rules (orange
square) that cover the same set of patterns are connected by
a line to visually identify overlapping rules between different
levels of the hierarchy. The figure shows five connected rules
where a violet rule from a lower level completely overlaps
with a large, green rule of a higher level. This is typically an
indication for outliers and artifacts in the data expressed by
smaller, more specific rules at lower levels generated by the
rule learning algorithm at first place; whereas rules generated
at higher levels of the hierarchy explain more general aspects
of the data and are usually covered by larger rules. This visual
line-up of rules of different levels allows further exploration
by highlighting interesting data instances.

5 Conclusions
Hierarchically structured rules induced by a classical rule
learning algorithm lead to a well-defined hierarchy of rules
where levels further up explain more general aspects and rule
models at lower levels concentrate on artifacts or outliers of
the underlying concept. Combining this information with a
mapping mechanism to visualize both this type of hierarchy
and the data points enables interactive exploration across rule
levels by focusing on overlapping regions. On the other hand,
it highlights data points covered throughout the rule hierarchy.
We demonstrated the explorative power of the proposed pro-
jective multi-dimensional scaling method based on the vehicle
silhouettes dataset, delivering interesting insights into the un-
derlying concept. Our approach is well suited for projecting
other hierarchical structured data and rules driving interactive
explorative data analysis.
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