Rule Visualization based on Multi-Dimensional Scaling
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Abstract— This paper presents an approach to visualizing
and exploring high-dimensional rules in two-dimensional views.
The proposed method uses multi-dimensional scaling to place
the rule centers and subsequently extends the rules’ regions to
depict their overlap. This results not only in a visualization
of the rules’ distribution but also enables the relationship
to their immediate neighbors to be judged. The proposed
technique is illustrated and discussed on a number of well-
known benchmark data sets.

I. INTRODUCTION

Extracting rules from data is not a new area of research.
In [15] and [19], to name just two examples, algorithms were
described that construct hyperrectangles in feature space. The
resulting set of rules encapsulates regions in feature space
that contain patterns of the same class. Other approaches,
which construct fuzzy rules instead of crisp rules, were
presented, for example, in [1], [12], [17] and [18].

What all of these approaches have in common is that
they tend to build very complex rule systems for large
data sets originating from a complicated underlying system.
In addition, high-dimensional feature spaces result in even
more complex rules relying on many attributes and increase
the number of required rules to cover the solution space.
An approach that aims to reduce the number of constraints
on each individual rule was recently presented in [3]. The
generated fuzzy rules only constrain a few of the available
attributes and hence remain readable even in the case of high-
dimensional spaces. However, this algorithm also tends to
produce many rules for large, complicated data sets.

Multi-dimensional scaling methods [13] are widely used to
map high-dimensional data onto lower dimensions. However,
models—especially rule models—are much harder to visual-
ize in lower dimensions. The main challenge is the mapping
of the rules’ antecedences, which are usually not only points
but hyperrectangles in the original higher-dimensional feature
space. One approach [5] that deals with this problem maps
fuzzy points using fuzzy distance measures onto two dimen-
sions using the MDS algorithm. Here, the rules’ coverage is
displayed by a square in two dimensions giving only a limited
feeling for the original rule-spread in higher dimensions.
Another idea visualizes fuzzy points as bands in Parallel
Coordinates [4] for all features, but in the case of highly
overlapping rules, exploration is hardly possible. Therefore,
in order to obtain a useful view it is essential that the spread

of rules is shown independently and in addition to their
location, while the gap between adjacent rules is preserved in
the original space. The method proposed here makes use of
this information, and keeps track of the relationship between
neighboring rules. The resulting two-dimensional view can
then be used for further analysis.

The paper is organized as follows: in the next section we
briefly introduce the used fuzzy rule induction algorithm!.
We subsequently describe the multi-dimensional scaling
method and how it is extended to visualize rule systems.
We go on to illustrate the proposed method using the Iris
data set and show how larger rule sets can be visualized and
explored for a number of other benchmark data sets.

II. Fuzzy RULE INDUCTION

The used fuzzy rule learning algorithm [3] constructs a set
of fuzzy rules from given labeled training data and generates
individual fuzzy rules defined by independent membership
functions in the feature space. The training algorithm usually
only constrains a few attributes, i.e., most support regions
remain unconstrained, leaving the rules interpretable even in
the case of high-dimensional input spaces. The final set of
fuzzy rules can be described as an n-dimensional IF clause as
antecedence and one assigned class in the rule’s conclusion:

Ri : IF z; IS M%,l AN xp IS u;,l THEN class 1

Ryt IF 21 IS pi,, A---A zn IS p,,, THEN class 1

RY . IF @1 ISpf; A- A xn IS puf; THEN class k

Zn IS py, . THEN class c
(D
where R;“ represents rule j for class k. The rule base
contains rules for ¢ classes and r; indicates the number
of rules for class £ (1 < j < rpand 1 < k < o).
The fuzzy sets puf; : IR — [0,1] are defined for every
feature ¢ (1 < ¢ < n), but in cases of unconstrained features
the membership degree is constant 1. The overall degree

Ry.: IF 1 IS pui,.. A---A

INote, however, that any algorithm generating rules from data can be
used as a basis for the visualization method presented here.
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of fulfillment of a specific rule for an input pattern ¥ =
(x1,...,2,) can be computed using the fuzzy set operator
for conjunction, called T-norm (T):

M?(f) =Ti=1,.n {ij(xz)} ) )

The combined degree of membership for all rules of class k
can be calculated using the fuzzy set operator for disjunction,
called S-norm (L):

pF(E) = Ljmt e, {15 (@)} A3)

From these membership values the predicted class kst for
an input pattern Z is derived as:

kbest(f) = arg man:l,...,c {Mk(f)} . (4)

The algorithm uses trapezoidal membership functions, which
can be described with four parameters (a;, b;, ¢;, d;), where
a; and d; define the fuzzy rule’s support-, and b; and c¢; its
core-region for each attribute ¢ of the input dimension. The
core-region is defined as a rectangular area with an activation
of 1, whereby the support-region decreases linearly to its
boundaries with a degree of fulfillment of 0.

The fuzzy rule induction method is based on an iterative
algorithm. During each learning epoch, i.e. presentation of
all training patterns, new fuzzy rules are introduced when
necessary and existing ones are adjusted whenever a conflict
occurs. For each pattern three main steps are executed:

o Cover: If a new training pattern lies inside the support-
region of an already existing fuzzy rule of the correct
class, its core-region is extended to cover the new pat-
tern. In addition, the weight of this rule is incremented.

e Commit: If the new pattern is not yet covered, a
new fuzzy rule belonging to the corresponding class is
created. The new example is assigned to its core-region,
whereas the overall rule’s support-region is initialized
“infinite", that is, the new fuzzy rule is unconstrained
on all features and covers the entire domain.

o Shrink: If a new pattern is incorrectly covered by
an existing fuzzy rule of conflicting class, this fuzzy
rule’s core- and/or support-region is reduced, so that the
conflict with the new pattern is avoided. The underlying
heuristic of this step aims to minimize the loss in
volume.

The algorithm usually terminates after only a few iterations
over the training data. For details see [10].

In the next section, we show how the underlying multi-
dimensional scaling method can be used to map the generated
fuzzy rules’ core regions onto two dimensions.

III. MULTI-DIMENSIONAL SCALING

Multi-dimensional scaling methods [7] are widely used
to map objects of high-dimensional spaces to lower dimen-
sions, usually onto two or three dimensions. These methods
try to preserve the pairwise distances between objects by
minimizing an appropriate error function. The dimension
reduction enables visualizations of high-dimensional points
in lower-dimensional space. One technique to compute such a

mapping is known as the Sammon algorithm [16] which finds
a spatial representation Z; € IR” in the lower-dimensional
space (usually L = 2) for each object X; € RY of the high-
dimensional space (1 < ¢ < N). The distances between
two objects X;, X; in the high- (D;; = D(X;, X;)) and
low-dimensional (d;; = d(¥;, Z;)) space have to be approx-
imated, that is:

Vigj : Dij = dij, 1 <4, < N 3)

where the used distances are usually measured by the Eu-
clidean distance:
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To define a global cost function, the differences of the
distance values need to be aggregated:

N N
E=>"Y wijdi — Dij)*, @)
i=1 j>i
where the factors w;; are introduced to weight the distances
individually and to normalize the stress function F in order
to be independent from the absolute values D;;. Sammon
suggests using an intermediate normalization [16]:

1 1
N N
Ei’:l Zj/>i/ D Dy

The algorithm then applies a steepest gradient method to
iteratively minimize this stress function E for each point Z;
at each step. The position for each point Z; in the lower-
dimensional space is updated as follows:
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using the steepest gradient method to derive:
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The update vector A is computed based on the step length
7 (decreasing learning rate usually between 0.3 and 0.4)
and is repeated for a given number of cycles. The algorithm
usually converges after a few epochs to a (local) cost function
minimum.

A. Mapping the Rule Centers

To map high-dimensional rules of the form given in (1),
the center point Z of the core-region’s interval [b,c] is
computed as Z = 1/2- (b+ &). The set of all centers Z; is
then mapped onto two dimensions using the MDS method
described above. For each high-dimensional point, a two-
dimensional point is initialized either randomly, or by its first
two principal components. The algorithm then re-positions
the points in two dimensions to approximate the distances in
the original space.
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Fig. 1. Example with three rules, A, B, and C, mapped onto two
dimensions. The figure shows the Delaunay triangulation between the rules’
center points and the core coverage for rule A towards B and C'. The points
Pa,B and pa ¢, as well as a number of virtual core boundary points are
connected to sketch the rules’ coverage areas, as well as overlap between
rule B and C.

B. Visualizing the Rule Spreads

After the rule center points are positioned onto the lower-
dimensional space, in addition, the rules’ spread is mapped
to provide better insight into the rule system by visualizing
rule distributions and overlapping rule areas. For this, the
axes parallel areas of coverage, i.e. hyperrectangles in high-
dimensional feature space need to be placed onto lower
dimensions. Note that we can not expect these mappings to
also generate rectangles in the low-dimensional space. Based
on the original rule coverage, the rule spread between the
center of gravity and the border points is computed for all
rules in the original space. These distances are then used to
display an approximation of the rules’ coverage in the target
space, only considering rules in the immediate neighborhood.
To find all direct neighbors the Delaunay triangulation [8]
(geometric dual of the Voronoi diagram) is applied. In this
graph each rule has a well-defined number of (at least two)
neighbors, where each triplet of neighboring points spans a
triangle in the two-dimensional space.

Figure 1 shows an example with three neighboring rules,
A, B, and C, spanning such a triangle. Starting from rule A
towards B and C, the spreads s g and s4 ¢ are computed
based on the Euclidean distance between the center and
core boundary point in the original space. These values
can be determined by the fraction between the distances
in the higher- and lower-dimensional space. All boundary
points compose the outer envelope and the resulting polygon
illustrates the rule’s spread.

In the special case of rule center points on the convex
hull of the rule graph, the partial polygon is also mirrored
to the opposite side of the hull assuming the same spread of
the core regions towards all dimensions. This is necessary to
equally model coverages to rules in the inner part of the hull
and convey a better impression of the actual rule coverage.

More specifically, given two rules R4 and Rp, and their
corresponding center points Za and Zp, and points on the
core boundary P, and Pg in the high-dimensional space,

the spread s, p is computed as:

sap=d(Za,28) - D(Za, Pa)/D(Za, Zp) (12)

using the distance between the center points Z’4 and Z’5 in the
lower-dimensional space, and the fraction of the core spread
in the original space normalized by the distance between
the high-dimensional center points. The new point P4, g on
the core boundary of the lower-dimensional space can be
determined as the offset of Z'4 towards Z5:

Pap =7+ (2B —Za)sa B. (13)

To compute all these boundary points between neighboring
rules, three cases of rule arrangements need to be considered:
(1) A rule overlaps with another rule if all core regions
overlap. Figure 2 shows two rules that overlap in all
dimensions. Here, the distance to the core boundary
point from the center of the rule under consideration
is used to determine the overlapping value s.
(2)  Rules which do not overlap in any dimension are
non-overlapping, see Figure 2 center. The overlap-
ping spread is computed as in (1).
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Fig. 2. Shows the three cases of overlapping (top), non-overlapping (cen-
ter), and obstructing rules (bottom).
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Fig. 3. Two unbalanced two-dimensional (X1, X2) rules only overlap in
one dimension. The spread s is used to map rule R4 towards Rp, but f
would be the better intuitive approximation.

(3)  Obstructing rules may overlap either in one or
more dimensions, but not in all dimensions. The
spread s for obstructing rules is computed based
on all non-overlapping dimensions, see Figure 2.
All overlapping dimensions are ignored in this
case and the distance functions in equation (12)
need to be modified using only the non-overlapping
dimensions.

This heuristic approach has one short-coming: in cases
where the overlap is marginal in one dimension, this dimen-
sion is not taken into account when approximating the spread
value. Figure 3 illustrates this problem, where f would be
the better approximation, but s is computed as spread value
due to the small overlap in the X; dimension.

C. Rule Visualization: An Example

Before showing results on real benchmarks we demon-
strate the proposed visualization scheme on the well-known
Iris data set [9]. The data set contains 3 classes of 50
instances each, where each class refers to a type of iris plant:
Iris Setosa (red), Iris Versicolor (green), and Iris Virginica
(blue). The four dimensions consist of measurements for
length and width of petal and sepal for each instance. One
class (Iris Setosa) is linearly separable from the other two
along axes-parallel lines in two of those dimensions.

The mapping of the rules’ center points (with 14 rules
generated by the fuzzy rule algorithm) is shown in Figure 4.
In addition, for each rule the direct neighbors as determined
by the Delaunay triangulation are connected by lines. It can
already be seen that the red class is covered by only one
rule whose center is relatively far away from all others.
As expected, for the other two classes a higher number of
rules was introduced. Still, this picture does not reveal any
information about possible overlaps between rules or even a
hint about the rules’ spread.

To gain more insight into the rule model, it is desirable to
see how each rule’s spread can be displayed in relationship to
their direct neighbors. Figure 5 illustrates how the proposed
method displays this property for the rules generated for
the Iris data. Here, we clearly see covered areas and rule
overlapping. Also the red class of Iris Setosa is separated

Fig. 4. Visualization of the rule set (center points only) generated for
the Iris data. The Delaunay triangulation indicates direct neighbors for each
rule.

Fig. 5.
overlaps.

Visualization of the Iris rule set, including its spread and possible

relatively far apart from the other two. It becomes clearer
from this view how the blue and green classes are modeled
using rules that partially overlap and often only cover very
small areas. The underlying algorithm had to commit highly
specialized rules for these regions to model areas where
patterns of these two classes are very close to each other.
Obviously, such an easy example is only suitable to



Fig. 6. Visualization of the rule set (center points only) generated on the
Ocean Satellite Image data.

Fig. 7. Visualization of the rule set generated on the Ocean Satellite Image
data, including its spread and possible overlaps.

demonstrate the methodology’s operation. In the following
section we show how this method works on two larger
benchmark data sets.

IV. EXPERIMENTAL RESULTS ON OTHER DATA

Experiments were conducted on two benchmark data sets,
namely Ocean Satellite Images [20], [22] and the Shuttle
Control Database from the StatLog—Project [14].

A. Ocean Satellite Images

The first data set stems from satellite images from the
Coastal Zone Color Scanner (CZCS) and are of the West
Florida shelf. The CZCS was a scanning radiometer aboard
the Nimbus-7 satellite, which viewed the ocean in six co-
registered spectral bands 443, 520, 550, 670, 750 nm, and a
thermal IR band. It operated from 1979-1986.

The features used were the 443, 520, 550, 670 nm
bands; the pigment concentration value was derived from
the lowest 3 bands. Atmospheric correction was applied
to each image [11] before the features were extracted. A
fast fuzzy clustering algorithm, mrFCM [6], was applied to
obtain 12 clusters per image. There were five regions of
interest in each image. These consist of red tide, green river,
other phytoplankton blooms, case I (deep) water and case
IT (shallow) water. Twenty-five images were ground-truthed
by oceanographers [21] and eighteen of these were used for
training. The eighteen training images were clustered into 12
classes. Each class or cluster was labeled by the ground-truth
image as its majority class.

The rules’ center vectors generated from the training
images are depicted in Figure 6. These 44 rules together
with their core areas are shown in Figure 7. In this picture
the low distortion of red and yellow rules becomes visible,
e. g. these classes almost form one coherent cluster. All other
classes are distributed across the two-dimensional domain.

The mapping of the rules gives more detailed insight into
the structure of the rule system by showing larger inter-
related areas. For instance, it is clearly visible that a number
of rules of class yellow cover bigger areas of the space.
Furthermore, a number of smaller rules, almost randomly
distributed, only cover one or a small number of instances,
which can be an indication for outliers or artifacts in the
data. The larger areas of interest reflect the distribution of
the input patterns. These rules can easily be identified and
used for further investigation.

B. Shuttle Control Database

This data originated from NASA and concerns the position
of radiators within the Space Shuttle [14]. The data was
divided into a training set with 43,500 and a test set with
14,500 examples. The shuttle data has 9 attributes which
are assigned to three classes’. This data set can be perfectly
described with only 15 rules, see Figures 8 and 9.

In this example the relationships between rules and their
organization can be seen clearly. For example, rules for class
blue are split due to intermediate instances of conflicting
classes. Other rules cover bigger areas and are separated
from the remaining rules. A number of smaller rules, red
and green, can be found in the middle of the plot, which
again are caused by areas with low evidence in the data, but
which may, for some application, be exactly what the user
is interested in.

2The remaining classes of the original data set occur less than 1% and
were left out for these experiments.



Fig. 8. Visualization of the rule set (center points only) generated on the
Shuttle Control Database.

Fig. 9.  Visualization of the rule set generated on the Shuttle Control
Database, including its spread and possible overlaps.

V. CONCLUSIONS

In this paper a methodology was presented to visualize
a set of rules built in a high-dimensional feature space.
The mapping onto the two-dimensional space maintains the
pairwise distances between the rules as much as possible and
additionally displays an approximation of the rules’ spread
and overlap in the original feature space. The presented
methodology not only provides a way to visualize the model

but also shows potential for user interaction with the model
and hence offers a promising addition to intelligent data
analysis [2] in the area of model exploration.
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