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Abstract

We study the problem of finding frequent items in a continuous stream

of itemsets. A new frequency measure is introduced, based on a flexible

window length. For a given item, its current frequency in the stream is

defined as the maximal frequency over all windows from any point in the

past until the current state. We study the properties of the new measure,

and propose an incremental algorithm that allows to produce the current

frequency of an item immediately at any time. It is shown experimentally

that the memory requirements of the algorithm are extremely small for

many different realistic data distributions.

1 Introduction

Mining frequent items over a stream of itemsets presents interesting new chal-
lenges over traditional mining in static databases. It is assumed that the stream
can be scanned only once, and hence if an item is passed, it can not be revisited,
unless it is stored in main memory. Storing large parts of the stream, however,
is not possible because the amount of data passing by is typically huge.

Previous research on mining frequent item(set)s over data streams compute
frequencies within one or more windows of a fixed size or with a decay factor.
In many applications, however, it is not possible to fix a window length or a
decay factor that is most appropriate for every item at every timepoint in an
evolving stream. For example, consider a large retail chain of which sales can
be considered as a stream. Then, in order to find frequent items to do market
basket analysis, it is very difficult to choose in which period of the collected data
you are particularly interested. For many products, the amount sold depends
highly on the period of the year. E.g., in summer time, sales of ice cream increase
and during the world cup, sales of beer increase. Such seasonal behavior of a
specific item can only be discovered when choosing the correct window size for
that item. This size, however, can hide a similar behavior of other items in
another window. Therefore, we propose a new frequency measure that, for each
item, chooses the window in which it is best represented. More specifically,
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we define the current frequency of an item as its maximum frequency over all
possible windows from the past until the current state. Obviously, the most
recent item in the stream always has a frequency of 100% in its window of size
1. This disadvantage can be resolved by only considering windows larger than
a given minimum window length. When the stream evolves, the length of the
window containing the highest frequency for a given item can grow and shrink
continuously. We show some important properties of this behavior.

In our approach, on every timestamp, a new itemset arrives in the stream.
We present an incremental algorithm that maintains a small summary of rele-
vant information of the history of the stream that allows to produce the current
frequency of a specific item in the stream immediately at any time. That is,
when a new itemset arrives, the summary is updated, and when at a certain
point in time, the current frequency of an item is required, the result can be
obtained instantly from the summary. The structure of the summary is based
on some critical observations about the windows with the maximal frequency.
In short, many points in the stream can never become the starting point of a
maximal window, no matter what the continuation of the stream will be. The
summary will thus consist of some statistics about the few points in the stream
that are still candidate starting points of a maximal window. These important
points in the stream will be called the borders.

Critical for the usefulness of the technique are the memory requirements of
the summary that needs to be maintained in memory. We show experimentally
that, even though in worst case the summary depends on the length of the
stream, for realistic data distributions its size is extremely small. Obviously, this
property is highly desirable as it allows for an efficient and effective computation
of our new measure. Also note that our approach allows exact information as
compared to many approximations considered in other works.

The organization of the paper is as follows. In Section 2, we start with
a discussion on related work in stream mining for frequent item(set)s. Then,
in Section 3, our new measure is defined and the central problem statement
is formally introduced. Section 4 gives the theoretical results and the main
theorem, on which the incremental algorithm in Section 5 is based. Section 6
contains experiments that show that the memory requirements for the algorithm
are extremely small for many real-life data distributions. Section 7 concludes.

2 Related Work

In the next sections we will discuss a new frequency measure for finding frequent
items in a stream. This frequency measure is quite different from the ones
typically found in the literature on stream mining.

In the sliding window model, the importance of the data contained in the
sliding window of fixed length is emphasized and the goal is to discover recent
usage trends [1, 4, 7, 9, 12]. Thus, in this model the focus is on the most recent
items in a window of fixed length. The size of the window is fixed at the start
of the analysis and the content of the window changes when the stream (and
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time) continues. Two different points of view are considered: the count-based
view, in which the number of transactions in the window is fixed despite the
generating speed of the transactions, and the time-based windows, in which the
number of time units in the window is fixed, causing the number of transactions
to be different. When a transaction leaves the sliding window, it is eliminated
and does not contribute to the frequency measure anymore.

In the time-fading model, the sensitivity of time is emphasized in the sense
that recent transactions get a higher weight as compared to earlier transac-
tions. This is achieved by introducing a decay mechanism [10]. In addition to
this mechanism, a tilted-time window can be introduced [5, 6]. This technique
reflects the alteration of the time scales of the windows as time goes by. Recent
data is mined at a fine granularity while long-term data is mined at a coarse
granularity.

In the landmark model, a particular time period is fixed, from the landmark
designating the start of the system untill the current time [8, 9, 15]. The analysis
of the stream is performed for only the part of the stream between the landmark
and the current time instance. A major disadvantage of this method is that the
size of the window varies; it starts with size zero and grows until the next
occurrence of the landmark, at which point it is reset to zero.

3 A New Frequency Measure in Stream Mining

In this section, we define our new frequency measure for streams and we formally
introduce the problem. Throughout the paper, we assume all items occurring
in the stream come from a finite set of items I.

3.1 Streams and Max-Frequency

In general, a stream 〈I1 I2 . . . In〉 is a sequence of itemsets, denoted S, where
n is the length of the stream, denoted |S|. The stream of length 3, having on
the first timestamp the singleton {a}, on the second timestamp the singleton
{b} and on the third timestamp the singleton {c}, is denoted 〈a b c〉, and the
stream of length 3, with on the first timestamp the set {a, b}, on the second
timestamp the singleton {c} and on the third timestamp the set {a, d, f}, is
denoted 〈ab c adf〉.

The number of sets in a stream S that contain item i will be denoted
count(i, S). For example, count(a, 〈a b c〉) is 1, since a occurs in exactly one
set. For the other stream we have count(a, 〈ab c adf〉) = 2.

The frequency of i in S, is defined as

freq(i, S) :=
count(i, S)

|S|
.

For example, freq(a, 〈a b c〉) = 1/3 and freq(a, 〈ab c adf〉) = 2/3.
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Let S1 be 〈I1
1 . . . I1

n1
〉, S2 is 〈I2

1 . . . I2
n2
〉, . . . and Sm is 〈Im

1 . . . Im
nm

〉. The
concatenation of S1, . . . , Sm, denoted S1 · S2 · . . . · Sm, is

〈 I1
1 . . . I1

n1
I2
1 . . . I2

n2
. . . Im

1 . . . Im
nm

〉 .

Let S = 〈I1 I2 . . . In〉. Then, S[s, t] denotes the sub-stream or window
〈Is Is+1 . . . It〉. The sub-stream of S consisting of the last k itemsets of S,
denoted last(k, S), is

last(k, S) := S
[
|S| − k + 1, |S|

]
.

We are now ready to define our new frequency measure:

Definition 1 The max-frequency mfreq(i, S) of an item i in a stream S is de-
fined as the maximum of the frequencies of i over all windows extending from
the end of the stream; that is:

mfreq(i, S) := max
k=1...|S|

(freq(i, last(k, S))) .

The longest window in which the max-frequency is reached, is called the
maximal window for i in S, and its starting point is denoted maxwin(i, S). That
is, maxwin(i, S) is the smallest index such that

mfreq(i, S) = freq(i, S
[
maxwin(i, S), |S|

]
) .

The measure mfreq(i, S) is used as a new frequency measure for stream
mining. For a given item, its current frequency in the stream is defined as
the maximal frequency over all evolving windows from a point in the stream
until the end. Note that, by definition, the max-frequency of an item a in a
stream that ends with an itemset containing a, is always 100%, independently
of the overall frequency of a. Hence, even in a stream where a is extremely
rare, at some points, the max-frequency will be maximal! This disadvantage
of max-frequency, however, can easily be resolved by setting a minimal length
for all windows. We did not include this solution in the paper, as it is not
fundamental for the developed theory, and it would unnecessarily complicate
our explanations.

Example 2 We focus on target item a.

mfreq(a, 〈a b a a a b〉) = max
k=1...6

(freq(a, last(k, 〈a b a a a b〉)))

= max

(
0

1
,
1

2
,
2

3
,
3

4
,
3

5
,
4

6

)

=
3

4
.

mfreq(a, 〈b c d a b c d a〉) = max

(
1

1
, · · ·

)

= 1 .

mfreq(a, 〈x a a x a a x〉) = max

(
0

1
,
1

2
,
2

3
,
2

4
,
3

5
,
4

6
,
4

7

)

=
2

3
.
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3.2 Problem Statement

Notice that a stream is defined as a statical object. In reality, however, a stream
is an evolving object. At every timepoint, a new itemset will be inserted at the
end of the stream. As such, evolving streams are essentially unbounded, and
when processing them, it is to be assumed that only a small part can be kept
in memory.

Hence, an evolving stream S is an unbounded sequence. St will denote the
stream S up to timestamp t; that is, the part of the stream that already passed
at timestamp t. In the examples, the streams will grow from left to right. This
means that the older itemsets are on the left of the stream, and the newest, or
more recent itemsets on the righthand side. For simplicity we assume that the
first itemset arrived at timestamp 1, and since then, at every timestamp a new
itemset was inserted.

The problem we study in this article is the following: For an evolving stream
S and a fixed item a, maintain a small summary of the stream in time, such that,
at any timepoint t, mfreq(a, St) can be produced instantly from the summary.

More formally, we introduce a summary of a stream summary(S), an update
procedure Update, and a procedure Get mfreq , such that, if on timestamp t +1
an itemset containing item i is added to the stream, Update(summary(St), i)
equals summary(St·〈i〉) equals summary(St+1), and Get mfreq(summary(St+1))
equals mfreq(a, St+1). Because Update has to be executed every time a new
itemset arrives, it has to be very efficient, in order to be finished before the next
itemset arrives. Similarly, because the stream continuously grows, the summary
must be independent of the number of itemsets seen so far, or, at least grow
very slowly as the stream evolves. The method we develop will indeed meet
these criteria, as the experiments will show.

stream time mfreq(a, St)
〈 | a 〉 1 max(1

1
) = 1

〈 | a a 〉 2 max(1

1
, 2

2
) = 2

2
= 1

〈 | a a a 〉 3 max(1

1
, 2

2
, 3

3
) = 3

3
= 1

〈 | a a a b 〉 4 max(0

1
, 1

2
, 2

3
, 3

4
) = 3

4

〈 | a a a b b 〉 5 max(0

1
, 0

2
, 1

3
, 2

4
, 3

5
) = 3

5

〈 | a a a b b b 〉 6 max(0

1
, 0

2
, 0

3
, 1

4
, 2

5
, 3

6
) = 3

6

〈 a a a b b b | a 〉 7 max(1

1
, 1

2
, 1

3
, 1

4
, 2

5
, 3

6
, 4

7
) = 1

〈 a a a b b b | a a 〉 8 max(1

1
, 2

2
, 2

3
, 2

4
, 2

5
, 3

6
, 4

7
, 5

8
) = 2

2

· · · · · · · · ·

Figure 1: Max-frequency of a stream at every timepoint.

In Fig. 1, the max-frequency has been given for an example evolving stream.
The starting point maxwin(a, S) of each maximal window is marked with |.
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3.3 Minimal Frequency

Not only the maximal frequency of an item can be of interest for an analyst, also
the minimal frequency can sometimes reveal interesting knowledge. Inspired by
the max-frequency measure, we can also define the min-frequency of item a as
the minimum of the frequency of a over all windows extending from the end of
the stream.

Notice, however, that maintaining and finding the minimal frequency does
not pose a new challenge over the maximal frequency. Indeed, consider a, the
negation of a, as if it is a new item. Then it is easy to see that at any time-
point the maximal frequency of a and the minimal frequency of a add up to 1.
Therefore, in order to find the minimal frequency of a, we can in fact monitor
the imaginary item a, and when we need the minimal frequency of a, it is easily
found as 1−mfreq(a, S).

4 Properties of Max-Frequency

In this section we show some properties of max-frequency that are crucial for the
incremental algorithm that maintains the summary of the stream. Obviously,
checking all possible windows to find the maximal one is infeasible.Fortunately,
not every point in the stream needs to be checked. The theoretical results from
this section show exactly which points need to be inspected. These points will
be called the borders.The summary of the stream will consist exactly of the
recording of these borders, and the frequency of the target item up to the most
recent timepoint.

Theorem 1 Consider a stream S := S1 · B1 · B2 · S2. If B2 · S2 is the maximal
window for a in S, then freq(a, B1) < freq(a, B2)

Proof If B2 · S2 is the maximal window for a in S, then this implies that the
frequency of a in B2 ·S2 is strictly higher than in B1 ·B2 ·S2 and at least as high as
in S2 (remember that in the case of multiple windows with maximal frequency,
the largest one is selected). Let now l1 = |B1|, l2 = |B2|, and l3 = |S2|, and let
a1 = count(a, B1), a2 = count(a, B2), and a3 = count(a, S2), as depicted in:

〈
S1

︷ ︸︸ ︷
B1

︷ ︸︸ ︷

a1

←−−−−−−−−→

B2

︷ ︸︸ ︷

a2

←−−−−−−−−→

S2

︷ ︸︸ ︷

a3

←−−−−−−−−→

〉

l1 l2 l3

.

Then, the conditions on the frequency translate into:

a2 + a3

l2 + l3
>

a1 + a2 + a3

l1 + l2 + l3
and

a2 + a3

l2 + l3
≥

a3

l3
.

From these conditions, it can be derived that

freq(a, B1) =
a1

l1
<

a2

l2
= freq(a, B2). 2
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Based on this theorem, it is possible to give an exact characterization of
which points in St can potentially become the starting point of the maximal
window in the future, after new items have been added. First, we formally
define the important notion of a border. Intuitively, a border is a point in the
stream that can still become the starting point of the maximal window.

Definition 3 The position q in S is called a border for a in S if there exists
another stream B such that q = maxwin(a, S · B).

Corollary 2 Let S be a stream, and let q = 1. Position q is a border for item
a if and only if the first itemset in the stream contains the target item a.

Let S be a stream, and let 2 ≤ q ≤ |S|. Position q is a border for item a in
S if and only if for all indices j, k with 1 ≤ j < q and q ≤ k ≤ |S|, it holds that
freq(a, S[j, q − 1]) < freq(a, S[q, k]).

Proof Only if: Suppose that there exist indices j and k, and a stream B such
that freq(a, S[j, q−1]) ≥ freq(a, S[q, k]), and q = maxwin(a, S·B). This situation
is in contradiction with Theorem 1: split the stream S ·B as (S[1, j−1]) ·(S[j, q−
1])·(S[q, k])·(S[k+1, |S|]·B). In this stream, (S[q, |S|])·B is the maximal window,
while freq(a, S[j, q − 1]) ≥ freq(a, S[q, k]).

If: We need to show that there exists a continuation S·S′ of stream S in which
q is the starting point of the maximal window. We consider two cases: either q
is the rightmost border in S, or not. If q is the rightmost border, then q is the
maximal border in S, because for any other border p < q, freq(a, S[p, q − 1]) <
freq(a, S[q, |S|]) which implies freq(a, S[p, |S|]) < freq(a, S[q, |S|]).

In the other case, let q′ be the leftmost border in S that is on the right of
q. That is, q′ > q is a border, and there is no other border r with q′ > r > q.
We are now going to construct a stream S

′ such that, if we append S
′ to S, the

frequency of a from q until the end of the extended stream becomes the same
as the frequency of a in the window from q to q′ − 1:

freq(a, (S · S′)[q, |S · S′|]) = freq(a, S[q, q′ − 1]) .

Let y be the length of the extension S
′ we are going to construct, and let x be

the number of occurrences of the target item a. The condition thus becomes:

freq(a, (S · S′)[q, |S · S′|]) =
count(a, S[q′, |S|]) + x

|S| − q′ + 1 + y
= freq(a, S[q, q′ − 1]) .

Notice that for any solution x, y of the above equality, always x ≤ y, because

freq(a, S[q, q′ − 1]) < freq(a, S[q′, |S|]) =
count(a, S[q′, |S|])

|S| − q′ + 1
,

since q′ is a border, and thus every block before q′ must have frequency lower
than any block after q′ (according to the only if part which is already proven
above).
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S
′ is now the following stream:

〈

x×
︷ ︸︸ ︷
a a · · · a

y−x×
︷ ︸︸ ︷

∅ ∅ · · · ∅〉 .

All what is left to show is that q is, indeed, the maximal border in S ·
S
′. Obviously, because all target letters in S

′ occur in the beginning of the
stream, the maximal frequency of a in S

′ is x/y, which is always smaller than
freq(a, (S · S′)[q, |S · S′|]). This relation can be seen as follows: (S · S′)[q, |S · S′|]
can be split into three parts: S[q, q′ − 1], which has a frequency of a equal to
that of the whole, S[q′, |S|], which has a frequency of a strictly larger than of
the first part (q′ is a border in S, the first part a before-block, and the second
part an after-block of q′ in S), and the third part S

′ that consequently needs to
have a frequency of a lower than that of the whole.

Furthermore, for any border q′′ after q in S,

freq(a, (S · S′)[q, q′′ − 1]) ≥ freq(a, (S · S′)[q, q′ − 1]) = freq(a, (S · S′)[q, |S · S′|]) ,

Hence,
freq(a, (S · S′)[q, q′′ − 1]) ≥ freq(a, (S · S′)[q′′, |S · S′|]) ,

and thus, there is a before-block for q′′ that has a larger frequency of a’s than
an after-block. Therefore, q′′ cannot be a border. Furthermore, for all borders
p before q in S,

freq(a, S[p, q − 1]) < freq(a, S[q, q′ − 1]) = freq(a, S[q, |S · S′|]) ,

because S[p, q − 1] is a before-block and S[q, q′ − 1] an after block of q in S.
Therefore, S[q, |S · S′|] is the maximal window for a in S · S′. 2

Example 4 Assume we have the following stream S27:

4/9 4/10 2/3 1/2

〈 a a a b b b a b b a b a b a b a b b b b a a b a b b a 〉

In the stream, two positions have been marked with |. Both these points do not
meet the criteria given in Corollary 2 to be a border. Indeed, for both positions,
a block before and after it is indicated such that the frequency in the before-block
is higher than in the after-block.
In this stream, the only positions that meet the requirement are indicated by
vertical bars: 〈|a a a b b b a b b a b a b a b a b b b b |a a b a b b |a〉.
Consider now the second border (at position 21). The frequency of a between
this border and the next border (position 27) is 0.5. According to the proof of
Corollary 2, we can compute a continuation of the stream such that position 21
becomes the maximal border as follows: first we have to find integers x and y
such that

0.5 =
count(a, S[27, |S27|]) + x

|S27| − 27 + 1 + y
=

1 + x

1 + y
.
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This condition is satisfied with x = 0 and y = 1. This means that we need to
add a stream of length 1 starting with 0 times the target; that is, e.g., 〈b〉. Note
that this extension of the stream is constructed in such a way that the frequency
of a from position 21 until the end of the stream becomes equal to the frequency
of a in the block between the border at position 21 and the next border at position
27. Therefore, position 21 is indeed a border in S27 · 〈b〉.

The following simple facts have an important role in the algorithm that is
developed in the next section.

Corollary 3 A border is always located at the timestamp of an itemset that
contains the target item. If p is not a border in S, then it can never be a border
in any extension S · B.

Proof Let p be a border. Suppose there is no target item at position p. Then
p does not satisfy the condition of Corollary 2, because freq(a, S[p, p]) = 0 ≤
freq(a, S[p− 1, p− 1]).

By definition, a position p is a border if there exists an extension of the
stream such that p is the starting position of the maximal window in this ex-
tension. Hence, if p is not a border in S, then neither it is in S · S′, as every
extension of S · S′ is also an extension of S. 2

5 Algorithm

Based on the theorems of Section 4, we now present an incremental algorithm
to maintain a summary.

5.1 The Summary

The summary for an item a in the stream St is the array that contains a pair
(p, x/y) for every border at position p, with x the number of occurrences of a
since p, i.e., count(a, St[p, t]), and y the length of the block from p until the end
of the stream St, i.e., t − p + 1. The output of the algorithm in the case of r
borders is written as an array of the form [(p1, x1/y1), · · · , (pr, xr/yr)], visualized
by

Tt(a) =
p1 · · · pr

x1/y1 · · · xr/yr
.

This array is in fact summary(St) for item a, and is denoted by Tt(a). If
the target item is clear from the context, we use the abbreviation Tt. In this
array, the border positions are ordered from old to most recent, reflecting in
p1 < · · · < pr. The corresponding frequencies must follow the same ordering
x1/y1 < · · · < xr/yr. Indeed, consider two consecutive borders pi and pi+1.
Suppose for the sake of contradiction, that xi/yi ≥ xi+1/yi+1. From this, it
follows that

freq(a, S[pi, pi+1 − 1]) =
xi − xi+1

yi − yi+1

≥
xi

yi

= freq(a, S[pi+1, |S|]) .
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According to Theorem 1 this implies that pi+1 cannot be a border because the
frequency of a in a before-block is at least the frequency of a in an after-block for
pi+1. Notice that this implies that the current frequency can always be obtained
immediately from the summary; the most recent entry in the summary is always
the largest and thus holds the current max-frequency.

In every next step, the algorithm adjusts the stored values in the array based
on the newly entered itemset in the stream. Hence, at every step, we need to
test for every border of St if it is still a border in St+1. Thus, we need to check
if the frequency in all before-blocks is still smaller than the frequency in all
after-blocks. However, adding a new itemset to the stream does not introduce a
new before-block, and only one after-block! Thereofore, only one test has to be
performed for every border of St: the before-block with the highest frequency
of a has to be compared to the new after-block. The frequency of the new
after-block for border pi can easily be obtained from the pair (pi, xi/yi) in the
summary of St: if the new itemset is a non-target itemset (an itemset that does
not contain the target), the frequency of a in the new after-block is xi/(yi + 1).
Notice that, as the before-block never changes when a new itemset enters the
stream, and the insertion of the target itemset (a set that contains the target
item a)only results in an increased frequency in the new after-block, the addition
of a target itemset will never result in the removal of borders.

Based on the observation that in any summary the borders must be in order
w.r.t. the frequency of a, it is not too hard to see that the before-block with the
maximal frequency is exactly the block St[pi−1, pi−1]. Using a similar reasoning
as above, it follows that pi is still a border for St+1 if and only if the updated
frequency xi/(yi + 1) is still larger than the updated frequency xi−1/(yi + 1) of
pi−1. To summarize, we have the following properties:

• The frequencies in the summary are always increasing.

• When a target itemset is added to the stream, all borders remain borders.
The frequencies of the borders can be updated by incrementing all nomina-
tors and denominators by 1. A new entry with the current timestamp and
frequency 1/1 can be added, unless the last entry also has 100% frequency.

• If a non-target itemset enters the stream, the frequencies of the borders
can be updated by adding 1 to the denominators of the frequencies. All
former borders for which, after the update, the frequency is no longer
larger than in the previous entry, are no longer a border.

5.2 The Algorithm

Before the first target itemset enters the stream, the array will remain empty.
The pseudo-code of the algorithm to create Tt+1, based on Tt and the itemset
I that enters the stream at time t + 1 is given in Algorithm 1. In short, when
a new itemset I enters the stream, the frequencies are updated by increasing
the nominators if I contains the target item, and always increasing the denom-
inators. If the itemset I contains the target item, a new border will be added
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Algorithm 1 Update(Tt, I) for target item a on time t + 1

Require: Tt = summary(St) = [(p1, x1/y1), . . . , (pr, xr/yr)]
Ensure: Tt+1 = summary(St+1) = summary(St · 〈i〉)

1: Set Tt+1 := [ ]
2: if (Tt is empty) then

3: if (target item a ∈ I) then

4: Tt+1 := [(t + 1, 1/1)]
5: else

6: if (target item a ∈ I) then

7: for 1 ≤ j ≤ r do

8: Tt+1 := Tt+1 +
(
pj , (xj + 1)/(yj + 1)

)

9: if xr 6= yr then

10: Tt+1 := Tt+1 +
(
t + 1, 1/1

)

11: else

12: high := 0
13: for all j := 1 . . . r do

14: if (xj)/(yj + 1) > high then

15: Tt+1 := Tt+1 +
(
pj , (xj)/(yj + 1)

)

16: high := (xj)/(yj + 1)

only if the frequency of the last block in Tt was not equal to 1. Furthermore,
we have to take into account that some of the borders of St might no longer be
borders in St+1. This can only happen if the itemset that enters the stream is
a non-target itemset (does not contain the target item), and is tested in lines
12-16: the frequencies have to increase for increasing positions of the borders.

An execution of the algorithm is explained in detail for the following stream
of length 27 〈b a a a b a a b a b b a a a a b a〉 and target item a. For each
timestamp, the output of the algorithm is given in Figure 2.

In this example, some interesting things happen. First, the stream starts
with non-target itemset {b}. Therefore, Update(T0, {b}) = Update([ ], {b}) on
timestamp 1 remains empty, i.e., T1 = [ ]. The algorithm in fact really starts
at timestamp 2. At this moment, Update([ ], {a}) results in T2 = [(2, 1/1)],
corresponding to the stream 〈b |a〉 with a border at position 2. On timestamp
8, another interesting fact happens. T7 = [(2, 5/6), (6, (2/2))], corresponding
with the stream 〈b |a a a b |a a〉. Update(T7, {b}) will yield T8 = [(2, 5/7)],
and not [(2, 5/7), (6, 2/3)], because the frequency decreases from the border at
position 2 to the border at position 6, and hence, we can conclude that position
6 is no longer a border. This is reflected in 〈b |a a a b a a b〉.

6 Experiments

From the description of the algorithm it is clear that the update procedure is very
efficient, given the summaries remain small. Producing the current frequency
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Figure 2: Evolution of the summary for the following stream of length 17:
〈b a a a b a b b a a a a b a〉.

of the target item is obviously very efficient, as it amounts to a simple lookup
in the most recent entry. Hence, the complete approach will be feasible if and
only if the summaries remain small. Therefore, for different streams, we have
recorded the size of the summary. The results are reported in Figure 3.

The streams that we consider are over the itemsets that contain items a and
b, and have length 107. After every 10 000 itemsets, the size of the summary
for the items a and b is reported. The streams are randomly generated using
different distributions. The probability of having an itemset that contains item a
in the stream is given by the line P (a). Thus, for the purely random distribution
(Figure 3c), the probability of item a is always 1/2, independent of the time. The
probability of b is 1 minus the probability of a. The figures report the average
over 100 streams, generated with the indicated distributions. In general, we
can conclude that the size of the summary is extremely small w.r.t. the size
of the stream. If the probability of the target item increases, also the size of
the summary will increase, when the probability decreases, the summary will
shrink. This is easily explained by the entries in the summary that need to have
increasing frequency.

7 Conclusion and Future Work

We presented a new frequency measure for items in streams that does not rely
on a fixed window length or a time-decaying factor. Based on the properties
of the measure, an algorithm to compute it was shown. An experimental eval-
uation supported the claim that the new measure can be computed from a
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Figure 3: Size of the summaries for two items a and b

summary with extremely small memory requirements, that can be maintained
and updated efficiently.

In the future, we will look at the same topic, but try to mine for frequent
itemsets instead of items, based on this new frequency measure.
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